1
|
Fatehfar S, Sameei P, Abdollahzade N, Chodari L, Saboory E, Roshan-Milani S. Maternal Treadmill Exercise and Zinc Supplementation Alleviate Prenatal Stress-Induced Cognitive Deficits and Restore Neurological Biomarkers in Offspring: A Study on Male Rats Aged 30 and 90 Days. Dev Neurobiol 2025; 85:e22964. [PMID: 40195087 DOI: 10.1002/dneu.22964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The detrimental effects of prenatal stress (PS) on offspring's neurological and behavioral outcomes are well documented. However, strategies to mitigate these effects are underexplored. This study examines whether prenatal zinc supplementation and treadmill exercise can modulate PS-induced cognitive impairments and neurobiological markers in young and adult male rat offspring, leveraging the established neuroprotective potential of both physical activity and zinc. Pregnant rats were divided into five groups: control, stress, stress + exercise, stress + zinc, and stress + exercise + zinc, with all rats except the control group subjected to restraint stress (gestational days 15-19). Pregnant rats in the exercise groups underwent forced exercise, whereas those in the zinc groups received oral zinc sulfate throughout the pregnancy. At postnatal days 30 and 90, the cognitive function of male offspring was evaluated using the Morris water maze (MWM) test, and the hippocampal gene expression levels of caspase-3, brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) were measured using reverse transcription-polymerase chain reaction (RT-PCR). PS impaired cognitive functions, increased caspase-3 expression, and decreased BDNF and GFAP expression levels in adult rats. Prenatal exercise was found to mitigate PS-induced cognitive deficits primarily through enhancing GFAP expression, whereas prenatal zinc improved PS-induced cognitive impairments mainly through reduced caspase-3 and increased BDNF expression. The combined effect of exercise and zinc was not additive on cognitive functions and biomarkers. Physical activity may alleviate PS-induced cognitive deficits by modulating astrocytic factors, whereas zinc may exert its effects by inhibiting apoptosis via a BDNF-dependent pathway. Further targeted research is necessary to confirm these relationships.
Collapse
Affiliation(s)
- Sina Fatehfar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Al-Garni AM, Hosny SA, Almasabi F, Shati AA, Alzamil NM, ShamsEldeen AM, El-Shafei AA, Al-Hashem F, Zafrah H, Maarouf A, Al-Ani B, Bin-Jaliah I, Kamar SS. Identifying iNOS and glycogen as biomarkers for degenerated cerebellar purkinje cells in autism spectrum disorder: Protective effects of erythropoietin and zinc sulfate. PLoS One 2025; 20:e0317695. [PMID: 39946495 PMCID: PMC11824972 DOI: 10.1371/journal.pone.0317695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a collective neurodevelopmental disorder affecting young children and accounting for 1% of the world's population. The cerebellum is the major part of the human brain affected by ASD and is associated with a substantial reduction in the number of Purkinje cells. An association between ASD and the expression of the nitrosative stress biomarker inducible nitric oxide synthase (iNOS), as well as glycogen deposition in damaged Purkinje cells, has not been previously reported in the medical literature. To explore this correlation, young rats were injected with propionic acid (PPA) (500 mg/kg) for 5 days (model group), while the protection groups were treated with either erythropoietin (EPO, 5,000 U/kg) or 2 mg/kg zinc sulfate immediately after the PPA injections. ASD-like features were developed in the model group, as evidenced by cerebellum damage (degeneration of Purkinje cells) and cerebellar dysfunction (behavioral impairment). This study documented the exclusive expression of iNOS in the degenerated Purkinje cells, along with glycogen deposition in these cells. Additionally, PPA significantly (p < 0.001) modulated cerebellar tissue levels of mammalian target of rapamycin (mTOR), gamma-aminobutyric acid (GABA), GABAA receptor, serotonin, the marker of neuronal loss (calbindin D28K), and social interaction deficit. Some of these parameters were differentially protected by EPO and zinc sulfate, with the former providing greater protection than zinc sulfate. Furthermore, a significant correlation between the iNOS score and these parameters associated with ASD was observed. These findings demonstrate the colocalization of iNOS and glycogen in the damaged Purkinje cells induced by ASD, along with the modulation of ASD parameters, which were protected by EPO and zinc sulfate treatments. Thus, these potential novel biomarkers may offer possible therapeutic targets for the treatment of ASD.
Collapse
Affiliation(s)
- Abdulaziz M. Al-Garni
- Psychiatry section, Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Psychiatry, School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Sara A. Hosny
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Faris Almasabi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M. Alzamil
- Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Asmaa A. El-Shafei
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Russells Hall Hospital, Dudley, United Kingdom
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa S. Kamar
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
4
|
Sameei P, Fatehfar S, Abdollahzadeh N, Chodari L, Saboory E, Roshan-Milani S. The effects of forced exercise and zinc supplementation during pregnancy on prenatally stress-induced behavioral and neurobiological consequences in adolescent female rat offspring. Dev Psychobiol 2023; 65:e22411. [PMID: 37607889 DOI: 10.1002/dev.22411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/24/2023]
Abstract
Prenatal manipulations can lead to neurobehavioral changes in the offspring. In this study, individual and combined effects of forced exercise and zinc supplementation during pregnancy on prenatally restraint stress (PRS)-induced behavioral impairments, neuro-inflammatory responses, and oxidative stress have been investigated in adolescent female rat offspring. Pregnant rats were divided into five groups: control; restraint stress (RS); RS + exercise stress (RS + ES), RS + zinc supplementation (RS + Zn); and RS + ES + Zn. All the pregnant rats (except control) were exposed to RS from gestational days 15 to 19. Pregnant rats in ES groups were subjected to forced treadmill exercise (30 min/daily), and in Zn groups to zinc sulfate (30 mg/kg/orally), throughout the pregnancy. At postnatal days 25-27, anxiety-like and stress-coping behaviors were recorded, and the gene expressions of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and the concentration of total antioxidant capacity were measured in the prefrontal cortex. PRS significantly enhanced anxiety, generated passive coping behaviors, increased IL-1β and TNF-α expression, and decreased the antioxidant capacity. ES potentiated while zinc reversed PRS-induced behavioral impairments. Prenatal zinc also restored the anti-inflammatory and antioxidant capacity but had no effect on additive responses imposed by the combination of RS and ES. Suppression of PRS-induced behavioral and neurobiological impairments by zinc suggests the probable clinical importance of zinc on PRS-induced changes on child temperament.
