1
|
Makhdoomi S, Fadaiie A, Mohammadi M, Ranjbar A, Haddadi R. Quercetin's Restorative Properties in Male Mice with 3-Nitropropionic Acid-induced Huntington-like Symptoms: Molecular Docking, Behavioral, and Biochemical Assessment. Cell Biochem Biophys 2024; 82:1489-1502. [PMID: 38760648 DOI: 10.1007/s12013-024-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
The neurotoxicity of 3-Nitropropionic acid (3-NP) is well known. Herein, the prophylactic versus therapeutic effects of quercetin (QCT) were investigated against 3-NP-induced behavioral anomalies and oxidative neural damage. Thirty male mice were assigned into five groups; the negative control group, the QCT group (25 mg/kg/day, p.o. for 21 days), the 3-NP group (17 days), the prophylactic group (QCT administration for 14 consecutive days, and then 3-NP was administrated), the therapeutic group (3-NP was administrated and then QCT for 21 days). At the end of the animal treatment, behavioral studies were assessed. Subsequently, the brain sample tissues were assessed for oxidative stress-related parameters and histological evaluation. Moreover, the potential interaction between 3-NP and tumor necrosis factor-alpha (TNF-α) was evaluated by using a molecular docking study. 3-NP markedly led to neurotoxicity which was indicated by behavioral deficits (motor behavior, depression-like behavior, memory dysfunction, and passive avoidance) and oxidative damage. Blind and targeted molecular docking results showed good interaction between 3-NP and TNF-α. However, the prophylactic effects of QCT were superior to the therapeutic effects for attenuating 3-NP-induced neurobehavioral and oxidative neural changes in experimental mice, which histological changes of the brain's striatum region approved our findings. Taken together, the antioxidant activity of QCT remarkably could attenuate 3-NP-induced neurobehavioral deficits and mitochondrial dysfunctions in mice.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Fadaiie
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medicinal Plant and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
3
|
Hamouda HA, Sayed RH, Eid NI, El-Sayeh BM. Azilsartan Attenuates 3-Nitropropinoic Acid-Induced Neurotoxicity in Rats: The Role of IĸB/NF-ĸB and KEAP1/Nrf2 Signaling Pathways. Neurochem Res 2024; 49:1017-1033. [PMID: 38184805 PMCID: PMC10901959 DOI: 10.1007/s11064-023-04083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. Injection of 3-nitropropionic acid (3-NP) is a widely used experimental model for induction of HD. The current study aimed to inspect the potential neuroprotective properties of azilsartan (Azil), an angiotensin II type 1 receptor blocker (ATR1), in 3-NP-induced striatal neurotoxicity in rats. Rats were randomly allocated into five groups and treated for 14 days as follows: group I received normal saline; group II received Azil (10 mg/kg, p.o.); group III received 3-NP (10 mg/kg, i.p); group IV and V received Azil (5 or 10 mg/kg, p.o, respectively) 1 h prior to 3-NP injection. Both doses of Azil markedly attenuated motor and behavioural dysfunction as well as striatal histopathological alterations caused by 3-NP. In addition, Azil balanced striatal neurotransmitters levels as evidenced by the increase of striatal gamma-aminobutyric acid content and the decrease of glutamate content. Azil also amended neuroinflammation and oxidative stress via modulating IĸB/NF-ĸB and KEAP1/Nrf2 downstream signalling pathways, as well as reducing iNOS and COX2 levels. Moreover, Azil demonstrated an anti-apoptotic activity by reducing caspase-3 level and BAX/BCL2 ratio. In conclusion, the present study reveals the neuroprotective potential of Azil in 3-NP-induced behavioural, histopathological and biochemical changes in rats. These findings might be attributed to inhibition of ATR1/NF-κB signalling, modulation of Nrf2/KEAP1 signalling, anti-inflammatory, anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hend A Hamouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
- School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Nihad I Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Bahia M El-Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
4
|
Jang M, Choi JH, Jang DS, Cho IH. Micrandilactone C, a Nortriterpenoid Isolated from Roots of Schisandra chinensis, Ameliorates Huntington's Disease by Inhibiting Microglial STAT3 Pathways. Cells 2023; 12:cells12050786. [PMID: 36899922 PMCID: PMC10000367 DOI: 10.3390/cells12050786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease that affects the motor control system of the brain. Its pathological mechanism and therapeutic strategies have not been fully elucidated yet. The neuroprotective value of micrandilactone C (MC), a new schiartane nortriterpenoid isolated from the roots of Schisandra chinensis, is not well-known either. Here, the neuroprotective effects of MC were demonstrated in 3-nitropropionic acid (3-NPA)-treated animal and cell culture models of HD. MC mitigated neurological scores and lethality following 3-NPA treatment, which is associated with decreases in the formation of a lesion area, neuronal death/apoptosis, microglial migration/activation, and mRNA or protein expression of inflammatory mediators in the striatum. MC also inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in the striatum and microglia after 3-NPA treatment. As expected, decreases in inflammation and STAT3-activation were reproduced in a conditioned medium of lipopolysaccharide-stimulated BV2 cells pretreated with MC. The conditioned medium blocked the reduction in NeuN expression and the enhancement of mutant huntingtin expression in STHdhQ111/Q111 cells. Taken together, MC might alleviate behavioral dysfunction, striatal degeneration, and immune response by inhibiting microglial STAT3 signaling in animal and cell culture models for HD. Thus, MC may be a potential therapeutic strategy for HD.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (I.-H.C.)
