1
|
Shi J, Xie J, Li Z, He X, Wei P, Sander JW, Zhao G. The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy. Neurosci Bull 2025; 41:881-905. [PMID: 39992353 PMCID: PMC12014895 DOI: 10.1007/s12264-025-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 02/25/2025] Open
Abstract
Epilepsy affects over 50 million people worldwide. Drug-resistant epilepsy (DRE) accounts for up to a third of these cases, and neuro-inflammation is thought to play a role in such cases. Despite being a long-debated issue in the field of DRE, the mechanisms underlying neuroinflammation have yet to be fully elucidated. The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics. Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes, such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis. The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems. We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application. We hope to provide an insightful overview to advance the quest for better DRE treatments.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Jing Xie
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Zesheng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, 230022, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK.
- Neurology Department, West China Hospital of Sichuan University, Chengdu, 61004, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| |
Collapse
|
2
|
Koo Y, Yun T, Chae Y, Lee D, Kim H, Yang MP, Kang BT. Evaluation of the covariation between leukotriene B4, prostaglandin E2, and hematologic inflammatory parameters in a canine pentylenetetrazole-induced seizure model. Front Neurosci 2024; 18:1451902. [PMID: 39723425 PMCID: PMC11668773 DOI: 10.3389/fnins.2024.1451902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Seizures can cause as well as result from neuroinflammation. This study was performed to identify the hematologic inflammatory parameters (HIPs) and inflammatory mediators that change after a single seizure in a canine pentylenetetrazole (PTZ)-induced seizure model. Methods Five healthy Beagle dogs were used in this study. A 3% solution of PTZ was infused until the occurrence of generalized convulsion. Two separate experiments were conducted to observe changes in HIPs over short and long time periods. Blood sampling time points were divided into two periods as follows: short period (baseline, 30, 60, 90, and 120 min after seizure induction) and long period (baseline, 2, 6, 12, 24, and 48 h after seizure induction). The HIPs were calculated, and the serum prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) concentrations were estimated using enzyme-linked immunosorbent assay. Results Significant changes (p < 0.05) in various HIPs were observed at different time point as follows: neutrophil × monocyte (90 min), neutrophil-to-lymphocyte ratio (60, 90, and 120 min), lymphocyte to monocyte ratio (60 min, 90 min, 120 min, 2 h, 12 h, and 24 h), platelet-to-albumin ratio (90 min), lymphocyte percentage × serum albumin concentration (LA; 60 min, 90 min, 120 min, 2 h), and neutrophil × platelet (6 h). LTB4 concentrations were significantly increased (p < 0.05) at 60 and 90 min, and 2, 6, and 48 h after seizure induction. PGE2 was significantly increased only 6 h after seizure induction (p < 0.05). LA was one of the HIPs that demonstrated a correlation with LTB4 concentration and showed significant changes that could be observed for a long-period (p < 0.05, r = -0.4194). Conclusion The LA was the only HIP that reflected seizure-associated neuroinflammation. The 5-lipoxygenase pathway might be related to seizure-associated neuroinflammation.
Collapse
Affiliation(s)
- Yoonhoi Koo
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024; 9:2454-2466. [PMID: 39470707 PMCID: PMC11633690 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ayushe A. Sharma
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
Wang J, Wu Y, Chen J, Zhang Q, Liu Y, Long H, Yu J, Wu Q, Feng L. Th1/Th2 Imbalance in Peripheral Blood Echoes Microglia State Dynamics in CNS During TLE Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405346. [PMID: 39136073 PMCID: PMC11496985 DOI: 10.1002/advs.202405346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Indexed: 10/25/2024]
Abstract
Central and systemic inflammation play pivotal roles in epileptogenesis and proepileptogenesis in temporal lobe epilepsy (TLE). The interplay between peripheral CD4+ T cells and central microglia orchestrates the "systemic-central" immune response in TLE. However, the precise molecular mechanisms linking central and systemic inflammation in TLE remain unknown. This preliminary findings revealed an imbalance in Th1/Th2 subsets in the periphery,accompanied by related cytokines release in TLE patients. they proposed that this peripheral Th1/Th2 imbalance may influence central inflammation by mediating microglial state dynamics within epileptic foci and distant brain regions. In Li-pilocarpine-induced TLE rats, a peripheral Th1/Th2 imbalance and observed corresponding central and systemic responses is confirmed. Notably, CD4+ T cells infiltrated through the compromised blood-brain barrierand are spatially close to microglia around epileptic foci. Intravenous depletion and reinfusion of CD4+ T cells modulated microglia state dynamics and altered neuroinflammatory cytokines secretion. Moreover, mRNA sequencing of the human hippocampus identified Notch1 as a key regulator of Th1/Th2 differentiation, CD4+ T cell recruitment to brain infiltration sites, and the regulation of microglial responses, seizure frequency, and cognition. This study underscores the significance of Th1/Th2 imbalance in modulating the "systemic-central" response in TLE, highlighting Notch1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jing Wang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuanxia Wu
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of NeurologyGuizhou Provincial People's HospitalGuiyangGuizhou550002China
| | - Jing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Qiong Zhang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yunyi Liu
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hongyu Long
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jianhua Yu
- Department of Immuno‐OncologyCity of HopeLos AngelesCA91010USA
| | - Qian Wu
- Department of NeurologyFirst Affiliated HospitalKunming Medical UniversityKunmingYunnan650032China
| | - Li Feng
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
5
|
Chen J, Yu H, Liu H, Yu H, Liang S, Wu Q, Zhang X, Zeng R, Diao L. Causal relationship between immune cells and epilepsy mediated by metabolites analyzed through Mendelian randomization. Sci Rep 2024; 14:19644. [PMID: 39179617 PMCID: PMC11343848 DOI: 10.1038/s41598-024-70370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Our study investigated the causal relationship between immune cells, metabolites, and epilepsy using two-sample Mendelian Randomization (MR) and mediation MR analysis of 731 immune cell traits and 1400 metabolites. Our core methodology centered on inverse-variance weighted MR, supplemented by other methods. This approach was crucial in clarifying the potential intermediary functions of metabolites in the genetic links between traits of immune cells and epilepsy. We found a causal relationship between immune cells and epilepsy. Specifically, the genetically predicted levels of CD64 on CD14-CD16- are positively correlated with the risk of epilepsy (p < 0.001, OR = 1.0826, 95% CI 1.0361-1.1312). Similarly, metabolites also exhibit a causal relationship with both immune cells (OR = 1.0438, 95% CI 1.0087-1.0801, p = 0.0140) and epilepsy (p = 0.0334, OR = 1.0897, 95% CI 1.0068-1.1795), and sensitivity analysis was conducted to further validate these relationships. Importantly, our intermediate MR results suggest that the metabolite Paraxanthine to linoleate (18:2n6) ratio may mediate the causal relationship between immune cell CD64 on CD14-CD16- and epilepsy, with a mediation effect of 5.05%. The results suggest the importance of specific immune cell levels and metabolites in understanding epilepsy's pathogenesis, which is significant for its prevention and treatment.
Collapse
Affiliation(s)
- Jiangwei Chen
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, 530007, China
| | - Huihua Liu
- Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China
| | - Han Yu
- Harbin Medical University, Harbin, 150086, China
| | - Shuang Liang
- Nanning Traditional Chinese Medicine Hospital, Nanning, 530000, China
| | - Qiong Wu
- Xin Yang Central Hospital, Xinyang, 464000, China
| | - Xian Zhang
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China
| | - Rong Zeng
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Limei Diao
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China.
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
6
|
Hendrix E, Vande Vyver M, Holt M, Smolders I. Regulatory T cells as a possible new target in epilepsy? Epilepsia 2024; 65:2227-2237. [PMID: 38888867 DOI: 10.1111/epi.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy.
Collapse
Affiliation(s)
- Evelien Hendrix
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maxime Vande Vyver
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center of Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthew Holt
- Instituto de Investigação e Inovação Em Saúde, Porto, Portugal
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Spagnoli G, Parrella E, Ghazanfar Tehrani S, Mengoni F, Salari V, Nistreanu C, Scambi I, Sbarbati A, Bertini G, Fabene PF. Glial Response and Neuronal Modulation Induced by Epidural Electrode Implant in the Pilocarpine Mouse Model of Epilepsy. Biomolecules 2024; 14:834. [PMID: 39062548 PMCID: PMC11274793 DOI: 10.3390/biom14070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.