Collapse
Affiliation(s)
- Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Fatehfar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naseh Abdollahzadeh
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
6
|
Loayza M, Lin S, Carter K, Ojeda N, Fan LW, Ramarao S, Bhatt A, Pang Y. Maternal immune activation alters fetal and neonatal microglia phenotype and disrupts neurogenesis in mice. Pediatr Res 2023; 93:1216-1225. [PMID: 35963885 DOI: 10.1038/s41390-022-02239-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Activation of microglia, increase in cortical neuron density, and reduction in GABAergic interneurons are some of the key findings in postmortem autism spectrum disorders (ASD) subjects. The aim of this study was to investigate how maternal immune activation (MIA) programs microglial phenotypes and abnormal neurogenesis in offspring mice. METHODS MIA was induced by injection of lipopolysaccharide (LPS, i.p.) to pregnant mice at embryonic (E) day 12.5. Microglial phenotypes and neurogenesis were investigated between E15.5 to postnatal (P) day 21 by immunohistochemistry, flow cytometry, and cytokine array. RESULTS MIA led to a robust increase in fetal and neonatal microglia in neurogenic regions. Homeostatic E15.5 and P4 microglia are heterogeneous, consisting of M1 (CD86+/CD206-) and mixed M1/M2 (CD86+/CD206+)-like subpopulations. MIA significantly reduced M1 but increased mixed M1/M2 microglia, which was associated with upregulation of numerous cytokines with pleotropic property. MIA resulted in a robust increase in Ki67+/Nestin+ and Tbr2+ neural progenitor cells in the subventricular zone (SVZ) of newborn mice. At juvenile stage, a male-specific reduction of Parvalbumin+ but increase in Reelin+ interneurons in the medial prefrontal cortex was found in MIA offspring mice. CONCLUSIONS MIA programs microglia towards a pleotropic phenotype that may drive excessive neurogenesis in ASD patients. IMPACT Maternal immune activation (MIA) alters microglial phenotypes in the brain of fetal and neonatal mouse offspring. MIA leads to excessive proliferation and overproduction of neural progenitors in the subventricular zone (SVZ). MIA reduces parvalbumin+ while increases Reelin+ interneurons in the prefrontal cortex. Our study sheds light on neurobiological mechanisms of abnormal neurogenesis in certain neurodevelopmental disorders, such as autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Marco Loayza
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Shuying Lin
- Department of Physical Therapy, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kathleen Carter
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Norma Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sumana Ramarao
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
7
|
de Bartolomeis A, Barone A, Vellucci L, Mazza B, Austin MC, Iasevoli F, Ciccarelli M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol 2022; 59:6460-6501. [PMID: 35963926 PMCID: PMC9463235 DOI: 10.1007/s12035-022-02976-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Evidence from clinical, preclinical, and post-mortem studies supports the inflammatory/immune hypothesis of schizophrenia pathogenesis. Less evident is the link between the inflammatory background and two well-recognized functional and structural findings of schizophrenia pathophysiology: the dopamine-glutamate aberrant interaction and the alteration of dendritic spines architecture, both believed to be the “quantal” elements of cortical-subcortical dysfunctional network. In this systematic review, we tried to capture the major findings linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes under a direct and inverse translational perspective, a paramount picture that at present is lacking. The inflammatory effects on dopaminergic function appear to be bidirectional: the inflammation influences dopamine release, and dopamine acts as a regulator of discrete inflammatory processes involved in schizophrenia such as dysregulated interleukin and kynurenine pathways. Furthermore, the link between inflammation and glutamate is strongly supported by clinical studies aimed at exploring overactive microglia in schizophrenia patients and maternal immune activation models, indicating impaired glutamate regulation and reduced N-methyl-D-aspartate receptor (NMDAR) function. In addition, an inflammatory/immune-induced alteration of post-synaptic density scaffold proteins, crucial for downstream NMDAR signaling and synaptic efficacy, has been demonstrated. According to these findings, a significant increase in plasma inflammatory markers has been found in schizophrenia patients compared to healthy controls, associated with reduced cortical integrity and functional connectivity, relevant to the cognitive deficit of schizophrenia. Finally, the link between altered inflammatory/immune responses raises relevant questions regarding potential new therapeutic strategies specifically for those forms of schizophrenia that are resistant to canonical antipsychotics or unresponsive to clozapine.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy. .,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy.