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (I.-H.C.)
| |
Collapse
|
5
|
Choi JH, Kwon TW, Jo HS, Ha Y, Cho IH. Gintonin, a Panax ginseng-derived LPA receptor ligand, attenuates kainic acid-induced seizures and neuronal cell death in the hippocampus via anti-inflammatory and anti-oxidant activities. J Ginseng Res 2022; 47:390-399. [DOI: 10.1016/j.jgr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
|
6
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing Peroxisome Proliferator-Activated Receptor-gamma in 3-Nitropropionic Acid-Induced Striatal Neurotoxicity in Rats. Mol Neurobiol 2022; 59:4368-4383. [PMID: 35553009 PMCID: PMC9167199 DOI: 10.1007/s12035-022-02856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Telmisartan (TEL) is an angiotensin II type 1 receptor blocker and a partial activator of peroxisome proliferator-activated receptor-gamma (PPARγ), which regulates inflammatory and apoptotic pathways. Increasing evidence has demonstrated the PPARγ agonistic property of TEL in several brain disorders. This study aims to explore the neuroprotective impact of TEL in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. The PPARγ effect of TEL was affirmed by using the PPARγ agonist pioglitazone (PIO), and the antagonist GW9662. 3-NP led to a significant reduction in body weight alongside motor and cognitive functioning. The striata of the 3-NP-treated rats showed energy-deficit, microglia-mediated inflammatory reactions, apoptotic damage as well as histopathological lesions. PIO and TEL improved motor and cognitive perturbations induced by 3-NP, as confirmed by striatal histopathological examination, energy restoration, and neuronal preservation. Both drugs improved mitochondrial biogenesis evidenced by elevated mRNA expression of PPARγ, PGC-1α, and TFAM, alongside increased striatal ATP and SDH. The mitochondrial effect of TEL was beyond PPARγ activation. As well, their anti-inflammatory effect was attributed to suppression of microglial activation, and protein expression of pS536 p65 NF-κB with marked attenuation of striatal inflammatory mediator's release. Anti-inflammatory cytokine IL-10 expression was concurrently increased. TEL effectively participated in neuronal survival as it promoted phosphorylation of Akt/GSK-3β, further increased Bcl-2 expression, and inhibited cleavage of caspase-3. Interestingly, co-treatment with GW9662 partially revoked the beneficial effects of TEL. These findings recommend that TEL improves motor and cognitive performance, while reducing neuronal inflammation and apoptosis in 3-NP-induced neurotoxicity via a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Riham M Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6Th of October City, Giza, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6Th of October City, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
8
|
Yang X, Chu SF, Wang ZZ, Li FF, Yuan YH, Chen NH. Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington's disease via suppressing MAPKs and NF-κB pathways in the striatum. Acta Pharmacol Sin 2021; 42:1409-1421. [PMID: 33214696 PMCID: PMC8379213 DOI: 10.1038/s41401-020-00558-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is one of main neurodegenerative diseases, characterized by striatal atrophy, involuntary movements, and motor incoordination. Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, possesses a variety of neuroprotective effects with low toxicity and side effects. In this study, we investigated the potential therapeutic effects of Rg1 in a mouse model of HD and explored the underlying mechanisms. HD was induced in mice by injection of 3-nitropropionic acid (3-NP, i.p.) for 4 days. From the first day of 3-NP injection, the mice were administered Rg1 (10, 20, 40 mg·kg-1, p.o.) for 5 days. We showed that oral pretreatment with Rg1 alleviated 3-NP-induced body weight loss and behavioral defects. Furthermore, pretreatment with Rg1 ameliorated 3-NP-induced neuronal loss and ultrastructural morphological damage in the striatum. Moreover, pretreatment with Rg1 reduced 3-NP-induced apoptosis and inhibited the activation of microglia, inflammatory mediators in the striatum. We revealed that Rg1 exerted neuroprotective effects by suppressing 3-NP-induced activation of the MAPKs and NF-κΒ signaling pathways in the striatum. Thus, our results suggest that Rg1 exerts therapeutic effects on 3-NP-induced HD mouse model via suppressing MAPKs and NF-κΒ signaling pathways. Rg1 may be served as a novel therapeutic option for HD.
Collapse
|
9
|
Fu XX, Cai HY, Jiang H, Han S. Combined treatment with C16 peptide and angiopoietin-1 confers neuroprotection and reduces inflammation in 3-nitropropionic acid-induced dystonia mice. Aging (Albany NY) 2021; 13:19048-19063. [PMID: 34326273 PMCID: PMC8351673 DOI: 10.18632/aging.203354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
Dystonia is a disorder associated with abnormalities in many brain regions including the basal ganglia and cerebellum. The toxin 3-Nitropropionic acid (3-NP) can induce neuropathologies in the mice striatum and nigra substance, including excitotoxicity, neuroinflammation, and extensive neuronal atrophy, characterized by progressive motor dysfunction, dystonia, and memory loss, mimicking those observed in humans. We established a mouse model of dystonia by administering 3-NP. Given the reported neuroprotective effects of the endothelial growth factor angiopoietin-1 (Ang-1) and the anti-inflammatory integrin αvβ3 binding peptide C16, we performed this study to evaluate their combined effects on 3-NP striatal toxicity and their therapeutic potential with multiple methods using an in vivo mouse model. Sixty mice were equally and randomly divided into three groups: control, 3-NP treatment, and 3-NP+C16+Ang-1 treatment. Behavioral and electrophysiological tests were conducted and the effect of the combined C16+Ang-1 treatment on neural function recovery was determined. We found that C16+Ang-1 treatment alleviated 3-NP-induced behavioral, biochemical, and cellular alterations in the central nervous system and promoted function recovery by restoring vascular permeability and reducing inflammation in the micro-environment. In conclusion, our results confirmed the neuroprotective effect of combined C16+Ang-1 treatment and suggest their potential as a complementary therapeutic against 3-NP-induced dystonia.