Collapse
Affiliation(s)
- Giulia Spagnoli
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Edoardo Parrella
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Sara Ghazanfar Tehrani
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Valentina Salari
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Cristina Nistreanu
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
8
|
Wang B, Li Q, Wang H, Du X, Lai Q, Li X, Wang Y, Hu P, Fan H. TNF-α: A serological marker for evaluating the severity of hippocampal sclerosis in medial temporal lobe epilepsy? J Clin Neurosci 2024; 123:123-129. [PMID: 38569383 DOI: 10.1016/j.jocn.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE By analysing the difference in TNF-α levels in the peripheral blood of patients with medial temporal lobe epilepsy (mTLE) with or without hippocampal sclerosis and the correlation between TNF-α and N-acetylaspartate levels in the hippocampus, we explored the relationship between TNF-α and the degree of damage to hippocampal sclerosis neurons in medial temporal lobe epilepsy. METHODS This is a prospective, population-based study. A total of 71 Patients with medial temporal lobe epilepsy diagnosed by clinical seizures, video-EEG, epileptic sequence MRI, and other imaging examinations were recruited from October 2020 to July 2022 in the Department of Neurology, Affiliated Hospital of Xuzhou Medical University. Twenty age-matched healthy subjects were selected as the control group. The patients were divided into two groups: the medial temporal epilepsy with hippocampal sclerosis group (positive group, mTLE-HS-P group) and the medial temporal epilepsy without hippocampal sclerosis group (negative group, mTLE-HS-N group). The levels of IL-1β, IL-5, IL-6, IL-8, IL-17, IFN-γ and TNF-α in the peripheral blood of the patients in the three groups were detected by multimicrosphere flow immunofluorescence assay. The level of N-acetylaspartate (NAA) in the hippocampus was measured by 1H-MRS. The differences in cytokine levels among the three groups were analysed, and the correlation between cytokine and NAA levels was analysed. RESULTS The level of TNF-α in the peripheral blood of the patients in the mTLE-HS-P group was significantly higher than that of the patients in the mTLE-HS-N and healthy control groups, and the level of TNF-α in the patients in the mTLE-HS-N group was significantly higher than that of the patients in the healthy control group. The NAA level in mTLE-HS-P group patients was significantly lower than that of mTLE-HS-N patients and healthy controls, but there was no significant difference between mTLE-HS-N patients and healthy controls (P > 0.05). Spearman correlation analysis showed that TNF-α level (rs = -0.437, P < 0.05) and the longest duration of a single seizure (rs = -0.398, P < 0.05) were negatively correlated with NAA level. Logistic regression analysis showed that there was no significant correlation between the longest duration of a single seizure and hippocampal sclerosis, but TNF-α level was closely related to hippocampal sclerosis in patients with mTLE (OR = 1.315, 95 % CI 1.084-1.595, P = 0.005). CONCLUSION The level of TNF-α in the peripheral blood of patients with medial temporal lobe epilepsy with hippocampal sclerosis was higher, and it was correlated with NAA and hippocampal sclerosis. The high expression of TNF-α may be of important value in the evaluation of hippocampal sclerosis patients.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Neurology, Suining County People's Hospital, Affiliated Hospital of Xuzhou Medical University, China
| | - Qingyun Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China
| | - Heng Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China
| | - Xin Du
- Department of Neurology, Xuzhou Municipal Hospital, China
| | - Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China
| | - Xinyu Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China
| | - Yinan Wang
- Department of Neurology, Affiliated Huaihai Hospital of Xuzhou Medical University, China
| | - Peng Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China.
| |
Collapse
|
9
|
Sanli E, Sirin NG, Kucukali CI, Baykan B, Ulusoy CA, Bebek N, Yilmaz V, Tuzun E. Peripheral blood regulatory B and T cells are decreased in patients with focal epilepsy. J Neuroimmunol 2024; 387:578287. [PMID: 38241950 DOI: 10.1016/j.jneuroim.2024.578287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Patients with focal epilepsy of unknown cause (FEoUC) may display T cell infiltration in post-surgery brain specimens and increased serum levels of pro-inflammatory cytokines produced by B and T cells, indicating potential involvement of adaptive immunity. Our study aimed to investigate the peripheral blood distribution of B and T cell subgroups to find clues supporting the distinct organization of adaptive immunity in FEoUC. Twenty-two patients with FEoUC and 25 age and sex matched healthy individuals were included. Peripheral blood mononuclear cells were immunophenotyped by flow cytometry. Expression levels of anti-inflammatory cytokines and FOXP3 were measured by real-time PCR. Carboxyfluorescein succinimidyl ester (CFSE) proliferation assay was conducted using CD4+ T cells. Patients with FEoUC showed significantly decreased regulatory B (Breg), B1a, plasmablast and regulatory T (Treg) cell percentages, and increased switched memory B and Th17 cell ratios. Moreover, CD4+CD25+CD49d- Tregs of FEoUC patients displayed significantly reduced TGFB1 and FOXP3, but increased IL10 gene expression levels. CD4+ helper T cells of patients with FEoUC gave more exaggerated proliferation responses to phytohemagglutinin, anti-CD3 and anti-CD28 stimulation. Patients with FEoUC display increased effector lymphocyte, decreased regulatory lymphocyte ratios, and impaired Treg function and enhanced lymphocyte proliferation capacity. Overall, this pro-inflammatory phenotype lends support to the involvement of adaptive immunity in FEoUC.
Collapse
Affiliation(s)
- Elif Sanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, EMAR Medical Center, Istanbul, Turkey
| | - Canan Aysel Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Milano C, Montali M, Barachini S, Burzi IS, Pratesi F, Petrozzi L, Chico L, Morganti R, Gambino G, Rossi L, Ceravolo R, Siciliano G, Migliorini P, Petrini I, Pizzanelli C. Increased production of inflammatory cytokines by circulating monocytes in mesial temporal lobe epilepsy: A possible role in drug resistance. J Neuroimmunol 2024; 386:578272. [PMID: 38160122 DOI: 10.1016/j.jneuroim.2023.578272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We analyzed peripheral blood mononuclear cells (PBMCs) and serum inflammatory biomarkers in patients with mesial temporal lobe epilepsy (drug-resistant - DR, vs. drug-sensitive - DS). Patients with epilepsy showed higher levels of serum CCL2, CCL3, IL-8 and AOPP, and lower levels of FRAP and thiols compared to healthy controls (HC). Although none of the serum biomarkers distinguished DR from DS patients, when analysing intracellular cytokines after in vitro stimulation, DR patients presented higher percentages of IL-1β and IL-6 positive monocytes compared to DS patients and HC. Circulating innate immune cells might be implicated in DR epilepsy and constitute potential new targets for treatments.