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Benedetta Mazza
- Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mark C Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University (ISU), Pocatello, ID, USA
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|
9
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Ogawa B, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem Biol Interact 2022; 351:109767. [PMID: 34863679 DOI: 10.1016/j.cbi.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
The present study investigated the role of neuroinflammation and brain oxidative stress induced by neonatal treatment with lipopolysaccharides (LPS) on the development of autism spectrum disorder (ASD)-like behaviors and disruptive hippocampal neurogenesis in rats by exploring the chemopreventive effects of alpha-glycosyl isoquercitrin (AGIQ) as an antioxidant. AGIQ was dietary administered to dams at 0.25% or 0.5% (w/w) from gestational day 18 until postnatal day (PND) 21 on weaning and then to pups until the adult stage on PND 77. The pups were intraperitoneally injected with LPS (1 mg/kg body weight) on PND 3. At PND 6, LPS alone increased Iba1+ and CD68+ cell numbers without changing the CD163+ cell number and strongly upregulated pro-inflammatory cytokine gene expression (Il1a, Il1b, Il6, Nfkb1, and Tnf) in the hippocampus, and increased brain malondialdehyde levels. At PND 10, pups decreased ultrasonic vocalization (USV), suggesting the induction of pro-inflammatory responses and oxidative stress to trigger communicative deficits. By contrast, LPS alone upregulated Nfe2l2 expression at PND 6, increased Iba1+, CD68+, and CD163+ cell numbers, and upregulated Tgfb1 at PND 21, suggesting anti-inflammatory responses until the weaning period. However, LPS alone disrupted hippocampal neurogenesis at weaning and suppressed social interaction parameters and rate of freezing time at fear acquisition and extinction during the adolescent stage. On PND 77, neuroinflammatory responses had mostly disappeared; however, disruptive neurogenesis and fear memory deficits were sustained. AGIQ ameliorated most changes on acute pro-inflammatory responses and oxidative stress at PND 6, and the effects on USVs at PND 10 and neurogenesis and behavioral parameters throughout the adult stage. These results suggested that neonatal LPS treatment induced acute but transient neuroinflammation, triggering the progressive disruption of hippocampal neurogenesis leading to abnormal behaviors in later life. AGIQ treatment was effective for ameliorating LPS-induced progressive changes by critically suppressing initial pro-inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan.
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
10
|
Carter M, Casey S, O'Keeffe GW, Gibson L, Gallagher L, Murray DM. Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Front Psychiatry 2022; 13:823096. [PMID: 35250672 PMCID: PMC8891512 DOI: 10.3389/fpsyt.2022.823096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is the commonest neurodevelopmental disability. It is a highly complex disorder with an increasing prevalence and an unclear etiology. Consensus indicates that ASD arises as a genetically modulated, and environmentally influenced condition. Although pathogenic rare genetic variants are detected in around 20% of cases of ASD, no single factor is responsible for the vast majority of ASD cases or that explains their characteristic clinical heterogeneity. However, a growing body of evidence suggests that ASD susceptibility involves an interplay between genetic factors and environmental exposures. One such environmental exposure which has received significant attention in this regard is maternal immune activation (MIA) resulting from bacterial or viral infection during pregnancy. Reproducible rodent models of ASD are well-established whereby induction of MIA in pregnant dams, leads to offspring displaying neuroanatomical, functional, and behavioral changes analogous to those seen in ASD. Blockade of specific inflammatory cytokines such as interleukin-17A during gestation remediates many of these observed behavioral effects, suggesting a causative or contributory role. Here, we review the growing body of animal and human-based evidence indicating that interleukin-17A may mediate the observed effects of MIA on neurodevelopmental outcomes in the offspring. This is particularly important given the current corona virus disease-2019 (COVID-19) pandemic as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy is a potent stimulator of the maternal immune response, however the long-term effects of maternal SARS-CoV-2 infection on neurodevelopmental outcomes is unclear. This underscores the importance of monitoring neurodevelopmental outcomes in children exposed to SARS-CoV-2-induced MIA during gestation.
Collapse
Affiliation(s)
- Michael Carter
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Louise Gibson
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Doi M, Usui N, Shimada S. Prenatal Environment and Neurodevelopmental Disorders. Front Endocrinol (Lausanne) 2022; 13:860110. [PMID: 35370942 PMCID: PMC8964779 DOI: 10.3389/fendo.2022.860110] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
The internal and external environment of the mother during the developmental stages of the fetus affects the offspring's health. According to the developmental origins of health and disease (DOHaD) theory, environmental factors influence the offspring and also affect health in adulthood. Recently, studies based on this theory have gained attracted attention because of their clinical utility in identifying the risk groups for various diseases. Neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) can be caused by exposure to certain prenatal environments during pregnancy. This review describes the latest findings on the effect of prenatal environment on the onset mechanism of NDDs based on the DOHaD theory. Unravelling the molecular mechanisms underlying the pathogenesis of NDDs is important, because there are no therapeutic drugs for these disorders. Furthermore, elucidating the relationship between the DOHaD theory and NDDs will contribute to the popularization of preventive medicine.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
12
|
Borhani-Haghighi M, Mohamadi Y. The protective effects of neural stem cells and neural stem cells-conditioned medium against inflammation-induced prenatal brain injury. J Neuroimmunol 2021; 360:577707. [PMID: 34507013 DOI: 10.1016/j.jneuroim.2021.577707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Intrauterine inflammation affects fetal development of the nervous system and may cause prenatal brain injury in offspring. Previously, neural stem cells have been extensively used as a therapeutic choice for nervous system diseases. Recently, the therapeutic ability of conditioned medium, harvested from cultured stem cells, has captured the attention of researchers in the field. Our study aimed to compare the therapeutic effect of neural stem cells (NSCs) or NSC-conditioned medium (NSC-CM) after prenatal brain injury. The animal model was induced by intraperitoneal injection of lipopolysaccharide into the pregnant mice and NSCs or NSC-CM were transplanted into the lateral ventricle of embryos in treatment groups. Inflammation and apoptosis were evaluated postpartum in offspring via measuring the expression of NLRP3 gene and protein, the expression and the activity of caspase-3, and the expression of pro-inflammatory cytokines by real-time PCR, immunohistochemistry, western blotting, ELISA, and colorimetric assay kit. A rotarod test was performed for motor function evaluation. Data showed that although NSC-CM fought against the inflammation and apoptosis and improved the motor function, NSCs acted more efficiently. In conclusion, the results of our study contend that NSCs have a better therapeutic effect than CM in prenatal brain injury.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomical Sciences, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