Collapse
Affiliation(s)
- Xiao-Xiao Fu
- Institute of Anatomy and Cell Biology and Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Hua-Ying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Department of Electrophysiology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology and Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Lu C, Wang C, Xiao H, Chen M, Yang Z, Liang Z, Wang H, Liu Y, Yang Y, Wang Q. Ethyl pyruvate: A newly discovered compound against ischemia-reperfusion injury in multiple organs. Pharmacol Res 2021; 171:105757. [PMID: 34302979 DOI: 10.1016/j.phrs.2021.105757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a process whereby an initial ischemia injury and subsequent recovery of blood flow, which leads to the propagation of an innate immune response and the changes of structural and functional of multiple organs. Therefore, IRI is considered to be a great challenge in clinical treatment such as organ transplantation or coronary angioplasty. In recent years, ethyl pyruvate (EP), a derivative of pyruvate, has received great attention because of its stability and low toxicity. Previous studies have proved that EP has various pharmacological activities, including anti-inflammation, anti-oxidative stress, anti-apoptosis, and anti-fibrosis. Compelling evidence has indicated EP plays a beneficial role in a variety of acute injury models, such as brain IRI, myocardial IRI, renal IRI, and hepatic IRI. Moreover, EP can not only effectively inhibit multiple IRI-induced pathological processes, but also improve the structural and functional lesion of tissues and organs. In this study, we review the recent progress in the research on EP and discuss their implications for a better understanding of multiple organ IRI, and the prospects of targeting the EP for therapeutic intervention.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Haoxiang Xiao
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Mengfan Chen
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhi Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, China
| | - Haiying Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yonglin Liu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yang Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Qiang Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China.
| |
Collapse
|
11
|
Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 2020; 26:52-70. [PMID: 33226552 DOI: 10.1007/s10495-020-01645-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it's downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation. Consistent with in vitro findings, our in vivo results stated that treatment with 7,8-DHF at a dose of 10 mg/kg body weight ameliorated various behavior alterations caused by 3-NP intoxication. Further histopathological and electron microscopy evidences from striatal region of 3-NP mice brain treated with 7,8-DHF showed more improved neurons with intact mitochondria and less autophagic vacuoles. Protein expression analysis of both in vitro and in vivo study showed that 7,8-DHF promotes neuronal survival through upregulation and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt at serine-473/threonine-308). Akt phosphorylation additionally phosphorylates Bad at serine-136 and inhibits its translocation to mitochondria thereby promoting mitochondrial biogenesis, enhanced ATP production and inhibit apoptosis mediated neuronal death. These aforementioned findings help in strengthening our hypothesis and has come up with a novel neuroprotective mechanism of 7,8-DHF against 3-NP induced neuronal death.
Collapse
|
12
|
Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 2020; 257:118076. [PMID: 32659371 DOI: 10.1016/j.lfs.2020.118076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
AIMS Huntington's disease is a rare neurodegenerative disorder which is associated with defected glucose metabolism with consequent behavioral disturbance including memory and locomotion. 3-nitropropionic acid (3-NP) can cause, in high single dose, an acute striatal injury/Huntington's disease. Dapagliflozin, which is one of the longest duration of action of SGLTIs family, may be able to diminish that injury and its resultant behavioral disturbances. MATERIAL AND METHODS Forty rats were divided into four groups (n = 10 in each group): normal control group (CTRL), dapagliflozin (CTRL + DAPA) group, 3-nitropropionic acid (3-NP) group, and dapagliflozin plus 3-nitropropionic acid (DAPA + 3-NP) group. Behavioral tests (beam walking test, hanging wire test, limb withdrawal test, Y-maze spontaneous alteration, elevated plus maze) were performed with evaluating neurological scoring. In striatum, neurotransmitters (glutamate, aspartate, GABA, ACh and AChE activity) were measured. In addition, apoptosis and glycolysis markers (NF-κB, Cyt-c, lactate, HK-II activity, P53, calpain, PEA15 and TIGAR) were determined. Inflammation (IL-1β, IL-6, IL-8 and TNF-α) and autophagy (beclin-1, LC3 and DRAM) indicators were measured. Additionally, histopathological screening was conducted. KEY FINDINGS 3-Nitropropionic acid had the ability to perturb the neurotransmission which was reflected in impaired behavioral outcome. All of glycolysis, apoptosis and inflammation markers were elevated after 3-NP acute intoxication but autophagy parameters, except DRAM, were reduced. However, DAPA markedly reversed the abovementioned parameters. SIGNIFICANCE Dapagliflozin demonstrated anti-glycolytic, anti-apoptotic, anti-inflammatory and autophagic effects on 3-NP-damaged striatal cells and promoted the behavioral outcome.