Collapse
Affiliation(s)
- C Milano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| | - M Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - I S Burzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Pratesi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - L Petrozzi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - L Chico
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - R Morganti
- Section of Statistics, University of Pisa, Pisa, Italy
| | - G Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Ceravolo
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - P Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology and Allergy Unit, University of Pisa, Pisa, Italy
| | - I Petrini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - C Pizzanelli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
11
|
Yang P, Huang Y, Zhu Y, Wang Q, Guo Y, Li L. Plasma exosomes proteome profiling discovers protein markers associated with the therapeutic effect of Chaihu-Longgu-Muli decoction on temporal lobe epilepsy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116928. [PMID: 37479071 DOI: 10.1016/j.jep.2023.116928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) uses Chaihu-Longgu-Muli decoction (CLMD) to alleviate disease, clear away heat, calm the mind, and temper excitation. It has been widely used for the therapy of neuropsychiatric disorders including epilepsy, dementia, anxiety, insomnia, and depression for several centuries in China. AIM OF THE STUDY This study aims to analyze differentially expressed proteins (DEPs) in the plasma exosomes of patients with temporal lobe epilepsy (TLE) and after the Chaihu-Longgu-Muli Decoction (CLMD) therapy and to explore the biomarkers of TLE and the potential targets of CLMD in treating TLE. MATERIALS AND METHODS The plasma exosomes of normal people and patients with TLE before the treatment of oxcarbazepine (OXC) and combined treatment of OXC and CLMD (OXC.CLMD) were harvested. The exosomes were separated from plasma through ultracentrifugation and then identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. The DEPs were analyzed by proteomics and then subjected to gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein level of key genes was detected using Western blot. A lithium chloride-pilocarpine-induced epilepsy rat model was established and treated with OXC alone, OXC. CLMD, and CLMD alone (low dose and high dose). Neuronal injury in the hippocampal dentate gyrus and ribosomal protein L6 (RPL6) expression in the brain tissues were detected using H&E staining, Nissl staining, and Western blot. RESULTS The proteomic analysis showed several DEPs were present among plasma exosomes in the four groups; DEPs were enriched in epilepsy-related function and pathway. Four key proteins were screened, including RPL6, Nucleolin (NCL), Apolipoprotein A1 (APOA1), and Lactate Dehydrogenase A (LDHA). Among them, RPL6, NCL, and LDHA protein levels were downregulated and APOA1 protein level was upregulated in the plasma exosomes of TLE patients. After OXC and OXC. CLMD treatment, the protein level of RPL6, NCL, and LDHA was increased, and the APOA1 protein level was decreased. Moreover, the RPL6 protein level was further elevated after OXC. CLMD treatment than that after OXC treatment. In the TLE rat model, neuronal degeneration and necrosis in the hippocampal dentate gyrus increased and RPL6 expression level decreased. After the treatment with OXC, OXC. CLMD, and CLMD alone, the degeneration and necrosis of neurons decreased, and the RPL6 expression level was increased; RPL6 upregulation was remarkably obvious after CLMD treatment. CONCLUSIONS RPL6, NCL, LDHA and APOA1 are the DEPs in the plasma exosomes of patients with TLE before and after therapy. RPL6 might be a potential biomarker of CLMD in treating TLE.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Yahui Huang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Yong Zhu
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Qiang Wang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Liang Li
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
12
|
Sprissler R, Hammer M, Labiner D, Joshi N, Alan A, Weinand M. Leukocyte differential gene expression prognostic value for high versus low seizure frequency in temporal lobe epilepsy. BMC Neurol 2024; 24:16. [PMID: 38166692 PMCID: PMC10759702 DOI: 10.1186/s12883-023-03459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND This study was performed to test the hypothesis that systemic leukocyte gene expression has prognostic value differentiating low from high seizure frequency refractory temporal lobe epilepsy (TLE). METHODS A consecutive series of patients with refractory temporal lobe epilepsy was studied. Based on a median baseline seizure frequency of 2.0 seizures per month, low versus high seizure frequency was defined as ≤ 2 seizures/month and > 2 seizures/month, respectively. Systemic leukocyte gene expression was analyzed for prognostic value for TLE seizure frequency. All differentially expressed genes were analyzed, with Ingenuity® Pathway Analysis (IPA®) and Reactome, to identify leukocyte gene expression and biological pathways with prognostic value for seizure frequency. RESULTS There were ten males and six females with a mean age of 39.4 years (range: 16 to 62 years, standard error of mean: 3.6 years). There were five patients in the high and eleven patients in the low seizure frequency cohorts, respectively. Based on a threshold of twofold change (p < 0.001, FC > 2.0, FDR < 0.05) and expression within at least two pathways from both Reactome and Ingenuity® Pathway Analysis (IPA®), 13 differentially expressed leukocyte genes were identified which were all over-expressed in the low when compared to the high seizure frequency groups, including NCF2, HMOX1, RHOB, FCGR2A, PRKCD, RAC2, TLR1, CHP1, TNFRSF1A, IFNGR1, LYN, MYD88, and CASP1. Similar analysis identified four differentially expressed genes which were all over-expressed in the high when compared to the low seizure frequency groups, including AK1, F2R, GNB5, and TYMS. CONCLUSIONS Low and high seizure frequency TLE are predicted by the respective upregulation and downregulation of specific leukocyte genes involved in canonical pathways of neuroinflammation, oxidative stress and lipid peroxidation, GABA (γ-aminobutyric acid) inhibition, and AMPA and NMDA receptor signaling. Furthermore, high seizure frequency-TLE is distinguished prognostically from low seizure frequency-TLE by differentially increased specific leukocyte gene expression involved in GABA inhibition and NMDA receptor signaling. High and low seizure frequency patients appear to represent two mechanistically different forms of temporal lobe epilepsy based on leukocyte gene expression.
Collapse
Affiliation(s)
- Ryan Sprissler
- Center for Applied Genetics and Genomic Medicine, RII, University of Arizona, Tucson, AZ, USA.
| | - Michael Hammer
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - David Labiner
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Neil Joshi
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Albert Alan
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
13
|
Lu Y, Zhang P, Xu F, Zheng Y, Zhao H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front Neurol 2023; 14:1284304. [PMID: 38046578 PMCID: PMC10690603 DOI: 10.3389/fneur.2023.1284304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Interleukin-17 (IL-17), a cytokine characteristically secreted by T helper 17 (Th17) cells, has attracted increasing attention in recent years because of its importance in the pathogenesis of many autoimmune or chronic inflammatory diseases. Recent studies have shown that neurological diseases and mental disorders are closely related to immune function, and varying degrees of immune dysregulation may disrupt normal expression of immune molecules at critical stages of neural development. Starting from relevant mechanisms affecting immune regulation, this article reviews the research progress of IL-17 in a selected group of neurological diseases and mental disorders (autism spectrum disorder, Alzheimer's disease, epilepsy, and depression) from the perspective of neuroinflammation and the microbiota-gut-brain axis, summarizes the commonalities, and provides a prospective outlook of target application in disease treatment.
Collapse
Affiliation(s)
- Yu Lu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Piaopiao Zhang
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Terrabuio E, Zenaro E, Constantin G. The role of the CD8+ T cell compartment in ageing and neurodegenerative disorders. Front Immunol 2023; 14:1233870. [PMID: 37575227 PMCID: PMC10416633 DOI: 10.3389/fimmu.2023.1233870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
CD8+ lymphocytes are adaptive immunity cells with the particular function to directly kill the target cell following antigen recognition in the context of MHC class I. In addition, CD8+ T cells may release pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and a plethora of other cytokines and chemoattractants modulating immune and inflammatory responses. A role for CD8+ T cells has been suggested in aging and several diseases of the central nervous system (CNS), including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, limbic encephalitis-induced temporal lobe epilepsy and Susac syndrome. Here we discuss the phenotypic and functional alterations of CD8+ T cell compartment during these conditions, highlighting similarities and differences between CNS disorders. Particularly, we describe the pathological changes in CD8+ T cell memory phenotypes emphasizing the role of senescence and exhaustion in promoting neuroinflammation and neurodegeneration. We also discuss the relevance of trafficking molecules such as selectins, mucins and integrins controlling the extravasation of CD8+ T cells into the CNS and promoting disease development. Finally, we discuss how CD8+ T cells may induce CNS tissue damage leading to neurodegeneration and suggest that targeting detrimental CD8+ T cells functions may have therapeutic effect in CNS disorders.
Collapse
Affiliation(s)
- Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
15
|
Olson KE, Mosley RL, Gendelman HE. The potential for treg-enhancing therapies in nervous system pathologies. Clin Exp Immunol 2023; 211:108-121. [PMID: 36041453 PMCID: PMC10019130 DOI: 10.1093/cei/uxac084] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
While inflammation may not be the cause of disease, it is well known that it contributes to disease pathogenesis across a multitude of peripheral and central nervous system disorders. Chronic and overactive inflammation due to an effector T-cell-mediated aberrant immune response ultimately leads to tissue damage and neuronal cell death. To counteract peripheral and neuroinflammatory responses, research is being focused on regulatory T cell enhancement as a therapeutic target. Regulatory T cells are an immunosuppressive subpopulation of CD4+ T helper cells essential for maintaining immune homeostasis. The cells play pivotal roles in suppressing immune responses to maintain immune tolerance. In so doing, they control T cell proliferation and pro-inflammatory cytokine production curtailing autoimmunity and inflammation. For nervous system pathologies, Treg are known to affect the onset and tempo of neural injuries. To this end, we review recent findings supporting Treg's role in disease, as well as serving as a therapeutic agent in multiple sclerosis, myasthenia gravis, Guillain-Barre syndrome, Parkinson's and Alzheimer's diseases, and amyotrophic lateral sclerosis. An ever-broader role for Treg in the control of neurologic disease has been shown for traumatic brain injury, stroke, neurotrophic pain, epilepsy, and psychiatric disorders. To such ends, this review serves to examine the role played by Tregs in nervous system diseases with a focus on harnessing their functional therapeutic role(s).
