1
|
McGlothen KI, Hines RM, Hines DJ. Outward depolarization of the microglia mitochondrial membrane potential following lipopolysaccharide exposure: a novel screening tool for microglia metabolomics. Front Cell Neurosci 2024; 18:1430448. [PMID: 39569069 PMCID: PMC11576292 DOI: 10.3389/fncel.2024.1430448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
Microglia are non-electrogenic immune cells that respond rapidly to protect the central nervous system (CNS) from infections, injuries, or other forms of damage. Microglia mitochondria are essential for providing the requisite energy resources for immune regulation. While fluctuations in energy metabolism are regulated by mitochondria and are reflected in the mitochondrial membrane potential (ΔΨm), there remains a lack of innovation in microglia-centric tools that capitalize on this. In this study, live imaging of microglia in acute slices from EGFP reporter mice expressing EGFP under the control of the fractalkine receptor (CX3CR1) promoter is combined with loading a fluorescent reporter of ΔΨm. Depolarizations in the ΔΨm were recorded after administering the well-characterized immune stimulant lipopolysaccharide (LPS). Microglia ΔΨm increased in distinctive phases with a relatively steep slope following LPS exposure. Conversely, the ΔΨm of neurons showed minimal regulation, highlighting a distinct microglia ΔΨm response to immune stimuli. Analysis of the depolarization of the microglia ΔΨm in the soma, branches, and endfeet revealed progressive changes in each subcellular domain originating in the soma and progressing outward. The inverse agonist emapunil attenuated the depolarization of the ΔΨm across states in a domain-specific manner. These findings emphasize the contribution of mitochondrial membrane dynamics in regulating microglial responses to immune stimuli. Further, this work advances a novel drug screening strategy for the therapeutic regulation of metabolic activity in inflammatory conditions of the brain.
Collapse
Affiliation(s)
- Kendra I McGlothen
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, College of Liberal Arts, University of Nevada, Las Vegas, NV, United States
| | - Rochelle M Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, College of Liberal Arts, University of Nevada, Las Vegas, NV, United States
| | - Dustin J Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, College of Liberal Arts, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
2
|
Liu C, Zhao Y, Zhao WJ. Positive Effect of 6-Gingerol on Functional Plasticity of Microglia in a rat Model of LPS-induced Depression. J Neuroimmune Pharmacol 2024; 19:20. [PMID: 38758335 DOI: 10.1007/s11481-024-10123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1β and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1β and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China
| | - Yan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei-Jiang Zhao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China.
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| |
Collapse
|
3
|
Bodemeier Loayza Careaga M, Wu TJ. Chronically stressed male and female mice show a similar peripheral and central pro-inflammatory profile after an immune challenge. PLoS One 2024; 19:e0297776. [PMID: 38381770 PMCID: PMC10880960 DOI: 10.1371/journal.pone.0297776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Although acute stressors are known for stimulating the production of glucocorticoids and pro-inflammatory cytokines in rodents, the effects of chronic stressors on cytokine levels and the activation of the hypothalamic-pituitary-adrenal (HPA) axis, especially in response to a subsequent challenge, are less clear. In this study, male and female mice were exposed to 6 weeks of chronic variable stress (CVS) and the peripheral and central levels of IL-1β, IL-6, and TNF-α, as well as the HPA axis reactivity, were measured after an acute injection of LPS. The findings indicate that the pro-inflammatory profile in the plasma, regardless of stress exposure, was similar between male and female animals, whereas there was a region-, sex-, and stress-dependent pattern in the brain. Exposure to chronic stressors blunted the HPA reactivity to the LPS challenge, indicating a modulatory effect on the stress axis responsiveness.