Collapse
|
13
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
14
|
Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 2019; 80:146-162. [PMID: 30853569 DOI: 10.1016/j.bbi.2019.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Gintonin (GT), a ginseng-derived lysophosphatidic acid receptor ligand, regulates various cellular effects and represses inflammation. However, little is known about the potential value of GT regarding inflammation in the neurodegenerative diseases, such as Huntington's disease (HD). In this study, we investigated whether GT could ameliorate the neurological impairment and striatal toxicity in cellular or animal model of HD. Pre-, co-, and onset-treatment with GT (25, 50, or 100 mg/kg/day, p.o.) alleviated the severity of neurological impairment and lethality following 3-nitropropionic acid (3-NPA). Pretreatment with GT also attenuated mitochondrial dysfunction i.e. succinate dehydrogenase and MitoSOX activities, apoptosis, microglial activation, and mRNA expression of inflammatory mediators i.e. IL-1β, IL-6, TNF-α, COX-2, and iNOS in the striatum after 3-NPA-intoxication. Its action mechanism was associated with lysophosphatidic acid receptors (LPARs) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway activations and the inhibition of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways. These beneficial effects of GT were neutralized by pre-inhibiting LPARs with Ki16425 (a LPAR1/3 antagonist). Interestingly, GT reduced cell death and mutant huntingtin (HTT) aggregates in STHdh cells. It also mitigated neurological impairment in mice with adeno-associated viral (AAV) vector serotype DJ-mediated overexpression of N171-82Q-mutant HTT in the striatum. Taken together, our findings firstly suggested that GT has beneficial effects with a wide therapeutic time-window in 3-NPA-induced striatal toxicity by antioxidant and anti-inflammatory activities through LPA. In addition, GT exerts neuroprotective effects in STHdh cells and AAV vector-infected model of HD. Thus GT might be an innovative therapeutic candidate to treat HD-like syndromes.
Collapse
|
15
|
Jang M, Lee SE, Cho IH. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease. Front Cell Neurosci 2018; 12:157. [PMID: 29946240 PMCID: PMC6005874 DOI: 10.3389/fncel.2018.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin (HTT) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
16
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Kim HJ, Kim JY, Lee BH, Choi SH, Rhim H, Kim HC, Ahn SY, Jeong SW, Jang M, Cho IH, Nah SY. Gintonin, an exogenous ginseng-derived LPA receptor ligand, promotes corneal wound healing. J Vet Sci 2018; 18:387-397. [PMID: 27586470 PMCID: PMC5639092 DOI: 10.4142/jvs.2017.18.3.387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/03/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023] Open
Abstract
Ginseng gintonin is an exogenous ligand of lysophosphatidic acid (LPA) receptors. Accumulating evidence shows LPA helps in rapid recovery of corneal damage. The aim of this study was to evaluate the therapeutic efficacy of gintonin in a rabbit model of corneal damage. We investigated the signal transduction pathway of gintonin in human corneal epithelium (HCE) cells to elucidate the underlying molecular mechanism. We next evaluated the therapeutic effects of gintonin, using a rabbit model of corneal damage, by undertaking histochemical analysis. Treatment of gintonin to HCE cells induced transient increases of [Ca2+]i in concentration-dependent and reversible manners. Gintonin-mediated mobilization of [Ca2+]i was attenuated by LPA1/3 receptor antagonist Ki16425, phospholipase C inhibitor U73122, inositol 1,4,5-triphosphate receptor antagonist 2-APB, and intracellular Ca2+ chelator BAPTA-AM. Gintonin facilitated in vitro wound healing in a concentration-dependent manner. When applied as an eye-drop to rabbits with corneal damage, gintonin rapidly promoted recovery. Histochemical analysis showed gintonin decreased corneal apoptosis and increased corneal cell proliferation. We demonstrated that LPA receptor activation by gintonin is linked to in vitro and in vivo therapeutic effects against corneal damage. Gintonin can be applied as a clinical agent for the rapid healing of corneal damage.
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Joon Young Kim
- Veterinary Medical Teaching Hospital, Konkuk University, Seoul 05029, Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and toxicology program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Seoung-Yob Ahn
- Veterinary Medical Teaching Hospital, Konkuk University, Seoul 05029, Korea
| | - Soon-Wuk Jeong
- Veterinary Medical Teaching Hospital, Konkuk University, Seoul 05029, Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
18
|
Jin K, Wu H, Lv T, Dai J, Zhang X, Jin Y. Ethyl pyruvate attenuates delayed experimental cerebral vasospasm following subarachnoid haemorrhage in rats: possible role of JNK pathway. RSC Adv 2018; 8:7726-7734. [PMID: 35539121 PMCID: PMC9078488 DOI: 10.1039/c7ra10801j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
The pathophysiology of delayed cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH) is multifaceted and involves endothelial apoptosis and inflammation. Ethyl pyruvate (EP) could attenuate early brain injury following SAH via anti-inflammation and inhibition of the c-Jun N-terminal kinase (JNK) signalling pathway. However, the role of EP in the delayed CVS has yet to be determined. In this study, we examined the effect of EP on endothelial apoptosis and inflammation and explore possible signalling pathways. We found that EP could significantly attenuate the delayed CVS. Possible mechanisms include a decrease in the endothelial cell apoptosis of the basilar artery and alleviation of endothelial inflammation. The JNK signalling pathway may play an important role in the neuroprotective effects of EP on delayed CVS. The results suggest that EP may be a possible therapy for delayed CVS, and the JNK signalling pathway should be targeted for therapeutic purposes in the future. The pathophysiology of delayed cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH) is multifaceted and involves endothelial apoptosis and inflammation.![]()
Collapse
Affiliation(s)
- Ke Jin
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Hui Wu