13
|
Mousaviyan R, Davoodian N, Alizadeh F, Ghasemi-Kasman M, Mousavi SA, Shaerzadeh F, Kazemi H. Zinc Supplementation During Pregnancy Alleviates Lipopolysaccharide-Induced Glial Activation and Inflammatory Markers Expression in a Rat Model of Maternal Immune Activation. Biol Trace Elem Res 2021; 199:4193-4204. [PMID: 33400154 DOI: 10.1007/s12011-020-02553-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Maternal immune activation (MIA) model has been profoundly described as a suitable approach to study the pathophysiological mechanisms of neuropsychiatric disorders, including schizophrenia. Our previous study revealed that prenatal exposure to lipopolysaccharide (LPS) induced working memory impairments in only male offspring. Based on the putative role of prefrontal cortex (PFC) in working memory process, the current study was conducted to examine the long-lasting effect of LPS-induced MIA on several neuroinflammatory mediators in the PFC of adult male pups. We also investigated whether maternal zinc supplementation can alleviate LPS-induced alterations in this region. Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on gestation days 15/16 and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy. At postnatal day 60, the density of both microglia and astrocyte cells and the expression levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP were evaluated in the PFC of male pups. Although maternal LPS treatment increased microglia and astrocyte density, number of neurons in the PFC of adult offspring remained unchanged. These findings were accompanied by the exacerbated mRNA levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP as well. Conversely, prenatal zinc supplementation alleviated the mentioned alterations induced by LPS. These findings support the idea that the deleterious effects of prenatal LPS exposure could be attenuated by zinc supplementation during pregnancy. It is of interest to suggest early therapeutic intervention as a valuable approach to prevent neurodevelopmental deficits, following maternal infection. Schematic diagram describing the experimental timeline. On gestation days (GD) 15 and 16, pregnant dams were administered with intraperitoneal injections of either LPS (0.5 mg/kg) or vehicle and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy by gavage. The resulting offspring were submitted to qPCR, immunostaining, and morphological analysis at PND 60. Maternal zinc supplementation alleviated increased expression levels of inflammatory mediators and microglia and astrocyte density induced by LPS in the PFC of treated offspring. PND postnatal day, PFC prefrontal cortex.
Collapse
Affiliation(s)
- Ronak Mousaviyan
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Faezeh Alizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Reesearch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Abdollah Mousavi
- Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Haniyeh Kazemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
14
|
Chen J, Ma XL, Zhao H, Wang XY, Xu MX, Wang H, Yang TQ, Peng C, Liu SS, Huang M, Zhou YD, Shen Y. Increasing astrogenesis in the developing hippocampus induces autistic-like behavior in mice via enhancing inhibitory synaptic transmission. Glia 2021; 70:106-122. [PMID: 34498776 PMCID: PMC9291003 DOI: 10.1002/glia.24091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory–inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic‐like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic‐like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhao
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min-Xin Xu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Qi Yang
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Peng
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, Hangzhou, China
| |
Collapse
|
15
|
Zakharova L, Sharova V, Izvolskaia M. Mechanisms of Reciprocal Regulation of Gonadotropin-Releasing Hormone (GnRH)-Producing and Immune Systems: The Role of GnRH, Cytokines and Their Receptors in Early Ontogenesis in Normal and Pathological Conditions. Int J Mol Sci 2020; 22:ijms22010114. [PMID: 33374337 PMCID: PMC7795970 DOI: 10.3390/ijms22010114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Different aspects of the reciprocal regulatory influence on the development of gonadotropin-releasing hormone (GnRH)-producing- and immune systems in the perinatal ontogenesis and their functioning in adults in normal and pathological conditions are discussed. The influence of GnRH on the development of the immune system, on the one hand, and the influence of proinflammatory cytokines on the development of the hypothalamic-pituitary-gonadal system, on the other hand, and their functioning in adult offspring are analyzed. We have focused on the effects of GnRH on the formation and functional activity of the thymus, as the central organ of the immune system, in the perinatal period. The main mechanisms of reciprocal regulation of these systems are discussed. The reproductive health of an individual is programmed by the establishment and development of physiological systems during critical periods. Regulatory epigenetic mechanisms of development are not strictly genetically controlled. These processes are characterized by a high sensitivity to various regulatory factors, which provides possible corrections for disorders.
Collapse
|
16
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
17
|
Brain Structural and Functional Alterations in Mice Prenatally Exposed to LPS Are Only Partially Rescued by Anti-Inflammatory Treatment. Brain Sci 2020; 10:brainsci10090620. [PMID: 32906830 PMCID: PMC7564777 DOI: 10.3390/brainsci10090620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant immune activity during neurodevelopment could participate in the generation of neurological dysfunctions characteristic of several neurodevelopmental disorders (NDDs). Numerous epidemiological studies have shown a link between maternal infections and NDDs risk; animal models of maternal immune activation (MIA) have confirmed this association. Activation of maternal immune system during pregnancy induces behavioral and functional alterations in offspring but the biological mechanisms at the basis of these effects are still poorly understood. In this study, we investigated the effects of prenatal lipopolysaccharide (LPS) exposure in peripheral and central inflammation, cortical cytoarchitecture and behavior of offspring (LPS-mice). LPS-mice reported a significant increase in interleukin-1β (IL-1β) serum level, glial fibrillary acidic protein (GFAP)- and ionized calcium-binding adapter molecule 1 (Iba1)-positive cells in the cortex. Furthermore, cytoarchitecture analysis in specific brain areas, showed aberrant alterations in minicolumns’ organization in LPS-mice adult brain. In addition, we demonstrated that LPS-mice presented behavioral alterations throughout life. In order to better understand biological mechanisms whereby LPS induced these alterations, dams were treated with meloxicam. We demonstrated for the first time that exposure to LPS throughout pregnancy induces structural permanent alterations in offspring brain. LPS-mice also present severe behavioral impairments. Preventive treatment with meloxicam reduced inflammation in offspring but did not rescue them from structural and behavioral alterations.