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
16
|
Baker TL, Uboldi AD, Tonkin CJ, Wright DK, Vo A, Wilson T, Mychasiuk R, McDonald SJ, Semple BD, Sun M, Shultz SR. Pre-existing Toxoplasma gondii infection increases susceptibility to pentylenetetrazol-induced seizures independent of traumatic brain injury in mice. Front Mol Neurosci 2023; 15:1079097. [PMID: 36683847 PMCID: PMC9849700 DOI: 10.3389/fnmol.2022.1079097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI), and neuroinflammation is implicated in increased seizure susceptibility and epileptogenesis. However, how common clinical factors, such as infection, may modify neuroinflammation and PTE development has been understudied. The neurotropic parasite, Toxoplasma gondii (T. gondii) incurably infects one-third of the world's population. Thus, many TBI patients have a pre-existing T. gondii infection at the time of injury. T. gondii infection results in chronic low-grade inflammation and altered signaling pathways within the brain, and preliminary clinical evidence suggest that it may be a risk factor for epilepsy. Despite this, no studies have considered how a pre-existing T. gondii infection may alter the development of PTE. Methods This study aimed to provide insight into this knowledge gap by assessing how a pre-existing T. gondii infection alters susceptibility to, and severity of, pentylenetetrazol (PTZ)-induced seizures (i.e., a surrogate marker of epileptogenesis/PTE) at a chronic stage of TBI recovery. We hypothesized that T. gondii will increase the likelihood and severity of seizures following PTZ administration, and that this would occur in the presence of intensified neuroinflammation. To test this, 6-week old male and female C57BL/6 Jax mice were intraperitoneally injected with 50,000 T. gondii tachyzoites or with the PBS vehicle only. At 12-weeks old, mice either received a severe TBI via controlled cortical impact or sham injury. At 18-weeks post-injury, mice were administered 40 mg/kg PTZ and video-recorded for evaluation of seizure susceptibility. Fresh cortical tissue was then collected for gene expression analyses. Results Although no synergistic effects were evident between infection and TBI, chronic T. gondii infection alone had robust effects on the PTZ-seizure response and gene expression of markers related to inflammatory, oxidative stress, and glutamatergic pathways. In addition to this, females were more susceptible to PTZ-induced seizures than males. While TBI did not impact PTZ responses, injury effects were evident at the molecular level. Discussion Our data suggests that a pre-existing T. gondii infection is an important modifier of seizure susceptibility independent of brain injury, and considerable attention should be directed toward delineating the mechanisms underlying this pro-epileptogenic factor.
Collapse
Affiliation(s)
- Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alessandro D. Uboldi
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J. Tonkin
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia,Health Sciences, Vancouver Island University, Nanaimo, BC, Canada,*Correspondence: Sandy R. Shultz,
| |
Collapse
|
17
|
Neutrophil to Lymphocyte Ratio in Epilepsy: A Systematic Review. Mediators Inflamm 2022; 2022:4973996. [PMID: 36081651 PMCID: PMC9448605 DOI: 10.1155/2022/4973996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to summarize the results of studies investigating the role of neutrophil to lymphocyte ratio (NLR) in epilepsy. The search was conducted on PubMed, Scopus, and Web of Science up to December 25, 2021. Finally, a total of seven studies were included in the review. The NLR in patients who were in the acute phase was higher than that of healthy. NLR in the patients who were in either acute or subacute phase was higher than in healthy controls. A significant difference in NLR levels between the acute and subacute phases was also noted. Epilepsy is one of the most important neurological diseases in the world, and millions of people around the world suffer from it, and a cheap and fast biomarker is needed for it. The interesting thing is that inflammation plays a role in epilepsy, and elevated NLR value can be a good biomarker of inflammation and, as a result, for epilepsy.
Collapse
|
18
|
An J, Li H, Xia D, Xu B, Wang J, Qiu H, He J. The role of interleukin-17 in epilepsy. Epilepsy Res 2022; 186:107001. [PMID: 35994860 DOI: 10.1016/j.eplepsyres.2022.107001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a common neurological disorder that seriously affects human health. It is a chronic central nervous system dysfunction caused by abnormal discharges of neurons. About 50 million patients worldwide are affected by epilepsy. Although epileptic symptoms of most patients are controllable, some patients with refractory epilepsy have no response to antiseizure medications. It is necessary to investigate the pathogenesis of epilepsy and identify new therapeutic targets for refractory epilepsy. Epileptic disorders often accompany cerebral inflammatory reactions. Recently, the role of inflammation in the onset of epilepsy has increasingly attracted attention. The activation of both innate and adaptive immunity plays a significant role in refractory epilepsy. According to several clinical studies, interleukin-17, an essential inflammatory mediator linking innate and adaptive immunity, increased significantly in the body liquid and epileptic focus of patients with epilepsy. Experimental studies also indicated that interleukin-17 participated in epileptogenesis through various mechanisms. This review summarized the current studies about interleukin-17 in epilepsy and aimed at finding new therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Jiayin An
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - He Li
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Demeng Xia
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China; Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China.
| | - Bin Xu
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Jiayan Wang
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Huahui Qiu
- Zhoushan Hospital, Zhejiang University, Zhoushan, Zhejiang, China.
| | - Jiaojiang He
- Department of Neurosurgery, West China Hospital of Sichuan University, Sichuan, China.
| |
Collapse
|
19
|
Negative effects of brain regulatory T cells depletion on epilepsy. Prog Neurobiol 2022; 217:102335. [PMID: 35931355 DOI: 10.1016/j.pneurobio.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.
Collapse
|
20
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
21
|
Alvim MKM, Morita-Sherman ME, Yasuda CL, Rocha NP, Vieira ÉL, Pimentel-Silva LR, Henrique Nogueira M, Barbosa R, Watanabe N, Coan AC, Lopes-Cendes I, Teixeira AL, Cendes F. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021; 62:2385-2394. [PMID: 34331458 DOI: 10.1111/epi.17023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Inflammation plays an essential role in epilepsy. Studies indicate that cytokines and neurotrophic factors can act in neuroexcitability and epileptogenesis. We aimed to investigate the association between plasma inflammatory and neurotrophic markers, seizure frequency, and chronic epilepsy subtypes. METHODS We studied 446 patients with epilepsy and 166 healthy controls. We classified patients according to etiology and seizure frequency. We measured plasma levels of interleukin-1 (IL-1), IL-2, IL-4, IL-6, IL-10, IL-17, interferon-γ (IFNγ), tumor necrosis factor α (TNFα), soluble TNF receptor 1 (sTNFr1), sTNFr2, brain-derived neurotrophic factor (BDNF), neurotrophic factor 3 (NT3), NT4/5, ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) by enzyme-linked immunosorbent assay or cytometric bead array. RESULTS The plasma levels of BDNF, NT3, NGF, and sTNFr2 were higher, whereas IL-2, IL-4, IL-6, IL-10, IL-17, IFNγ, TNFα, CNTF, and sTNFr1 were lower in patients than controls. IL1, GDNF, and NT4/5 were similar between groups. These markers did not correlate with age, sex, and epilepsy duration. The molecule sTNFr2 was the best marker to discriminate patients from controls (area under the curve = .857), also differing between patients with frequent and infrequent seizures. SIGNIFICANCE This large cohort confirmed that patients with epilepsy have abnormal levels of plasma inflammatory and neurotrophic markers independent of the underlying etiology. Plasma level of sTNFr2 was related to seizure frequency and discriminated people with or without epilepsy with good accuracy, making it a potential biomarker for epilepsy and seizure burden.