Collapse
Affiliation(s)
- Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - T. John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
5
|
Perinatal Morphine Exposure Leads to Sex-Dependent Executive Function Deficits and Microglial Changes in Mice. eNeuro 2022; 9:ENEURO.0238-22.2022. [PMID: 36216505 PMCID: PMC9581576 DOI: 10.1523/eneuro.0238-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
Children exposed prenatally to opioids are at an increased risk for behavioral problems and executive function deficits. The prefrontal cortex (PFC) and amygdala (AMG) regulate executive function and social behavior and are sensitive to opioids prenatally. Opioids can bind to toll-like receptor 4 (TLR4) to activate microglia, which may be developmentally important for synaptic pruning. Therefore, we tested the effects of perinatal morphine exposure on executive function and social behavior in male and female mouse offspring, along with microglial-related and synaptic-related outcomes. Dams were injected once daily subcutaneously with saline (n = 8) or morphine (MO; 10 mg/kg; n = 12) throughout pregestation, gestation, and lactation until offspring were weaned on postnatal day 21 (P21). Male MO offspring had impairments in attention and accuracy in the five-choice serial reaction time task, while female MO offspring were less affected. Targeted gene expression analysis at P21 in the PFC identified alterations in microglial-related and TLR4-related genes, while immunohistochemical analysis in adult brains indicated decreased microglial Iba1 and phagocytic CD68 proteins in the PFC and AMG in males, but females had an increase. Further, both male and female MO offspring had increased social preference. Overall, these data demonstrate male vulnerability to executive function deficits in response to perinatal opioid exposure and evidence for disruptions in neuron-microglial signaling.
Collapse
|
6
|
de Fraga LS, Tassinari ID, Jantsch J, Guedes RP, Bambini-Junior V. 'A picture is worth a thousand words': The use of microscopy for imaging neuroinflammation. Clin Exp Immunol 2021; 206:325-345. [PMID: 34596237 DOI: 10.1111/cei.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Since the first studies of the nervous system by the Nobel laureates Camillo Golgi and Santiago Ramon y Cajal using simple dyes and conventional light microscopes, microscopy has come a long way to the most recent techniques that make it possible to perform images in live cells and animals in health and disease. Many pathological conditions of the central nervous system have already been linked to inflammatory responses. In this scenario, several available markers and techniques can help imaging and unveil the neuroinflammatory process. Moreover, microscopy imaging techniques have become even more necessary to validate the large quantity of data generated in the era of 'omics'. This review aims to highlight how to assess neuroinflammation by using microscopy as a tool to provide specific details about the cell's architecture during neuroinflammatory conditions. First, we describe specific markers that have been used in light microscopy studies and that are widely applied to unravel and describe neuroinflammatory mechanisms in distinct conditions. Then, we discuss some important methodologies that facilitate the imaging of these markers, such as immunohistochemistry and immunofluorescence techniques. Emphasis will be given to studies using two-photon microscopy, an approach that revolutionized the real-time assessment of neuroinflammatory processes. Finally, some studies integrating omics with microscopy will be presented. The fusion of these techniques is developing, but the high amount of data generated from these applications will certainly improve comprehension of the molecular mechanisms involved in neuroinflammation.