Collapse
|
18
|
Vidal PM, Pacheco R. The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Front Pharmacol 2020; 11:394. [PMID: 32296337 PMCID: PMC7137825 DOI: 10.3389/fphar.2020.00394] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine is one of the neurotransmitters whose transmission is altered in a number of neural pathways in the brain of schizophrenic patients. Current evidence indicates that these alterations involve hyperactive dopaminergic transmission in mesolimbic areas, striatum, and hippocampus, whereas hypoactive dopaminergic transmission has been reported in the prefrontal cortex of schizophrenic patients. Consequently, schizophrenia is associated with several cognitive and behavioral alterations. Of note, the immune system has been found to collaborate with the central nervous system in a number of cognitive and behavioral functions, which are dysregulated in schizophrenia. Moreover, emerging evidence has associated schizophrenia and inflammation. Importantly, different lines of evidence have shown dopamine as a major regulator of inflammation. In this regard, dopamine might exert strong regulation in the activity, migration, differentiation, and proliferation of immune cells that have been shown to contribute to cognitive functions, including T-cells, microglial cells, and peripheral monocytes. Thereby, alterations in dopamine levels associated to schizophrenia might affect inflammatory response of immune cells and consequently some behavioral functions, including reference memory, learning, social behavior, and stress resilience. Altogether these findings support the involvement of an active cross-talk between the dopaminergic and immune systems in the physiopathology of schizophrenia. In this review we summarize, integrate, and discuss the current evidence indicating the involvement of an altered dopaminergic regulation of immunity in schizophrenia.
Collapse
Affiliation(s)
- Pia M Vidal
- Department of Basic Science, Biomedical Science Research Lab, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile.,Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
19
|
Meyer U. Neurodevelopmental Resilience and Susceptibility to Maternal Immune Activation. Trends Neurosci 2019; 42:793-806. [DOI: 10.1016/j.tins.2019.08.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
|
20
|
Alizadeh F, Davoodian N, Kazemi H, Ghasemi-Kasman M, Shaerzadeh F. Prenatal zinc supplementation attenuates lipopolysaccharide-induced behavioral impairments in maternal immune activation model. Behav Brain Res 2019; 377:112247. [PMID: 31545978 DOI: 10.1016/j.bbr.2019.112247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
Maternal infection during pregnancy is considered a key risk factor for developing schizophrenia in offspring. There is evidence that maternal exposure to infectious agents is associated with fetal zinc deficiency. Due to the essential role of zinc in brain function and development, in the present study, we activated maternal immune system using lipopolysaccharide (LPS) as a model of schizophrenia to examine whether zinc supplementation throughout pregnancy can reverse LPS-induced deleterious effects. To test the hypothesis, pregnant rats were treated with intraperitoneal injection of either saline or LPS (0.5 mg/kg) at gestational day 15 and 16, and zinc supplementation (30 mg/kg) was administered throughout pregnancy by gavage. At postnatal day 60, Y-maze was used to evaluate working memory of offspring. Moreover, the expression levels of catechol O-methyltransferase (COMT) and glutamate decarboxylase 67 (GAD67) were measured in the frontal cortex of the brain samples. Only male offspring prenatally exposed to LPS showed a significant impairment in working memory. In addition, prenatal LPS exposure causes a moderate decrease in GAD67 expression level in the male pups, while COMT expression was found unchanged. Interestingly, zinc supplementation restored the alterations in working memory as well as GAD67 mRNA level in the male rats. No alteration was detected for neither working memory nor COMT/GAD67 genes expression in female offspring. This study demonstrates that zinc supplementation during pregnancy can attenuate LPS-induced impairments in male pups. These results support the idea to consume zinc supplementation during pregnancy to limit neurodevelopmental deficits induced by infections in offspring.