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Tao Lv
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Jiong Dai
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Xiaohua Zhang
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Yichao Jin
- Department of Neurosurgery
- Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| |
Collapse
|
19
|
Alarcón-Herrera N, Flores-Maya S, Bellido B, García-Bores AM, Mendoza E, Ávila-Acevedo G, Hernández-Echeagaray E. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 2017; 109:1018-1025. [DOI: 10.1016/j.fct.2017.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/28/2023]
|
20
|
Kim EJ, Jang M, Lee MJ, Choi JH, Lee SJ, Kim SK, Jang DS, Cho IH. Schisandra chinensis Stem Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity via Activation of the Nrf2 Pathway and Inhibition of the MAPKs and NF-κB Pathways. Front Pharmacol 2017; 8:673. [PMID: 29033839 PMCID: PMC5627181 DOI: 10.3389/fphar.2017.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
The beneficial value of the stems of Schisandra chinensis (SSC) in neurological diseases is unclear. We examined whether SSC aqueous extract (SSCE) alleviates striatal toxicity in a 3-nitropropionic acid (3-NPA)-induced mouse model of Huntington's disease (HD). SSCE (75, 150, or 300 mg/kg/day, p.o.) was given daily before or after 3-NPA treatment. Pre- and onset-treatment with SSCE displayed a significant protective effect and pretreatment was more effective as assessed by neurological scores and survival rate. These effects were related to reductions in mean lesion area, cell death, succinate dehydrogenase activity, microglial activation, and protein expression of inflammatory factors including interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NPA treatment. Pretreatment with SSCE stimulated the nuclear factor erythroid 2-related factor 2 pathway and inhibited phosphorylation of the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways in the striatum after 3-NPA treatment. The gomisin A and schizandrin components of SSCE significantly reduced the neurological impairment and lethality induced by 3-NPA treatment. These results indicate for the first time that SSCE may effectively prevent 3-NPA-induced striatal toxicity during a wide therapeutic time window through anti-oxidative and anti-inflammatory activities. SSCE has potential value in preventive and therapeutic strategies for HD-like symptoms.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Min Jung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong Hee Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
21
|
Pieroh P, Wagner DC, Ghadban C, Birkenmeier G, Dehghani F. Ethyl pyruvate does not require microglia for mediating neuroprotection after excitotoxic injury. CNS Neurosci Ther 2017; 23:798-807. [PMID: 28836378 DOI: 10.1111/cns.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023] Open
Abstract
AIMS Ethyl pyruvate (EP) mediates protective effects after neuronal injury. Besides a direct conservation of damaged neurons, the modulation of indigenous glial cells has been suggested as one important mechanism for EP-related neuroprotection. However, the specific contribution of glial cells is still unknown. METHODS Organotypic hippocampal slice cultures (OHSC) were excitotoxically lesioned by 50 μmol/L N-methyl-D-aspartate (NMDA, for 4 hours) or left untreated. In an additional OHSC subset, microglia was depleted using the bisphosphonate clodronate (100 μg/mL) before lesion. After removal of NMDA, EP containing culture medium (0.84 μmol/L, 8.4 μmol/L, 42 μmol/L, 84 μmol/L, 168 μmol/L) was added and incubated for 72 hours. OHSC were stained with propidium iodide to visualize degenerating neurons and isolectin IB4 -FITC to identify microglia. Effects of EP at concentrations of 0.84, 8.4, and 84 μmol/L (0-48 hours) were analyzed in the astrocytic scratch wound assay. RESULTS EP significantly reduced neurodegeneration following induced excitotoxicity except for 168 μmol/L. For 84 μmol/L, a reduction in the microglia cells was observed. Microglia depletion did not affect neuronal survival after EP treatment. EP decelerated astrocytic wound closure at 48 hours after injury. CONCLUSION EP-mediated neuroprotection seems to be mediated by astrocytes and/or neurons.
Collapse
Affiliation(s)
- Philipp Pieroh
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | | | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Birkenmeier
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
22
|
Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways. J Ginseng Res 2017; 42:436-446. [PMID: 30337803 PMCID: PMC6187097 DOI: 10.1016/j.jgr.2017.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein (MBP)68-82 peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-γ, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor β1, transforming growth factor β, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-κB signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.
Collapse
|
23
|
Simultaneous blockade of NMDA receptors and PARP-1 activity synergistically alleviate immunoexcitotoxicity and bioenergetics in 3-nitropropionic acid intoxicated mice: Evidences from memantine and 3-aminobenzamide interventions. Eur J Pharmacol 2017; 803:148-158. [DOI: 10.1016/j.ejphar.2017.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
|
24
|
Lv T, Miao YF, Jin YC, Yang SF, Wu H, Dai J, Zhang XH. Ethyl Pyruvate Attenuates Early Brain Injury Following Subarachnoid Hemorrhage in the Endovascular Perforation Rabbit Model Possibly Via Anti-inflammation and Inhibition of JNK Signaling Pathway. Neurochem Res 2017; 42:1044-1056. [PMID: 28236213 DOI: 10.1007/s11064-016-2138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH + Vehicle (equal volume) and SAH + EP (30 mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72 h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72 h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72 h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72 h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Yi-Feng Miao
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Shao-Feng Yang
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Hui Wu
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Jiong Dai
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China.