Collapse
Affiliation(s)
- Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, UK
| |
Collapse
|
7
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
8
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Ovariectomy Induces Microglial Cell Activation and Inflammatory Response in Rat Prefrontal Cortices to Accelerate the Chronic Unpredictable Stress-Mediated Anxiety and Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3609758. [PMID: 32509856 PMCID: PMC7251427 DOI: 10.1155/2020/3609758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/04/2020] [Indexed: 01/21/2023]
Abstract
Perimenopausal women are associated with increased risks of depression and anxiety, which may be potentially related to the lack of ovarian hormone with antidepression activity in the body. However, the precise mechanism remains unclear so far. This study first adopted the Sprague-Dawley (SD) female rats to construct the ovariectomy (OVX) combined with a chronic unpredictable stress (CUS) model. Then, a series of behavioral experimental results revealed that the ovariectomized rats receiving CUS had remarkably elevated anxiety and depression behaviors relative to those in sham group rats, and the sucrose preference rate in the sucrose preference test (SPT) was evidently reduced. In elevated plus maze test (EPM) experiment, the open arm entry time and open arm duration were decreased. In the open field test (OFT), the number of line crossings, rearing number, center square entries, and center square duration were reduced; the grooming time was extended; and the number of fecal particles in rats was increased. In the forced swimming test (FST), the rat immobility rate was increased, while the numbers of swimming and crawling were decreased. Afterwards, we discovered that OVX downregulated the serum levels of estradiol and corticosterone in rats. Thereafter, IF results suggested that OVX dramatically induced the increasing of the number of activated microglial cells in prefrontal cortices and the level of M1-type marker iNOS. Finally, PCR results demonstrated that, compared with the sham group, the proinflammatory and prooxidative genes, such as IL-1β, IL-6, TNF-α, iNOS, and CX3CR1, were upregulated in the prefrontal cortices of OVX rats after CUS stimulation, whereas the anti-inflammatory factor Arg1 and microglial cell negative regulatory factor CD200 were downregulated. To sum up, OVX enhances the CUS-mediated anxiety and depression phenomena in rats, and its mechanism may be related to inducing the activation and polarization of microglial cells in the prefrontal cortex of animal and to accelerating the inflammatory response.
Collapse
|
10
|
Smith BL, Laaker CJ, Lloyd KR, Hiltz AR, Reyes TM. Adolescent microglia play a role in executive function in male mice exposed to perinatal high fat diet. Brain Behav Immun 2020; 84:80-89. [PMID: 31765789 PMCID: PMC8634520 DOI: 10.1016/j.bbi.2019.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022] Open
Abstract
In humans, excessive gestational weight gain during pregnancy is associated with an increased risk for executive function deficits in the offspring. Our previous work has confirmed this finding in mice, as offspring from dams fed a 60% high fat (HF) diet during breeding, gestation, and lactation demonstrate impulsive-like behavior in the 5 choice serial reaction time task (5CSRTT). Because the prefrontal cortex (PFC), which plays a key role in executive function, undergoes substantial postnatal adolescent pruning and microglia are actively involved in synaptic refinement, we hypothesized that microglia may play a role in mediating changes in brain development after maternal HF diet, with a specific focus on microglial activity during adolescence. Therefore, we treated male and female offspring from HF or control diet (CD) dams with PLX3397-formulated diet (PLX) to ablate microglia during postnatal days 23-45. After PLX removal and microglial repopulation, adult mice underwent testing to evaluate executive function. Adolescent PLX treatment did increase the control male dropout rate in learning the basic FR1 task, but otherwise had a minimal effect on behavior in control offspring. In males, HF offspring learned faster and performed better on a simple operant task (fixed ratio 1) without an effect of PLX. However, in HF offspring this increase in FR1 responding was associated with more impulsive errors in the 5CSRTT while PLX eliminated this association and decreased impulsive errors specifically in HF offspring. This suggests that adolescent PLX treatment improves executive function and particularly impulsive behavior in adult male HF offspring, without an overall effect of perinatal diet. In females, maternal HF diet impaired reversal learning but PLX had no effect on performance. We then measured gene expression in adult male PFC, nucleus accumbens (NAC), and amygdala (AMG), examining targets related to synaptic function, reward, and inflammation. Maternal HF diet increased PFC synaptophysin and AMG psd95 expression. PFC synaptophysin expression was correlated with more impulsive errors in the 5CSRTT in the HF offspring only and PLX treatment eliminated this correlation. These data suggest that adolescent microglia may play a critical role in mediating executive function after perinatal high fat diet in males.