Collapse
Affiliation(s)
- Faezeh Alizadeh
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haniyeh Kazemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ghasemi-Kasman
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| |
Collapse
|
21
|
The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev 2019; 104:141-157. [DOI: 10.1016/j.neubiorev.2019.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023]
|
22
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
23
|
Izvolskaia M, Sharova V, Zakharova L. Prenatal Programming of Neuroendocrine System Development by Lipopolysaccharide: Long-Term Effects. Int J Mol Sci 2018; 19:ijms19113695. [PMID: 30469423 PMCID: PMC6274672 DOI: 10.3390/ijms19113695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Various stress factors during critical periods of fetal development modulate the epigenetic mechanisms controlling specific genes, which can affect the structure and function of physiological systems. Maternal immune stress by bacterial infection simulated by lipopolysaccharide (LPS) in an experiment is considered to be a powerful programming factor of fetal development. Studies of the molecular mechanisms controlling the formation and functioning of physiological systems are in the pilot stage. LPSs are the most potent natural inflammation factors. LPS-induced increases in fetal levels of pro- and anti-inflammatory cytokines can affect brain development and have long-term effects on behavior and neuroendocrine functions. The degradation of serotonergic neurons induced by LPS in the fetus is attributed to the increased levels of interleukin (IL)-6 and tumor necrosis factor (TNFα) as well as to anxiety and depression in children. Dopamine deficiency causes dysthymia, learning disability, and Parkinson’s disease. According to our data, an LPS-induced increase in the levels of IL-6, leukemia inhibitory factor (LIF), and monocyte chemotactic protein (MCP-1) in maternal and fetal rats during early pregnancy disturbs the development and functioning of gonadotropin-releasing hormone production and reproductive systems. It is important to note the high responsiveness of epigenetic developmental mechanisms to many regulatory factors, which offers opportunities to correct the defects.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Viktoria Sharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Liudmila Zakharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
24
|
Borhani-Haghighi M, Kashani IR, Mohamadi Y, Pasbakhsh P. Embryonic intraventricular transplantation of neural stem cells augments inflammation-induced prenatal brain injury. J Chem Neuroanat 2018; 94:54-62. [PMID: 29959975 DOI: 10.1016/j.jchemneu.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Prenatal brain injury results from undesirable circumstances during the embryonic development. Current endeavors for treating this complication are basically excluded to postnatal therapeutic approaches. Neural stem cell therapy has shown great promise for treating neurodevelopmental disorders. To our knowledge, this is the first study that investigates the therapeutic effect of in utero transplantation of neural stem cells (NSCs) in inflammation model of prenatal brain injury. METHODS To induce prenatal injury, time-mated C57BL6J mice were intraperitoneally injected with 50 μg/kg lipopolysaccharide (LPS(on the day 15 of gestation. In the treatment group, NSCs were transplanted into the lateral ventricle of embryos on day 17 of gestation. The expression of GFAP, Iba-1, Olig2, and NeuN were assessed by real time PCR and immunohistochemistry. Changes in IL-6, TNF-α and IL-10 cytokines level, and caspase 3 activity were evaluated in the cortex of pups. RESULTS Intrauterine transplanted NSCs homed to the brain cortex of offspring. Brain levels of pro-inflammatory cytokines showed a significant downward trend in the NSCs group. Furthermore, NSCs ameliorated inflammation-induced reactive microgliosis and astrogliosis as well as cellular degeneration. Apoptosis inhibition in the treated group was demonstrated by the decline in the caspase 3 activity and dark neurons. CONCLUSION This study suggests a promising prospect to initiate the treatment of prenatal brain injury before birth by intrauterine transplantation of NSCs.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Estes ML, McAllister AK. Maternal immune activation: Implications for neuropsychiatric disorders. Science 2016; 353:772-7. [PMID: 27540164 DOI: 10.1126/science.aag3194] [Citation(s) in RCA: 793] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological evidence implicates maternal infection as a risk factor for autism spectrum disorder and schizophrenia. Animal models corroborate this link and demonstrate that maternal immune activation (MIA) alone is sufficient to impart lifelong neuropathology and altered behaviors in offspring. This Review describes common principles revealed by these models, highlighting recent findings that strengthen their relevance for schizophrenia and autism and are starting to reveal the molecular mechanisms underlying the effects of MIA on offspring. The role of MIA as a primer for a much wider range of psychiatric and neurologic disorders is also discussed. Finally, the need for more research in this nascent field and the implications for identifying and developing new treatments for individuals at heightened risk for neuroimmune disorders are considered.
Collapse
Affiliation(s)
- Myka L Estes
- Center for Neuroscience, University of California Davis, One Shields Avenue, Davis, CA 95618, USA
| | - A Kimberley McAllister
- Center for Neuroscience, University of California Davis, One Shields Avenue, Davis, CA 95618, USA.
| |
Collapse
|
27
|
Lu H, Wang Q, Lu J, Zhang Q, Kumar P. Risk Factors for Intraventricular Hemorrhage in Preterm Infants Born at 34 Weeks of Gestation or Less Following Preterm Premature Rupture of Membranes. J Stroke Cerebrovasc Dis 2016; 25:807-12. [PMID: 26796051 DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/22/2015] [Accepted: 12/10/2015] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE The objective of this study is to identify possible perinatal risk factors related to intraventricular hemorrhage (IVH) in preterm infants born at 34 weeks of gestation or less following preterm premature rupture of membranes (pPROM). METHODS A total of 292 preterm infants born at 34 weeks of gestation or less following pPROM were enrolled in the study, while 155 newborns with incomplete data, especially those that lack histological examination of the placenta, maternal details, and neonatal characteristics, have been further excluded. Finally, data of 137 preterm infants were included in the analysis. All infants underwent ultrasonographic screening for IVH. Thirty-three infants with IVH were considered as cases and 104 infants without IVH were considered as controls. The association between risk factors and IVH was evaluated by univariate and multivariate logistic regression analyses. RESULTS The incidence of IVH in preterm infants born at 34 weeks of gestation or less following pPROM was 24.1%, while the incidence of maternal chorioamnionitis was 43.8%. By univariate analysis, gestational age, birth weight, asphyxia resuscitation, maternal chorioamnionitis, fetal distress, amniotic fluid index, and latency of the rupture of membranes to birth were found to be significantly different between the 2 groups. By logistic regression analysis, lower gestational age, low birth weight, asphyxia resuscitation, and maternal chorioamnionitis were found to be independent risk factors for IVH. CONCLUSION Lower gestational age, low birth weight, asphyxia resuscitation, and maternal chorioamnionitis are independent risk factors for IVH in preterm infants born at 34 weeks of gestation or less following pPROM.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China.