Collapse
Affiliation(s)
| | | | | | - Natália P Rocha
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Érica L Vieira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | - Antonio L Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
22
|
Temporal lobe epilepsy: Evaluation of central and systemic immune-inflammatory features associated with drug resistance. Seizure 2021; 91:447-455. [PMID: 34340190 DOI: 10.1016/j.seizure.2021.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is probably one of the factors involved in drug resistance in people with epilepsy. Finding peripheral markers reflecting the intensity of neuroinflammation could be of great help to decide for which patients anti-inflammatory treatment might be an option. In this context, peripheral cytokines levels and lymphocyte phenotypes were assessed by ELISA and flow cytometry in 3 groups of subjects: drug resistant patients with temporal lobe epilepsy (DR-TLE), non DR-TLE patients and healthy controls. The same parameters were assessed in brain tissue in the DR-TLE group. Differences in the peripheral immune-inflammatory status between the 3 groups of subjects, and correlations between the central and peripheral immune-inflammatory status in DR-TLE patients were evaluated. Forty-one patients with DR-TLE, ten with non-DR-TLE and twenty controls were included. In the periphery, decrease in regulatory cells were observed in DR-TLE patients compared to controls. In addition, significant increase of IL-6 and IL-5 was observed in patients with epilepsy (particularly DR-TLE patients). Two groups of DR-TLE patients with significant differences in several central inflammatory parameters were identified in a cluster analysis. The inflammatory cluster was associated with a peripheral increase of CD4+CD38+ cells and different significant correlations between central and systemic inflammatory parameters were observed. Although their interpretation is not immediate, they demonstrate a clear dialogue between central and peripheral inflammatory reactions. In conclusion, our results add new elements to better understand the interactions between the central and peripheral compartments in patients with DR-TLE, and to help better define treatment options in this group of patients.
Collapse
|
23
|
Tse K, Beamer E, Simpson D, Beynon RJ, Sills GJ, Thippeswamy T. The Impacts of Surgery and Intracerebral Electrodes in C57BL/6J Mouse Kainate Model of Epileptogenesis: Seizure Threshold, Proteomics, and Cytokine Profiles. Front Neurol 2021; 12:625017. [PMID: 34322075 PMCID: PMC8312573 DOI: 10.3389/fneur.2021.625017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Intracranial electroencephalography (EEG) is commonly used to study epileptogenesis and epilepsy in experimental models. Chronic gliosis and neurodegeneration at the injury site are known to be associated with surgically implanted electrodes in both humans and experimental models. Currently, however, there are no reports on the impact of intracerebral electrodes on proteins in the hippocampus and proinflammatory cytokines in the cerebral cortex and plasma in experimental models. We used an unbiased, label-free proteomics approach to identify the altered proteins in the hippocampus, and multiplex assay for cytokines in the cerebral cortex and plasma of C57BL/6J mice following bilateral surgical implantation of electrodes into the cerebral hemispheres. Seven days following surgery, a repeated low dose kainate (KA) regimen was followed to induce status epilepticus (SE). Surgical implantation of electrodes reduced the amount of KA necessary to induce SE by 50%, compared with mice without surgery. Tissues were harvested 7 days post-SE (i.e., 14 days post-surgery) and compared with vehicle-treated mice. Proteomic profiling showed more proteins (103, 6.8% of all proteins identified) with significantly changed expression (p < 0.01) driven by surgery than by KA treatment itself without surgery (27, 1.8% of all proteins identified). Further, electrode implantation approximately doubled the number of KA-induced changes in protein expression (55, 3.6% of all identified proteins). Further analysis revealed that intracerebral electrodes and KA altered the expression of proteins associated with epileptogenesis such as inflammation (C1q system), neurodegeneration (cystatin-C, galectin-1, cathepsin B, heat-shock protein 25), blood–brain barrier dysfunction (fibrinogen-α, serum albumin, α2 macroglobulin), and gliosis (vimentin, GFAP, filamin-A). The multiplex assay revealed a significant increase in key cytokines such as TNFα, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IFN-γ, and KC/GRO in the cerebral cortex and some in the plasma in the surgery group. Overall, these findings demonstrate that surgical implantation of depth electrodes alters some of the molecules that may have a role in epileptogenesis in experimental models.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Edward Beamer
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
24
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
25
|
Tang H, Wang X. PD-1 Is an Immune-Inflammatory Potential Biomarker in Cerebrospinal Fluid and Serum of Intractable Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7973123. [PMID: 33816631 PMCID: PMC7994088 DOI: 10.1155/2021/7973123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Previous studies have demonstrated that immune and inflammatory factors play an important role in recurrent seizures. The PD-1-PD-L pathway plays a central and peripheral immunosuppressive role by regulating multiple signaling pathways during the inflammatory and immunologic processes. This study is aimed at assessing PD-1 levels in cerebrospinal fluid (CSF) and serum samples from patients with intractable epilepsy. METHODS PD-1 levels were assessed in CSF and serum samples from 67 patients with intractable epilepsy (41 and 26 individuals with partial seizure and intractable status epilepticus, respectively) and 25 healthy controls, using flow cytometric analysis and sandwich enzyme-linked immunosorbent assays (ELISA). RESULTS Serum-PD-1+CD4+CD25high Treg levels in the experimental groups and the control group were 10.26 ± 2.53 (PS group), 35.95 ± 27.51 (ISE group), and 4.69 ± 2.44 (control group). In addition, CSF-PD-1 level in patients with epilepsy was higher than that in the control group (50.45 ± 29.56 versus 19.37 ± 4.51), indicating a statistically significant difference (P < 0.05). Interestingly, serum- and CSF-PD-1 levels in individuals with epilepsy were not affected by antiepileptic drug and treatment course, but by epilepsy onset level. Of note, the increase of CSF- and serum-PD-1 levels was more pronounced in subjects with intractable status epilepticus than those with partial seizure. CONCLUSION Serum- and CSF-PD-1 levels constitute a potential clinical diagnostic biomarker for intractable epilepsy and could also be used for differential diagnosis.
Collapse
Affiliation(s)
- Hong Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, China
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
26
|
Yamanaka G, Takamatsu T, Morichi S, Yamazaki T, Mizoguchi I, Ohno K, Watanabe Y, Ishida Y, Oana S, Suzuki S, Kashiwagi Y, Takata F, Sakuma H, Yoshimoto T, Kato M, Kawashima H. Interleukin-1β in peripheral monocytes is associated with seizure frequency in pediatric drug-resistant epilepsy. J Neuroimmunol 2021; 352:577475. [PMID: 33454554 DOI: 10.1016/j.jneuroim.2021.577475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/16/2022]
Abstract
In this study, we assessed circulating immune cells and plasma cytokine levels in 15 pediatric patients with drug-resistant epilepsy (DRE). DRE patients had a significantly higher percentage of CD14+ monocytes positive for IL-1β, IL-1 receptor antagonist, IL-6, and TNF-α than controls. Significantly higher intracellular levels of IFN-γ in CD4+ T cells and NK cells were also found in DRE patients. The level of IL-1β+ CD14+ monocytes correlated with seizure frequency, and intracellular levels of IFN-γ in NKT-like cells were negatively correlated with the duration of epilepsy. Peripheral immune cells might be involved in the pathogenesis of DRE.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan.
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Koko Ohno
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Shingo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hiroshi Sakuma
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| |
Collapse
|
27
|
Vieira ÉLM, da Silva MCM, Gonçalves AP, Martins GL, Teixeira AL, de Oliveira ACP, Reis HJ. Serotonin and dopamine receptors profile on peripheral immune cells from patients with temporal lobe epilepsy. J Neuroimmunol 2021; 354:577534. [PMID: 33713941 DOI: 10.1016/j.jneuroim.2021.577534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
The role of inflammation and immune cells has been demonstrated in neurological diseases, including epilepsy. Leukocytes, as well as inflammatory mediators, contribute to abnormal processes that lead to a reduction in seizure threshold and synaptic reorganization. In this sense, identifying different phenotypes of circulating immune cells is essential to understanding the role of these cells in epilepsy. Immune cells can express a variety of surface markers, including neurotransmitter receptors, such as serotonin and dopamine. Alteration in these receptors expression patterns may affect the level of inflammatory mediators and the pathophysiology of epilepsy. Therefore, in the current study, we evaluated the expression of dopamine and serotonin receptors on white blood cells from patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Blood samples from 17 patients with TLE-HS and 21 controls were collected. PBMC were isolated and stained ex vivo for flow cytometry. We evaluated the expression of serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4), and dopamine receptors (D1, D2, D3, D4, and D5) on the cell surface of lymphocytes and innate immune cells (monocytes and granulocytes). Our results demonstrated that innate cells and lymphocytes from patients with TLE-HS showed high mean fluorescent intensity (MFI) for 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 compared to controls. No difference was observed for 5-HT2B. For dopamine receptors, the expression of D1, D2, D4, and D5 receptors was higher on innate cells from patients with TLE-HS when compared to controls for the MFI. Regarding lymphocytes population, D2 expression was increased in patients with TLE-HS. In conclusion, there are alterations in the expression of serotonin and dopamine receptors on immune blood cells of patients with TLE-HS. Although the biological significance of these findings still needs to be further investigated, these changes may contribute to the understanding of TLE-HS pathophysiology.