Collapse
Affiliation(s)
- Brittany L Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Collin J Laaker
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Adam R Hiltz
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa M Reyes
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Bollinger J, Wohleb E. The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci Lett 2019; 711:134369. [PMID: 31422099 PMCID: PMC9875737 DOI: 10.1016/j.neulet.2019.134369] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/27/2023]
Abstract
Psychological stress can precipitate depression, and emerging preclinical data suggest a link between stress-induced alterations in microglia function and development of depressive-like behaviors. Microglia are highly dynamic, and play an integral role in maintaining neuronal homeostasis and synaptic plasticity. In this capacity, microglial dysfunction represents a compelling avenue through which stress might disrupt neuronal integrity and induce psychopathology. This review examines preclinical and clinical postmortem findings that indicate microglia-neuron interactions contribute to stress-induced synaptic deficits and associated behavioral and cognitive consequences. We focus on pathways that are implicated in microglia-mediated neuronal remodeling, including CSF1-CSF1R, CX3CL1-CX3CR1, and CD11b (CR3)-C3, as well as purinergic signaling via P2RX7 and P2RY12. We also highlight sex differences in stress effects on microglia, and the potential for microglia in the development of sex-specific treatments for depressive disorders.
Collapse
Affiliation(s)
| | - E.S. Wohleb
- Corresponding author at: Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH, 45237, USA. (E.S. Wohleb)
| |
Collapse
|
12
|
Clarke DJ, Chohan TW, Kassem MS, Smith KL, Chesworth R, Karl T, Kuligowski MP, Fok SY, Bennett MR, Arnold JC. Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus. Schizophr Bull 2019; 45:339-349. [PMID: 29566220 PMCID: PMC6403066 DOI: 10.1093/schbul/sby029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Collapse
Affiliation(s)
- David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | | | - Kristie L Smith
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, Australia,Neuroscience Research Australia, Randwick, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Michael P Kuligowski
- Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, Australia
| | - Sandra Y Fok
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia,To whom correspondence should be addressed; Brain and Mind Centre, Level 6, Building F, 94 Mallett Street, Camperdown, NSW 2050, Australia; tel: +61-29351-0812, e-mail:
| |
Collapse
|
13
|
Uren Webster TM, Rodriguez-Barreto D, Martin SA, Van Oosterhout C, Orozco-terWengel P, Cable J, Hamilton A, Garcia De Leaniz C, Consuegra S. Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon. Epigenetics 2018; 13:1191-1207. [PMID: 30526303 PMCID: PMC6986783 DOI: 10.1080/15592294.2018.1554520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Stress experienced during early life may have lasting effects on the immune system, with impacts on health and disease dependent on the nature and duration of the stressor. The epigenome is especially sensitive to environmental stimuli during early life and represents a potential mechanism through which stress may cause long-lasting health effects. However, the extent to which the epigenome responds differently to chronic vs acute stressors is unclear, especially for non-mammalian species. We examined the effects of acute stress (cold-shock during embryogenesis) and chronic stress (absence of tank enrichment during larval-stage) on global gene expression (using RNA-seq) and DNA methylation (using RRBS) in the gills of Atlantic salmon (Salmo salar) four months after hatching. Chronic stress induced pronounced transcriptional differences, while acute stress caused few lasting transcriptional effects. However, both acute and chronic stress caused lasting and contrasting changes in the methylome. Crucially, we found that acute stress enhanced transcriptional immune response to a pathogenic challenge (bacterial lipopolysaccharide, LPS), while chronic stress suppressed it. We identified stress-induced changes in promoter and gene-body methylation that were associated with altered expression for a small proportion of immune-related genes, and evidence of wider epigenetic regulation within signalling pathways involved in immune response. Our results suggest that stress can affect immuno-competence through epigenetic mechanisms, and highlight the markedly different effects of chronic larval and acute embryonic stress. This knowledge could be used to harness the stimulatory effects of acute stress on immunity, paving the way for improved stress and disease management through epigenetic conditioning.