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
25
|
Lee MJ, Bing SJ, Choi J, Jang M, Lee G, Lee H, Chang BS, Jee Y, Lee SJ, Cho IH. IKKβ-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating Th1/Th17 cell activation and compromising blood brain barrier. Mol Neurodegener 2016; 11:54. [PMID: 27450563 PMCID: PMC4957872 DOI: 10.1186/s13024-016-0116-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 07/02/2016] [Indexed: 01/31/2023] Open
Abstract
Background The inflammatory myeloid cell activation is one of the hallmarks of experimental autoimmune encephalomyelitis (EAE), yet the in vivo role of the inflammatory myeloid cell activation in EAE has not been clearly resolved. It is well-known that IKK/NF-κB is a key signaling pathway that regulates inflammatory myeloid activation. Methods We investigated the in vivo role of inflammatory myeloid cell activation in myelin oligodendrocyte glycoprotein (MOG) peptides-induced EAE using myeloid cell type-specific ikkβ gene conditional knockout-mice (LysM-Cre/IkkβF/F). Results In our study, LysM-Cre/IkkβF/F mice had alleviated clinical signs of EAE corresponding to the decreased spinal demyelination, microglial activation, and immune cell infiltration in the spinal cord, compared to the wild-type mice (WT, IkkβF/F). Myeloid ikkβ gene deletion significantly reduced the percentage of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells but increased the percentages of CD4+/CD25+/Foxp3+ (Treg) cells in the spinal cord and lymph nodes, corresponding to the altered mRNA expression of IFN-γ, IL-17, IL-23, and Foxp3 in the spinal cords of LysM-Cre/IkkβF/F EAE mice. Also, the beneficial effect of myeloid IKKβ deletion in EAE corresponded to the decreased permeability of the blood brain barrier (BBB). Conclusions Our findings strongly suggest that IKK/NF-kB-induced myeloid cell activation exacerbates EAE by activating Th1 and Th17 responses and compromising the BBB. The development of NF-κB inhibitory agents with high efficacy through specific targeting of IKKβ in myeloid cells might be of therapeutic potential in MS and other autoimmune disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0116-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So Jin Bing
- Department of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jonghee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunkyoung Lee
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Soo Chang
- Department of Cosmetology, Hanseo University, Seosan, 31962, Republic of Korea
| | - Youngheun Jee
- Department of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sung Joong Lee
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
26
|
Ethyl pyruvate alleviates early brain injury following subarachnoid hemorrhage in rats. Acta Neurochir (Wien) 2016; 158:1069-76. [PMID: 27072679 DOI: 10.1007/s00701-016-2795-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/27/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Previous studies have demonstrated the neuroprotective effects of ethyl pyruvate in central nervous system (CNS) diseases. However, whether ethyl pyruvate attenuates early brain injury after subarachnoid hemorrhage (SAH) remains unknown. This study was conducted to investigate the potential effects of ethyl pyruvate on early brain injury induced by SAH and explore the underlying mechanisms. METHODS Eighty-eight male Sprague-Dawley rats were used. An SAH model was induced by endovascular perforation. Ethyl pyruvate (100 mg/kg) or a vehicle was administered intraperitoneally at 1 h after SAH induction. SAH grade, neurological scores, brain water content, Evans blue extravasation, Western blots, and immunofluorescence were used to study the mechanisms of ethyl pyruvate. RESULTS Ethyl pyruvate treatment inhibited microglia activation and reduced the expression of proinflammatory cytokines (IL-1β and TNF-α). Ethyl pyruvate treatment also prevented disruption of tight junction proteins (occluding and claudin-5) and reduced expression of MMP-9. In addition, ethyl pyruvate treatment markedly reduced TUNEL-positive cells and expression of cleaved caspase-3. CONCLUSIONS Our results indicated that ethyl pyruvate treatment attenuated early brain injury and improved neurological function after SAH by inhibiting microglia activation and apoptosis and stabilizing the BBB.
Collapse
|
27
|
Bak J, Kim HJ, Kim SY, Choi YS. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:279-86. [PMID: 27162482 PMCID: PMC4860370 DOI: 10.4196/kjpp.2016.20.3.279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD.
Collapse
Affiliation(s)
- Jia Bak
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yun-Sik Choi
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| |
Collapse
|
28
|
Choi JH, Jang M, Kim EJ, Kim H, Ye SK, Cho IH. Oriental Medicine Woohwangchungsimwon Attenuates Kainic Acid-Induced Seizures and Neuronal Cell Death in the Hippocampus. Rejuvenation Res 2016; 19:394-405. [PMID: 26981959 DOI: 10.1089/rej.2015.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Woohwangchungsimwon (WCW) is an oriental medicine that has been extensively prescribed in Asia to patients with apoplexy, high blood pressure, acute/chronic convulsion, and so on. However, the potential therapeutic value of WCW in treating the pathologic brain has not yet been fully investigated. In the present study, we evaluated whether WCW has beneficial effects on kainic acid (KA)-induced excitotoxicity. An intraperitoneal injection of KA (40 mg/kg) and an intracerebroventricular injection of KA (0.2 μg) produced typical seizure behavior and neuronal cell death in the CA1 and CA3 pyramidal layers of the hippocampus, respectively. However, the systemic administration of WCW significantly attenuated the seizure behavior and neuronal cell death. WCW was found to exert the best protective effect when it was administrated 2 hours before a KA injection. Moreover, this WCW-induced neuroprotection was accompanied by a reduction in microglia activation and tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxyganase-2 in the hippocampus. These results suggest that WCW has therapeutic potential to suppress KA-induced pathogenesis in the brain by inhibiting inflammation.