Collapse
Affiliation(s)
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Paula Gonçalves
- Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriela Lopes Martins
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte 30260-070, Brazil; Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, UT Health Houston, 1941 East Road, Houston, TX 77054, USA
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Helton José Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
28
|
Ouédraogo O, Rébillard RM, Jamann H, Mamane VH, Clénet ML, Daigneault A, Lahav B, Uphaus T, Steffen F, Bittner S, Zipp F, Bérubé A, Lapalme-Remis S, Cossette P, Nguyen DK, Arbour N, Keezer MR, Larochelle C. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 2021; 62:176-189. [PMID: 33140401 DOI: 10.1111/epi.16742] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Adult drug-resistant epilepsy (DRE) is associated with significant morbidity. Infiltration of immune cells is observed in DRE epileptic foci; however, the relation between DRE and the peripheral immune cell compartment remains only partially understood. We aimed to investigate differences in immune cell populations, cytokines, and neurodegenerative biomarkers in the peripheral blood of subjects with epilepsy versus healthy controls, and in DRE compared to well-controlled epilepsy (WCE). METHODS Peripheral blood mononuclear cells and serum from >120 age- and sex-matched adults suffering from focal onset epilepsy and controls were analyzed by multipanel flow cytometry, multiplex immunoassays, and ultrasensitive single molecule array. RESULTS Using a data-driven analytical approach, we identified that CD4 T cells in the peripheral blood are present in a higher proportion in DRE patients. Moreover, we observed that the frequency of CD4 T cells expressing proinflammatory cytokines interleukin (IL)-17A, IL-22, tumor necrosis factor, interferon-γ, and granulocyte-macrophage colony-stimulating factor, but not anti-inflammatory cytokines IL-10 and IL-4, is elevated in the peripheral blood of DRE subjects compared to WCE. In parallel, we found that Th17-related circulating proinflammatory cytokines are elevated, but Th2-related cytokine IL-4 is reduced, in the serum of epilepsy and DRE subjects. As Th17 cells can exert neurotoxicity, we measured levels of serum neurofilament light chain (sNfL), a marker of neuronal injury. We found significantly elevated levels of sNfL in DRE compared to controls, especially among older individuals. SIGNIFICANCE Our data support that DRE is associated with an expansion of the CD4 Tcell subset in the peripheral blood and with a shift toward a proinflammatory Th17/Th1 CD4 Tcell immune profile. Our results further show that pathological levels of sNfL are more frequent in DRE, supporting a potential neurodegenerative component in adult DRE. With this work, we provide evidence for novel potential inflammatory and degenerative biomarkers in DRE.
Collapse
Affiliation(s)
- Oumarou Ouédraogo
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Microbiology, Immunology, and Infectiology, University of Montreal, Montreal, QC, Canada
| | - Rose-Marie Rébillard
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Marie-Laure Clénet
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Microbiology, Immunology, and Infectiology, University of Montreal, Montreal, QC, Canada
| | - Audrey Daigneault
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Boaz Lahav
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arline Bérubé
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Samuel Lapalme-Remis
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Patrick Cossette
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Nathalie Arbour
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Mark R Keezer
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| |
Collapse
|
29
|
Cristina de Brito Toscano E, Leandro Marciano Vieira É, Boni Rocha Dias B, Vidigal Caliari M, Paula Gonçalves A, Varela Giannetti A, Maurício Siqueira J, Kimie Suemoto C, Elaine Paraizo Leite R, Nitrini R, Alvarenga Rachid M, Lúcio Teixeira A. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res 2020; 1752:147230. [PMID: 33385378 DOI: 10.1016/j.brainres.2020.147230] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Inflammation plays a role in the pathophysiology of mesial temporal lobe epilepsy (MTLE). Inflammasome pathways, including the NLRP1 and NLRP3-induced ones, promote neuroinflammation and pyroptosis through interleukin (IL)-1β and caspase-1 action. Evaluation of NLRP1 in sclerotic hippocampi is scarce and there are no data on NLRP3 in human TLE. The aim of this study was to evaluate the expression of these proteins alongside caspase-1 and IL-1β in the hippocampi of patients with TLE compared to control samples. We also sought to investigate peripheral levels of caspase-1 and IL-1β in an independent cohort. Sclerotic and control hippocampi were collected for both histological and immunohistochemical analyses of NLRP1, NLRP3, caspase-1 and IL-1β; plasma was sampled for the measurement of caspase-1 and IL-1β levels through enzyme-linked immunoassay (ELISA) and cytometric bead array (CBA). Sclerotic hippocampi displayed higher expression of the measured proteins than control. Both glia and neurons showed activation of these pathways. Additionally, increased expression of NLRP1 and NLRP3 was associated with elevated plasma levels of IL-1β and in TLE, and increased levels of peripheral caspase-1 were associated with bilateral hippocampal sclerosis (HS). In conclusion, NLRP1 and NLRP3 are up-regulated in sclerotic hippocampi, what may be responsible, at least in part, for the increased hippocampal expression of caspase-1 and IL-1β. Our data suggest a role for inflammasome activation in central and peripheral inflammation in TLE.
Collapse
Affiliation(s)
- Eliana Cristina de Brito Toscano
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório Interdisciplinar de Investigação Médica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Boni Rocha Dias
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Gonçalves
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Núcleo Avançado de Tratamento das Epilepsias - Hospital Felício Rocho, Belo Horizonte, MG, Brazil
| | | | - José Maurício Siqueira
- Núcleo Avançado de Tratamento das Epilepsias - Hospital Felício Rocho, Belo Horizonte, MG, Brazil
| | | | | | - Ricardo Nitrini
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|
30
|
Sanli E, Akbayir E, Kuçukali CI, Baykan B, Sirin NG, Bebek N, Yilmaz V, Tuzun E. Adaptive immunity cells are differentially distributed in the peripheral blood of glycine receptor antibody-positive patients with focal epilepsy of unknown cause. Epilepsy Res 2020; 170:106542. [PMID: 33387801 DOI: 10.1016/j.eplepsyres.2020.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
AIM Glycine receptor (GlyR) autoantibodies (Ab) have been recently detected in epilepsy patients. Our study aimed to investigate the peripheral blood distribution of B and T cell subgroups responsible for antibody production to find clues supporting the distinct organization of adaptive immunity in focal epilepsy of unknown cause (FEUC). METHOD Seven GlyR-Ab positive and 15 GlyR-Ab negative FEUC patients and 25 age-sex matched healthy individuals were included. Peripheral blood mononuclear cells were isolated and immunophenotyped by flow cytometry. RESULTS There were no significant differences between CD19+ B, CD3+ T, CD4+ helper T, CD8+ cytotoxic T, and CD19+CD24++CD38++ regulatory B cell ratios among the groups. GlyR-Ab negative epilepsy patients had significantly higher CD19+IgD+CD27- naive B cells and GlyR-Ab positive patients showed reduced percentages of CD19+CD38+CD138+ plasma cells than healthy controls. By contrast, GlyR-Ab positive patients exhibited significantly increased CD3+CD4+CD25highregulatory T (Treg) cells and CD3+CD4+CD25highCD127low/- Treg cells and relatively increased CD19+IgD-CD27+ memory B cells without attaining statistical significance. CONCLUSION The increase of Tregs, which are capable of suppressing B cells, maybe a compensating countermeasure to prevent the conversion of effector B cell subgroups. Thus, our findings lend support to the involvement of adaptive immunity in focal epilepsy of unknown cause.