Collapse
Affiliation(s)
- Tamsyn M. Uren Webster
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, UK
| | | | | | | | | | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd, Stirling University Innovation Park, Stirling, UK
| | - Carlos Garcia De Leaniz
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, UK
| | - Sofia Consuegra
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
14
|
Xia J, Lu Z, Feng S, Yang J, Ji M. Different effects of immune stimulation on chronic unpredictable mild stress-induced anxiety- and depression-like behaviors depending on timing of stimulation. Int Immunopharmacol 2018; 58:48-56. [PMID: 29549719 DOI: 10.1016/j.intimp.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
Abstract
Stressful life events are thought to be triggering factors of numerous neuropsychiatric disorders, including anxiety and depression. However, the interactions between chronic unpredictable mild stress (CUMS) and immune stimulation have not been thoroughly investigated. In the present study, we evaluated the effects of lipopolysaccharide (LPS) challenge at different time points on CUMS-induced anxiety- and depression-like behaviors. At 1 day before, 18 or 35 days following the initial of CUMS, mice were intraperitoneally given a single LPS (0.1 mg/kg). Neurobehavioral and biochemical studies were performed at the indicated time points. LPS challenge had different effects on CUMS-induced anxiety- and depression-like behaviors depending on the timing of stimulation. When given 1 day before CUMS, LPS restored brain-derived neurotrophic factor level and reversed anxiety- and depression-like behaviors. When given at 18 days after the initial of CUMS, LPS seemed to promote the immune response and even induce a slight exacerbation of neurobehavioral performance, although the difference did not reach statistical significance. Intriguingly, when given at the end of CUMS, LPS reversed some of the anxiety- and depression-like behavior. Taken together, our study highlights the complex interaction between stress and immune challenge, suggesting therapies that modulate immune responses should be tailored to the immune status of the individual.
Collapse
Affiliation(s)
- Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhen Lu
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Muhuo Ji
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
15
|
Fernandes SS, Koth AP, Parfitt GM, Cordeiro MF, Peixoto CS, Soubhia A, Moreira FP, Wiener CD, Oses JP, Kaszubowski E, Barros DM. Enhanced cholinergic-tone during the stress induce a depressive-like state in mice. Behav Brain Res 2018; 347:17-25. [PMID: 29501509 DOI: 10.1016/j.bbr.2018.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/06/2023]
Abstract
Major depressive disorder has a heterogeneous etiology, since it arises from the interaction of multiple factors and different pathophysiological mechanisms are involved in the symptomatology. This study aimed to investigate the role of the cholinergic system in the susceptibility to stress and, consequently, in the depression-like behavior. C57BL/6 mice were treated with Physostigmine (PHYS), an acetylcholinesterase (AChE) inhibitor, and were submitted to the social defeat stress. For the behavioral evaluation of the locomotor activity, anxiety-like and depression-like behaviors the open field, elevated plus maze, sucrose preference, social interaction and forced swim were used. Hippocampus and prefrontal cortex samples were collected for evaluation of AChE activity, as well as blood samples for analysis of serum cortisol levels. Our results showed that 15 min after the injection of PHYS there was a significant inhibition of AChE activity in the hippocampus and in the prefrontal cortex. On the other hand, in the end of the experimental design, day 12, there was no difference in AChE activity levels. Inhibition of AChE and exposure to the stress led to an increase in cortisol levels. Animals that received PHYS and were exposed to stress showed less social interaction and greater learned helplessness, anhedonia and anxious-like behavior. Taken together, our findings suggest that increasing the cholinergic tone shortly before stress induction impacts on the ability to cope with upcoming stressful situations, leading to a depressive-like state.