| | - Qiuxia Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Junyin Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiang Zhang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Pravesh Kumar
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
28
|
Lipopolysaccharide Exposure Induces Maternal Hypozincemia, and Prenatal Zinc Treatment Prevents Autistic-Like Behaviors and Disturbances in the Striatal Dopaminergic and mTOR Systems of Offspring. PLoS One 2015. [PMID: 26218250 PMCID: PMC4517817 DOI: 10.1371/journal.pone.0134565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autism is characterized by social deficits, repetitive behaviors, and cognitive inflexibility. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces autistic-like behaviors. To understand the causes of autistic-like behaviors, we evaluated maternal serum metal concentrations, which are involved in intrauterine development and infection/inflammation. We identified reduced maternal levels of zinc, magnesium, selenium and manganese after LPS exposure. Because LPS induced maternal hypozincemia, we treated dams with zinc in an attempt to prevent or ease the impairments in the offspring. We evaluated the social and cognitive autistic-like behaviors and brain tissues of the offspring to identify the central mechanism that triggers the development of autism. Prenatal LPS exposure impaired play behaviors and T-maze spontaneous alternations, i.e., it induced autistic-like behaviors. Prenatal LPS also decreased tyrosine hydroxylase levels and increased the levels of mammalian target of rapamycin (mTOR) in the striatum. Thus, striatal dopaminergic impairments may be related to autism. Moreover, excessive signaling through the mTOR pathway has been considered a biomarker of autism, corroborating our rat model of autism. Prenatal zinc treatment prevented these autistic-like behaviors and striatal dopaminergic and mTOR disturbances in the offspring induced by LPS exposure. The present findings revealed a possible relation between maternal hypozincemia during gestation and the onset of autism. Furthermore, prenatal zinc administration appears to have a beneficial effect on the prevention of autism.
Collapse
|
29
|
Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure. Life Sci 2015; 130:12-7. [DOI: 10.1016/j.lfs.2015.02.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
|
30
|
Kirsten TB, Galvão MC, Reis-Silva TM, Queiroz-Hazarbassanov N, Bernardi MM. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats. PLoS One 2015; 10:e0120263. [PMID: 25775356 PMCID: PMC4361539 DOI: 10.1371/journal.pone.0120263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS), an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α), corticosterone, and brain-derived neurotrophic factor (BDNF) plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.
Collapse
Affiliation(s)
- Thiago B. Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Marcella C. Galvão
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Reis-Silva
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
31
|
Kim J, Kim S, Jeon S, Hui Z, Kim Y, Im Y, Lim W, Kim C, Choi H, Kim O. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells. Med Oral Patol Oral Cir Bucal 2015; 20:e180-7. [PMID: 25662537 PMCID: PMC4393980 DOI: 10.4317/medoral.19896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). STUDY DESIGN Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1,2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. CONCLUSIONS Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Oral Pathology, Dental Science Research Institute and Medical Research, Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Bug-Gu, Gwangju, 500-757, Korea,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pujol Lopez Y, Steinbusch HWM, Rutten B, Kenis G, van den Hove DL, Myint AM. Effects of subcutaneous LPS injection on gestational length and intrauterine and neonatal mortality in mice. Neuroimmunomodulation 2015; 22:274-8. [PMID: 25613151 DOI: 10.1159/000368554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Infection during pregnancy can predispose offspring to develop various psychiatric disorders such as depression in later life. In order to investigate the potential mechanisms underlying these associations, animal models of maternal infection have been employed. As such, lipopolysaccharide (LPS) has been commonly used to mimic a bacterial infection in pregnant mice. OBJECTIVE The original aim of our study was to investigate the effects of different doses of subcutaneous LPS administration on affective behavior in adult mouse offspring. In the present paper, however, we report that subcutaneous LPS administration has a profound impact on gestational length, litter size, and perinatal mortality in the offspring, even at a relatively low dose. METHODS Pregnant mice were randomly divided into 3 groups, receiving either a high (2 mg/kg) or a low (0.5 mg/kg) dose of LPS or phosphate-buffered saline by means of subcutaneous injection. Subsequently, the effects on gestational length, litter size, and perinatal mortality in the offspring were assessed. RESULTS After subcutaneous injection with a high dose of LPS, we observed a significant decrease in gestational length and an increase in neonatal mortality. When the low dose was administered, a tendency towards a reduced litter size was observed, most likely reflecting increased intrauterine mortality in response to prenatal maternal LPS exposure. CONCLUSIONS We showed that subcutaneous administration of 2 mg/kg LPS to pregnant mice in the last phase of gestation should be avoided because of high offspring mortality rates, whereas subcutaneous injection of 0.5 mg/kg LPS seems to result in reabsorption of the fetuses.
Collapse
Affiliation(s)
- Yara Pujol Lopez
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Galvão MC, Chaves-Kirsten GP, Queiroz-Hazarbassanov N, Carvalho VM, Bernardi MM, Kirsten TB. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation. Life Sci 2015; 120:54-60. [DOI: 10.1016/j.lfs.2014.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022]
|
34
|
Lago N, Quintana A, Carrasco J, Giralt M, Hidalgo J, Molinero A. Absence of metallothionein-3 produces changes on MT-1/2 regulation in basal conditions and alters hypothalamic-pituitary-adrenal (HPA) axis. Neurochem Int 2014; 74:65-73. [PMID: 24969724 DOI: 10.1016/j.neuint.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Metallothioneins (MTs) are multipurpose proteins with clear antioxidant, anti-inflammatory and metal homeostasis properties. The roles of brain MT-1 and MT-2 are similar to those described in the periphery, and are inducible by metals, inflammatory and stress stimuli. MT-3, originally named growth inhibitory factor, exists mainly in the central nervous system, is hardly ever inducible and its functional role and regulation are poorly understood and controversial. In the present study we examined how absence of MT-3 affects phenotypic characteristics and its effects on MT1/2 expression in basal situation and after induction. Hyperactive behavior was found only in young male Mt-3 KO mice and disappeared in the older ones. Absence of MT-3 was associated with a significant increase of MT-1/2 protein levels in several brain areas but decreased MT-1 mRNA levels, which might be related to lower corticosterone levels. The response to stress or inflammation on corticosterone plasma levels was similar in wild type and Mt-3 KO mice, suggesting that the relevant MT-3 role as MT-1/2 regulator in basal conditions is lost when other important regulatory factors such as glucocorticoids or cytokines appear.