Collapse
Affiliation(s)
- Jong Hee Choi
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Minhee Jang
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Eun-Jeong Kim
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Hocheol Kim
- 2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,3 Department of Herbology, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,4 Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Sang-Kyu Ye
- 5 Department of Pharmacology, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Ik-Hyun Cho
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,4 Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
29
|
Jang M, Lee MJ, Choi JH, Kim EJ, Nah SY, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Ginsenoside Rb1 Attenuates Acute Inflammatory Nociception by Inhibition of Neuronal ERK Phosphorylation by Regulation of the Nrf2 and NF-κB Pathways. THE JOURNAL OF PAIN 2016; 17:282-97. [DOI: 10.1016/j.jpain.2015.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
|
30
|
Choi JH, Lee MJ, Jang M, Kim EJ, Shim I, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. An Oriental Medicine, Hyungbangpaedok-San Attenuates Motor Paralysis in an Experimental Model of Multiple Sclerosis by Regulating the T Cell Response. PLoS One 2015; 10:e0138592. [PMID: 26444423 PMCID: PMC4596626 DOI: 10.1371/journal.pone.0138592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022] Open
Abstract
The preventive and therapeutic mechanisms in multiple sclerosis are not clearly understood. We investigated whether Hyungbangpaedok-san (HBPDS), a traditional herbal medicine, has a beneficial effect in experimental autoimmune encephalomyelitis (EAE) mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Onset-treatment with 4 types of HBPDS (extracted using distilled water and 30%/70%/100% ethanol as the solvent) alleviated neurological signs, and HBPDS extracted within 30% ethanol (henceforth called HBPDS) was more effective. Onset-treatment with HBPDS reduced demyelination and the recruitment/infiltration and activation of microglia/macrophages in the spinal cord of EAE mice, which corresponded to the reduced mRNA expression of pro-inflammatory cytokines (TNF-α, IL–6, and IL–1β), iNOS, and chemokines (MCP–1, MIP–1α, and RANTES) in the spinal cord. Onset-treatment with HBPDS inhibited changes in the components of the blood-brain barrier such as astrocytes, adhesion molecules (ICAM–1 and VCAM–1), and junctional molecules (claudin–3, claudin–5, and zona occludens–1) in the spinal cord of EAE mice. Onset-treatment with HBPDS reduced the elevated population of CD4+, CD4+/IFN-γ+, and CD4+/IL–17+ T cells in the spinal cord of EAE mice but it further increased the elevated population of CD4+/CD25+/Foxp3+ and CD4+/Foxp3+/Helios+ T cells. Pre-, onset-, post-, but not peak-treatment, with HBPDS had a beneficial effect on behavioral impairment in EAE mice. Taken together, HBPDS could alleviate the development/progression of EAE by regulating the recruitment/infiltration and activation of microglia and peripheral immune cells (macrophages, Th1, Th17, and Treg cells) in the spinal cord. These findings could help to develop protective strategies using HBPDS in the treatment of autoimmune disorders including multiple sclerosis.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
| | - Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
| | - Eun-Jeong Kim
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
| | - Insop Shim
- Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, 336–745, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 456–756, Republic of Korea
| | - Sang Won Lee
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 369–873, Republic of Korea
| | - Young Ock Kim
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 369–873, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- Institute of Koreran Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130–701, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Hanna DMF, Tadros MG, Khalifa AE. ADIOL protects against 3-NP-induced neurotoxicity in rats: Possible impact of its anti-oxidant, anti-inflammatory and anti-apoptotic actions. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:36-51. [PMID: 25689821 DOI: 10.1016/j.pnpbp.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 01/20/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with a wide spectrum of cognitive, behavioral and motor abnormalities. The mitochondrial toxin 3-nitropropionic acid (3-NP) effectively induces specific behavioral changes and selective striatal lesions similar to that observed in HD. Some neurosteroids, synthesized in neurons and glial cells, previously showed neuroprotective abilities. 5-Androstene-3β-17β-diol (ADIOL) is a major metabolite of dehydroepiandrosterone (DHEA) with previously reported anti-inflammatory, anti-apoptotic and neuroprotective activities. The neuroprotective potential of ADIOL in HD was not previously investigated. Therefore, the present study investigated the neuroprotective effects of ADIOL against 3-NP-induced behavioral changes, oxidative stress, inflammation and apoptosis. Intraperitoneal administration of 3-NP (20mg/kg) for 4 consecutive days in rats caused significant loss in body weight, reduced prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity with altered cortical/striatal histological structure, increased cortical/striatal oxidative stress, inflammation and apoptosis. Administration of ADIOL (25mg/kg, s.c.) for two days before 3-NP significantly attenuated the reduction in body weights and PPI, increased locomotor activity and restored cortical/striatal histological structure nearly to normal. Moreover, it displayed anti-oxidant, anti-inflammatory and anti-apoptotic activities as evidenced by the elevation of cortical and striatal reduced glutathione levels, reductions of cortical and striatal malondialdehyde, striatal tumor necrosis factor alpha and interleukin-6 levels. Only a small number of iNOS and caspase-3 positive cells were detected in sections from rats pretreated with ADIOL. This study suggests a potential neuroprotective role of ADIOL against 3-NP-induced Huntington's disease-like manifestations. Such neuroprotection can be attributed to its anti-oxidant, anti-inflammatory and anti-apoptotic activities.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Jang M, Cho IH. Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways. Mol Neurobiol 2015; 53:2619-35. [PMID: 26096705 DOI: 10.1007/s12035-015-9230-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/22/2015] [Indexed: 02/08/2023]
Abstract
The potential neuroprotective value of sulforaphane (SFN) in Huntington's disease (HD) has not been established yet. We investigated whether SFN prevents and improves the neurological impairment and striatal cell death in a 3-nitropropionic acid (3-NP)-induced mouse model of HD. SFN (2.5 and 5.0 mg/kg/day, i.p.) was given daily 30 min before 3-NP treatment (pretreatment) and from onset/progression/peak points of the neurological scores. Pretreatment with SFN (5.0 mg/kg/day) produced the best neuroprotective effect with respect to the neurological scores and lethality among other conditions. The protective effects due to pretreatment with SFN were associated with the following: suppression of the formation of a lesion area, neuronal death, succinate dehydrogenase activity, apoptosis, microglial activation, and mRNA or protein expression of inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP treatment. Also, pretreatment with SFN activated the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and inhibited the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways in the striatum after 3-NP treatment. As expected, the pretreatment with activators (dimethyl fumarate and antioxidant response element inducer-3) of the Keap1-Nrf2-ARE pathway decreased the neurological impairment and lethality after 3-NP treatment. Our findings suggest that SFN may effectively attenuate 3-NP-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways and that SFN has a wide therapeutic time-window for HD-like symptoms.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.,Department of Cancer Preventive Material Development, College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea. .,Brain Korea 21 Plus Program, College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea. .,Institute of Korean Medicine, College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