Collapse
Affiliation(s)
- Elif Sanli
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Akbayir
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Ismail Kuçukali
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Erdem Tuzun
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Toscano ECDB, Lessa JMK, de Oliveira GN, Gonçalves AP, Vieira ÉLM, Rachid MA, Teixeira AL. Peripheral levels of sST2 are increased in patients with temporal lobe epilepsy: Additional evidence of low-grade inflammation. Epilepsy Behav 2020; 112:107351. [PMID: 32846307 DOI: 10.1016/j.yebeh.2020.107351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Inflammation plays a pivotal role in temporal lobe epilepsy (TLE) pathophysiology. IL-33 can act as a transcription factor or as a cytokine, the latter through the transmembrane ST2 receptor or its soluble isoform (sST2), presenting a dual role in neurological diseases. The aim of this study was to determine the plasma levels of IL-33 and sST2 in parallel with clinical features in patients with TLE. Peripheral blood from patients and controls was sampled for the measurement of plasma levels of IL-33 and sST2 by enzyme-linked immunoassay (ELISA). While there were similar levels of IL-33 between controls and patients, sST2 were increased in patients. IL33 and sST2 plasma levels were not associated with TLE-related clinical features. In a subgroup analysis, IL-33 levels correlated with memory performance. In conclusion, our results reinforce the concept of chronic low-grade inflammation in patients with TLE.
Collapse
Affiliation(s)
- Eliana Cristina de Brito Toscano
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Patologia Celular e Molecular, Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - João Marcelo Korcsik Lessa
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana Paula Gonçalves
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Hospital das Clínicas da UFMG, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Laboratório de Patologia Celular e Molecular, Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Antônio Lúcio Teixeira
- Santa Casa BH Instituto de Ensino e Pesquisa, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
32
|
Wesselingh R, Butzkueven H, Buzzard K, Tarlinton D, O'Brien TJ, Monif M. Seizures in autoimmune encephalitis: Kindling the fire. Epilepsia 2020; 61:1033-1044. [DOI: 10.1111/epi.16515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Robb Wesselingh
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Helmut Butzkueven
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Katherine Buzzard
- Department of Neurology Melbourne Health Parkville Victoria Australia
- Department of Neurology Eastern Health Box Hill Victoria Australia
| | - David Tarlinton
- Department of Immunology Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
| | - Terence J. O'Brien
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Mastura Monif
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
- Department of Neurology Melbourne Health Parkville Victoria Australia
| |
Collapse
|
33
|
Persistent Roseoloviruses Infection in Adult Patients with Epilepsy. Brain Sci 2020; 10:brainsci10050287. [PMID: 32403392 PMCID: PMC7288180 DOI: 10.3390/brainsci10050287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Human herpesviruses (HHV)-6A, HHV-6B and HHV-7 are considered to be involved in the pathogenesis of epilepsy, a common neurological disorder. The objective of this study was to determine the association of roseoloviruses infection with epilepsy. Methods: 53 epilepsy patients and 104 ordinary blood donors were analyzed to determine presence of virus-specific antibodies by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), genomic sequences, viral load and gene expression by polymerase chain reactions (PCRs) and restriction analysis, HHV-6 protein expression by IFA and level of cytokines by ELISA. Results: Roseoloviruses genomic sequences in DNA samples from whole blood were found in 86.8% of patients versus 54.8% of controls and active infection was revealed only in patients with epilepsy (19.6% of roseolovirus-positive patients). Significantly higher viral load and more frequent gene expression was detected in patients compared to the controls. HHV-6-encoded protein expression was demonstrated in 53.3% of patients with previously detected HHV-6 DNA. Changes in level of cytokines were determined in patients with elevated viral load compared to the patients without elevated viral loads and to the controls. Conclusions: Results on frequent active HHV-6 and HHV-7 infection in epilepsy patient’ peripheral blood indicate on possible involvement of these viruses in the disease development.
Collapse
|
34
|
Serum endocan and preoperative systemic inflammatory markers in patients with epilepsy. Neurochirurgie 2020; 66:29-35. [DOI: 10.1016/j.neuchi.2019.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
35
|
Toscano ECDB, Vieira ÉLM, Portela ACDC, Caliari MV, Brant JAS, Giannetti AV, Suemoto CK, Leite REP, Nitrini R, Rachid MA, Teixeira AL. Microgliosis is associated with visual memory decline in patients with temporal lobe epilepsy and hippocampal sclerosis: A clinicopathologic study. Epilepsy Behav 2020; 102:106643. [PMID: 31805504 DOI: 10.1016/j.yebeh.2019.106643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/14/2023]
Abstract
Hippocampal sclerosis (HS) is characterized by neuronal loss and gliosis. The intensity and distribution of these histopathological findings over the Cornu Ammonis (CA) subfields are important for the classification of HS and prognostication of patients with temporal lobe epilepsy (TLE). Several studies have associated the neuronal density reduction in the hippocampus with cognitive decline in patients with TLE. The current study aimed at investigating whether the expression of glial proteins in sclerotic hippocampi is associated with presurgical memory performance of patients with TLE. Before amygdalohippocampectomy, patients were submitted to memory tests. Immunohistochemical and morphometric analyses with glial fibrillary acidic protein (GFAP) for astrogliosis and human leucocyte antigen DR (HLA-DR) for microgliosis were performed in paraffin-embedded HS and control hippocampi. Sclerotic hippocampi exhibited increased gliosis in comparison with controls. In patients with TLE, the area and intensity of staining for HLA-DR were associated with worse performance in the memory tests. Glial fibrillary acidic protein was neither associated nor correlated with memory test performance. Our data suggest association between microgliosis, but not astrogliosis, with visual memory decline in patients with TLE.
Collapse
Affiliation(s)
- Eliana Cristina de Brito Toscano
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Claudia Kimie Suemoto
- Laboratório de Fisiopatologia no Envelhecimento, Universidade de São Paulo, SP, Brazil
| | | | - Ricardo Nitrini
- Laboratório de Fisiopatologia no Envelhecimento, Universidade de São Paulo, SP, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|
36
|
De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, Cryan JF, Russo E. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev 2019; 107:750-764. [PMID: 31626816 DOI: 10.1016/j.neubiorev.2019.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
The gut-microbiota, the complex intestinal microbial ecosystem essential to health, is an emerging concept in medicine. Several studies demonstrate a microbiota-gut-brain bidirectional connection via neural, endocrine, metabolic and immune pathways. Accordingly, the gut microbiota has a crucial role in modulating intestinal permeability, to alter local/peripheral immune responses and in production of essential metabolites and neurotransmitters. Its alterations may consequently influence all these pathways that contribute to neuronal hyper-excitability and mirrored neuroinflammation in epilepsy and similarly other neurological conditions. Indeed, pre- and clinical studies support the role of the microbiome in pathogenesis, seizure modulation and responses to treatment in epilepsy. Up to now, researchers have focussed attention above all on the brain to develop antiepileptic treatments, but considering the microbiome, could extend our possibilities for developing novel therapies in the future. We provide here a comprehensive overview of the available data on the potential role of gut microbiota in the physiopathology and therapy of epilepsy and the supposed underlying mechanisms.
Collapse
Affiliation(s)
- Carmen De Caro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS "G. Gaslini" Institute, Genova, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - John F Cryan
- UK.APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Emilio Russo
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
37
|
Wesselingh R, Butzkueven H, Buzzard K, Tarlinton D, O'Brien TJ, Monif M. Innate Immunity in the Central Nervous System: A Missing Piece of the Autoimmune Encephalitis Puzzle? Front Immunol 2019; 10:2066. [PMID: 31552027 PMCID: PMC6746826 DOI: 10.3389/fimmu.2019.02066] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
The autoimmune encephalitides are a group of autoimmune conditions targeting the central nervous system and causing severe clinical symptoms including drug-resistant seizures, cognitive dysfunction and psychiatric disturbance. Although these disorders appear to be antibody mediated, the role of innate immune responses needs further clarification. Infiltrating monocytes and microglial proliferation at the site of pathology could contribute to the pathogenesis of the disease with resultant blood brain barrier dysfunction, and subsequent activation of adaptive immune response. Both innate and adaptive immune cells can produce pro-inflammatory molecules which can perpetuate ongoing neuroinflammation and drive ongoing seizure activity. Ultimately neurodegenerative changes can ensue with resultant long-term neurological sequelae that can impact on ongoing patient morbidity and quality of life, providing a potential target for future translational research.