Collapse
Affiliation(s)
- Natalia Lago
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Javier Carrasco
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
35
|
Arsenault D, St-Amour I, Cisbani G, Rousseau LS, Cicchetti F. The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun 2014; 38:77-90. [PMID: 24384468 DOI: 10.1016/j.bbi.2013.12.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/30/2013] [Accepted: 12/20/2013] [Indexed: 01/06/2023] Open
Abstract
In recent years, in vivo animal models of prenatal infection have been developed in an attempt to recreate behavioral and neuropathological features associated to a number of neurological and neuropsychiatric disorders. However, these models are still in their emerging phase and a better understanding of how these types of infections relate to adult-onset of brain-related disorders is needed. Here, we undertook an extensive behavioral characterization of both pregnant females and their pups following late gestational exposure (from gestational days (GD) 15-17) to either lipopolysaccharide (LPS; 120μg/kg i.p.) or polyinosinic:polycytidylic acid (poly I:C; 5mg/kg i.v.). We observed that both LPS and poly I:C treatments produced anxiety-like behaviors in treated pregnant females, although to a lesser extent with LPS. LPS injections, but not poly I:C, led to reduced food intake and consequently decreased weight gain in pregnant dams. In pups, poly I:C treatments triggered a delay in growth and sensorimotor development, as evaluated by righting, geotaxis and grasping reflexes. At the cellular level, both toxins induced an initial inflammatory response while only LPS reduced the expression of brain cell markers in foetuses (GFAP and NeuN), which was no longer observable at postnatal day (PnD) 10. Higher levels of IL-2, IL-5 and IL-6 in plasma and an upregulation of the metabotropic receptor 5 (mGluR5) in foetal brains of 10-day-old offspring prenatally exposed to poly I:C was also observed. Interestingly, the increased mGluR5 expression correlated with impairments of the righting reflex. This study is the first to directly compare reflex development following LPS and poly I:C prenatal immune challenges in mice and sheds light onto the different patterns of behavior and pathology in dams and their offspring.
Collapse
Affiliation(s)
- Dany Arsenault
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Isabelle St-Amour
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Giulia Cisbani
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Louis-Simon Rousseau
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC G1K 7P4, Canada.
| |
Collapse
|
36
|
Puccini J, Shalini S, Voss AK, Gatei M, Wilson CH, Hiwase DK, Lavin MF, Dorstyn L, Kumar S. Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice. Proc Natl Acad Sci U S A 2013; 110:19920-5. [PMID: 24248351 PMCID: PMC3856814 DOI: 10.1073/pnas.1311947110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Caspase-2, the most evolutionarily conserved member of the caspase family, has been shown to be involved in apoptosis induced by various stimuli. Our recent work indicates that caspase-2 has putative functions in tumor suppression and protection against cellular stress. As such, the loss of caspase-2 enhances lymphomagenesis in Eµ-Myc transgenic mice, and caspase-2 KO (Casp2(-/-)) mice show characteristics of premature aging. However, the extent and specificity of caspase-2 function in tumor suppression is currently unclear. To further investigate this, ataxia telangiectasia mutated KO (Atm(-/-)) mice, which develop spontaneous thymic lymphomas, were used to generate Atm(-/-)Casp2(-/-) mice. Initial characterization revealed that caspase-2 deficiency enhanced growth retardation and caused synthetic perinatal lethality in Atm(-/-) mice. A comparison of tumor susceptibility demonstrated that Atm(-/-)Casp2(-/-) mice developed tumors with a dramatically increased incidence compared with Atm(-/-) mice. Atm(-/-)Casp2(-/-) tumor cells displayed an increased proliferative capacity and extensive aneuploidy that coincided with elevated oxidative damage. Furthermore, splenic and thymic T cells derived from premalignant Atm(-/-)Casp2(-/-) mice also showed increased levels of aneuploidy. These observations suggest that the tumor suppressor activity of caspase-2 is linked to its function in the maintenance of genomic stability and suppression of oxidative damage. Given that ATM and caspase-2 are important components of the DNA damage and antioxidant defense systems, which are essential for the maintenance of genomic stability, these proteins may synergistically function in tumor suppression by regulating these processes.
Collapse
Affiliation(s)
- Joseph Puccini
- Department of Hematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sonia Shalini
- Department of Hematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3050, Australia
| | - Magtouf Gatei
- Queensland Institute of Medical Research, Herston, QLD 4006, Australia
| | - Claire H. Wilson
- Department of Hematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Devendra K. Hiwase
- Department of Hematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, QLD 4006, Australia
- University of Queensland Centre for Clinical Research, Herston, QLD 4006, Australia; and
| | - Loretta Dorstyn
- Department of Hematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
- Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Department of Hematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
- Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
37
|
Prenatal immune challenge in rats increases susceptibility to seizure-induced brain injury in adulthood. Brain Res 2013; 1519:78-86. [DOI: 10.1016/j.brainres.2013.04.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
|
38
|
Chen YH, Zhao M, Chen X, Zhang Y, Wang H, Huang YY, Wang Z, Zhang ZH, Zhang C, Xu DX. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect. THE JOURNAL OF IMMUNOLOGY 2012; 189:454-63. [PMID: 22661087 DOI: 10.4049/jimmunol.1103579] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|