33
|
Short term exposure to ethyl pyruvate has long term anti-inflammatory effects on microglial cells. Biomed Pharmacother 2015; 72:11-6. [DOI: 10.1016/j.biopha.2015.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023] Open
|
34
|
Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, Nah SY, Cho IH. Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells. Mol Neurobiol 2015; 53:1977-2002. [PMID: 25846819 DOI: 10.1007/s12035-015-9131-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/22/2015] [Indexed: 11/26/2022]
Abstract
The effects of Korean red ginseng extract (KRGE) on autoimmune disorders of the nervous system are not clear. We investigated whether KRGE has a beneficial effect on acute and chronic experimental autoimmune encephalomyelitis (EAE). Pretreatment (daily from 10 days before immunization with myelin basic protein peptide) with KRGE significantly attenuated clinical signs and loss of body weight and was associated with the suppression of spinal demyelination and glial activation in acute EAE rats, while onset treatment (daily after the appearance of clinical symptoms) did not. The suppressive effect of KRGE corresponded to the messenger RNA (mRNA) expression of proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin [IL]-1β), chemokines (RANTES, monocyte chemotactic protein-1 [MCP-1], and macrophage inflammatory protein-1α [MIP-1α]), adhesion molecules (intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1], and platelet endothelial cell adhesion molecule [PECAM-1]), and inducible nitric oxide synthase in the spinal cord after immunization. Interestingly, in acute EAE rats, pretreatment with KRGE significantly reduced the population of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells in the spinal cord and lymph nodes, corresponding to the downregulation of mRNA expression of IFN-γ, IL-17, and IL-23 in the spinal cord. On the other hand, KRGE pretreatment increased the population of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of these rats, corresponding to the upregulation of mRNA expression of Foxp3 in the spinal cord. Interestingly, intrathecal pretreatment of rats with ginsenosides (Rg1 and Rb1) significantly decreased behavioral impairment. These results strongly indicate that KRGE has a beneficial effect on the development and progression of EAE by suppressing T helper 1 (Th1) and Th17 T cells and upregulating regulatory T cells. Additionally, pre- and onset treatment with KRGE alleviated neurological impairment of myelin oligodendrocyte glycoprotein(35-55)-induced mouse model of chronic EAE. These results warrant further investigation of KRGE as preventive or therapeutic strategies for autoimmune disorders, such as multiple sclerosis.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/pathology
- Chemokines/metabolism
- Chronic Disease
- Demyelinating Diseases/complications
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Fibronectins/metabolism
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Inflammation/complications
- Inflammation/drug therapy
- Inflammation/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroglia/pathology
- Panax/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Inbred Lew
- Spinal Cord/drug effects
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Minhee Jang
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Jonghee Choi
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
- Brain Korea 21 Plus Program, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Byung Soo Chang
- Department of Cosmetology, Hanseo University, Seosan, 356-706, Republic of Korea
| | - Do Young Kim
- Barrow Neurological Institute and St. Joseph's Medical Center, Phoenix, AZ, 85013, USA
| | - Sung-Hoon Kim
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Yi-Seong Kwak
- Central Research Institute, Korea Ginseng Corporation, Daejeon, 305-805, Republic of Korea
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Jong-Hwan Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Byung-Joon Chang
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
- Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
- Brain Korea 21 Plus Program, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
35
|
Miljković D, Blaževski J, Petković F, Djedović N, Momčilović M, Stanisavljević S, Jevtić B, Mostarica Stojković M, Spasojević I. A Comparative Analysis of Multiple Sclerosis–Relevant Anti-Inflammatory Properties of Ethyl Pyruvate and Dimethyl Fumarate. THE JOURNAL OF IMMUNOLOGY 2015; 194:2493-503. [DOI: 10.4049/jimmunol.1402302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 2015; 10:e0117223. [PMID: 25675218 PMCID: PMC4326416 DOI: 10.1371/journal.pone.0117223] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/20/2014] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
Collapse
Affiliation(s)
- Esther T. Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G. Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Wang G, Liu K, Li Y, Yi W, Yang Y, Zhao D, Fan C, Yang H, Geng T, Xing J, Zhang Y, Tan S, Yi D. Endoplasmic reticulum stress mediates the anti-inflammatory effect of ethyl pyruvate in endothelial cells. PLoS One 2014; 9:e113983. [PMID: 25470819 PMCID: PMC4254754 DOI: 10.1371/journal.pone.0113983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/02/2014] [Indexed: 12/16/2022] Open
Abstract
Ethyl pyruvate (EP) is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC) inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs) and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8) production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK). EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer) attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS.
Collapse
Affiliation(s)
- Ge Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi′an 710032, China
- Department of Cardiovascular Surgery, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou 510507, China
| | - Kan Liu
- School of Basic Medical Sciences, The Fourth Military Medical University, 169 Changle West Road, Xi′an 710032, China
| | - Yue Li
- Department of Air Logistics, The 463rd Hospital of PLA, 46 Xiaoheyan Road, Shenyang 110042, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi′an 710032, China
| | - Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi′an 710032, China
| | - Dajun Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi′an 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi′an 710038, China
| | - Honggang Yang
- Department of Cardiovascular Surgery, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou 510507, China
| | - Ting Geng
- Department of Cardiovascular Surgery, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou 510507, China
| | - Jianzhou Xing
- Department of Cardiovascular Surgery, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou 510507, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi′an 710032, China
| | - Songtao Tan
- Department of Cardiovascular Surgery, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou 510507, China
- * E-mail: (DY); (ST)
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi′an 710032, China
- * E-mail: (DY); (ST)
| |
Collapse
|