Collapse
Affiliation(s)
- Robb Wesselingh
- Department of Neurosciences, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neurosciences, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Katherine Buzzard
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia.,Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| | - David Tarlinton
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neurosciences, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia.,Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neurosciences, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia.,Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Simões PSR, Zanelatto AO, Assis MC, Varella PPV, Yacubian EM, Carrete H, Centeno R, Araujo MS, Cavalheiro EA, Tersariol ILS, Motta G, Naffah-Mazzacoratti MDG. Plasma kallikrein-kinin system contributes to peripheral inflammation in temporal lobe epilepsy. J Neurochem 2019; 150:296-311. [PMID: 31206169 DOI: 10.1111/jnc.14793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is a chronic disease, characterized by severe and refractory seizures, triggered in the hippocampus and/or amygdala, disrupting the blood-brain barrier. This disruption can sustain, or aggravate, the epileptic condition. The aim of this study was to evaluate the activation of the kallikrein-kinin system in patients with TLE, as it relates to the maintenance of blood-brain barrier. Human hippocampal sclerotic tissues removed after surgery for seizure control, plasma, and serum were used in the following assays: immunostaining for white blood cells in the TLE hippocampus, C-reactive protein in serum, quantification of plasma kallikrein (PKal) and cathepsin B (CatB) activity in serum and plasma, quantification of C1-inhibitor, analysis of high-molecular-weight kininogen (H-kininogen) fragments, and activation of plasma prekallikrein for comparison with healthy controls. Infiltration of white blood cells in the sclerotic hippocampus and a significant increase in the neutrophil/lymphocyte ratio in the blood of TLE patients were observed. High levels of C-reactive protein (TLE = 1.4 ± 0.3 µg/mL), PKal (TLE = 5.4 ± 0.4 U/mL), and CatB (TLE = 4.9 ± 0.4 U/mL) were also evident in the serum of TLE patients comparing to controls. A strong linear correlation was observed between active CatB and PKal in the serum of TLE patients (r = 0.88). High levels of cleaved H-kininogen and free PKal, and low levels of C1-inhibitor (TLE = 188 ± 12 µg/mL) were observed in the serum of TLE patients. Our data demonstrated that the plasma kallikrein-kinin system is activated in patients with TLE. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Priscila S R Simões
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Alexia O Zanelatto
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Mirian C Assis
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Pedro Paulo V Varella
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil.,Diagnóstico da América Sociedade Anônima (DASA), Barueri, SP, Brasil
| | - Elza Marcia Yacubian
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Henrique Carrete
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Ricardo Centeno
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Mariana S Araujo
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Esper A Cavalheiro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | | | - Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Maria da Graça Naffah-Mazzacoratti
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil.,Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| |
Collapse
|
39
|
Toscano ECDB, Lessa JMK, Gonçalves AP, Rocha NP, Giannetti AV, de Oliveira GN, Rachid MA, Vieira ÉLM, Teixeira AL. Circulating levels of adipokines are altered in patients with temporal lobe epilepsy. Epilepsy Behav 2019; 90:137-141. [PMID: 30530136 DOI: 10.1016/j.yebeh.2018.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE A persistent low-grade inflammatory state has been described in patients with temporal lobe epilepsy (TLE) in the interictal period. Adipokines are cytokines produced by the adipose tissue that can influence inflammatory response. The purpose of this study was to evaluate the plasma levels of adipokines in patients with TLE in comparison with controls. In addition, we sought to investigate whether the levels of adipokines were associated with clinical parameters in TLE. METHODS Forty patients with TLE and 40 controls were enrolled in this study. All participants were subjected to clinical assessment that included the Mini International Neuropsychiatric Interview (MINI) and the Hamilton Depression Rating Scale (HAM-D). Peripheral blood was drawn, and plasma levels of adipokines (adiponectin, leptin, and resistin) were measured by enzyme-linked immunoassay (ELISA). RESULTS People with TLE presented higher leptin and lower adiponectin and resistin levels in comparison with controls. The levels of these adipokines correlated negatively with illness length but not with other clinical parameters. In a binary logistic regression model, higher leptin and lower adiponectin levels remained as significant predictors of TLE diagnosis. CONCLUSIONS These results corroborate the view that TLE is a multisystemic condition associated with low-grade inflammation.
Collapse
Affiliation(s)
- Eliana Cristina de Brito Toscano
- Laboratório Interdisciplinar de Investigação Médica, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Marcelo Korcsik Lessa
- Laboratório Interdisciplinar de Investigação Médica, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Gonçalves
- Laboratório Interdisciplinar de Investigação Médica, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; University Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Pessoa Rocha
- Laboratório Interdisciplinar de Investigação Médica, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States
| | | | | | - Milene Alvarenga Rachid
- Laboratory of Cellular and Molecular Pathology, Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|
40
|
Li T, Zhai X, Jiang J, Song X, Han W, Ma J, Xie L, Cheng L, Chen H, Jiang L. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Res 2016; 1657:120-129. [PMID: 27956120 DOI: 10.1016/j.brainres.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Recent studies have reported microglia that are activated in the central nervous system (CNS) in patients with temporal lobe epilepsy and animal models of epilepsy. However, limited data are available on the dynamic changes of the proportions of various phenotypes of microglia throughout epileptogenesis and whether IL-4/IFN-γ administration can modulate the proportions of microglial phenotypes to affect the outcome of epilepsy. The current study examined this issue using a mouse model of pilocarpine-induced epilepsy. Flow cytometry showed that classically activated microglia (M1) and alternatively activated microglia (M2) underwent variations throughout the stages of epileptogenesis. The altered trends in the microglia-associated cytokines IL-1β, IL-4, and IL-10 paralleled the changes in phenotype proportions. We found that intraperitoneal injections of IL-4 and IFN-γ, which have been reported to modulate the phenotypes of microglia in vitro, also affected the proportion of microglia in vivo. In addition, correctly timing the modulation of the proportion of microglia improved the outcomes of epilepsy based on the reduced frequency, duration, and severity of spontaneous recurrent seizures (SRS) and increased the performances of the mice in the Morris water maze. This study is the first to report altering the proportion of microglial phenotypes in pilocarpine-induced epileptogenesis. Intraperitoneal injection of IL-4/IFN-γ could be used to modulate the proportions of the types of microglia, and epilepsy outcomes could be improved by correctly timing this modulation of phenotypes.
Collapse
Affiliation(s)
- Tianyi Li
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Jiang
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Song
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Han
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiannan Ma
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, China
| | - Lingling Xie
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, China
| | - Li Cheng
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, China.
| |
Collapse
|
41
|
Zhang LW, Warrington JP. Magnesium Sulfate Prevents Placental Ischemia-Induced Increases in Brain Water Content and Cerebrospinal Fluid Cytokines in Pregnant Rats. Front Neurosci 2016; 10:561. [PMID: 28008305 PMCID: PMC5143678 DOI: 10.3389/fnins.2016.00561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Magnesium sulfate (MgSO4) is the most widely used therapy in the clinic to prevent the progression of preeclampsia, a hypertensive disorder of pregnancy, to eclampsia. Eclampsia, manifested as unexplained seizures and/or coma during pregnancy or postpartum, accounts for ~13% of maternal deaths worldwide. While MgSO4 continues to be used in the clinic, the mechanisms by which it exerts its protective actions are not well understood. In this study, we tested the hypothesis that MgSO4 protects against placental ischemia-induced increases in brain water content and cerebrospinal fluid cytokines. To test this hypothesis, MgSO4 was administered via mini-osmotic pump (60 mg/day, i.p.) to pregnant and placental ischemic rats, induced by mechanical reduction of uterine perfusion pressure, from gestational day 14–19. This treatment regimen of MgSO4 led to therapeutic level of 2.8 ± 0.6 mmol/L Mg in plasma. MgSO4 had no effect on improving placental ischemia-induced changes in mean arterial pressure, number of live fetuses, or fetal and placental weight. Placental ischemia increased, while MgSO4 prevented the increase in water content in the anterior cerebrum. Cytokine and chemokine levels were measured in the cerebrospinal fluid using a multi-plex assay. Results demonstrate that cerebrospinal fluid, obtained via the cisterna magna, had reduced protein, albumin, interleukin (IL)-17A, IL-18, IL-2, eotaxin, fractalkine, interferon gamma, vascular endothelial growth factor (VEGF), and macrophage inflammatory protein (MIP)-2 following MgSO4 treatment. These data support the hypothesis that MgSO4 offers neuroprotection by preventing placental ischemia-induced cerebral edema and reducing levels of cytokines/chemokines in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Linda W Zhang
- Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, MS, USA
| | - Junie P Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|