Collapse
Affiliation(s)
- Sara S Fernandes
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - André P Koth
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Gustavo M Parfitt
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcos F Cordeiro
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carolina S Peixoto
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Andréa Soubhia
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Fernanda P Moreira
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Carolina D Wiener
- Post-Graduation Program in Epidemiology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jean P Oses
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Erikson Kaszubowski
- Department of Psychology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Daniela M Barros
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
16
|
Zhou Y, Li H, Siddiqui N, Caudle Y, Zhang H, Elgazzar M, Yin D. Hematopoietic stem progenitor cells prevent chronic stress-induced lymphocyte apoptosis. J Neuroimmunol 2017; 309:72-76. [PMID: 28601292 DOI: 10.1016/j.jneuroim.2017.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/17/2017] [Accepted: 05/20/2017] [Indexed: 11/15/2022]
Abstract
Physical or psychological chronic stress can suppress the immune system. However, the mechanisms remain to be elucidated. We investigated the effect of hematopoietic stem-progenitor cells (HSPCs) on chronic stress-induced the alterations of immune responses. We demonstrate that HSPCs prevents stress-induced lymphocyte apoptosis. Moreover, we also demonstrate that the protective effect of HSPCs on stress-induced lymphocyte reduction exerts by steroid hormones. Furthermore, we reveal that chronic stress-induced T cell-mediated immune responses contributes to the protective effect of HSPCs. These results indicate that HPSCs might offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Nausheen Siddiqui
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Haiju Zhang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Mohamed Elgazzar
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
17
|
Jiang W, Li Y, Sun J, Li L, Li JW, Zhang C, Huang C, Yang J, Kong GY, Li ZF. Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci Rep 2017; 7:6501. [PMID: 28747688 PMCID: PMC5529540 DOI: 10.1038/s41598-017-06956-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Psychological stress has great impacts on the immune system, particularly the leukocytes distribution. Although the impacts of acute stress on blood leukocytes distribution are well studied, however, it remains unclear how chronic stress affects leukocytes distribution in peripheral circulation. Furthermore, there is no report about the role of spleen in the blood leukocytes distribution induced by stress. Here we show that spleen contributes to the alteration of restraint stress induced blood leukocytes distribution. Our data confirmed that restraint stress induced anxiety-like behavior in mice. Furthermore, we found that restraint stress decreased the CD4/CD8 ratio and elevated the percentages of natural killer cells, monocytes and polymorphonuclear myeloid-derived suppressor cell. We demonstrated that activation of hypothalamic-pituitary-adrenal axis (HPA) and sympathetic nervous system (SNS) contributes to restraint stress induced alteration of blood leukocyte distribution. Interestingly, we found that splenectomy could reverse the change of CD4/CD8 ratio induced by restraint stress. Together, our findings suggest that activation of HPA axis and SNS was responsible for the blood leukocyte subsets changes induced by restraint stress. Spleen, at least in part, contributed to the alteration in peripheral circulation induced by restraint stress.
Collapse
Affiliation(s)
- Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Jiang-Wei Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Pathology, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China.
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
| |
Collapse
|
18
|
Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy. J Neurosci 2017; 36:11013-11023. [PMID: 27798182 DOI: 10.1523/jneurosci.1371-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/21/2016] [Indexed: 12/30/2022] Open
Abstract
Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently.
Collapse
|
19
|
Smith BL, Lyons CE, Correa FG, Benoit SC, Myers B, Solomon MB, Herman JP. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology 2017; 77:37-46. [PMID: 28012292 PMCID: PMC5619656 DOI: 10.1016/j.psyneuen.2016.11.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/25/2022]
Abstract
Significant loss produces the highest degree of stress and compromised well-being in humans. Current rodent models of stress involve the application of physically or psychologically aversive stimuli, but do not address the concept of loss. We developed a rodent model for significant loss, involving removal of long-term access to a rewarding enriched environment. Our results indicate that removal from environmental enrichment produces a profound behavioral and physiological phenotype with depression-like qualities, including helplessness behavior, hypothalamo-pituitary-adrenocortical axis dysregulation and overeating. Importantly, this enrichment removal phenotype was prevented by antidepressant treatment. Furthermore, the effects of enrichment removal do not occur following relief from chronic stress and are not duplicated by loss of exercise or social contact.
Collapse
Affiliation(s)
- Brittany L. Smith
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience
| | - Carey E Lyons
- University of Cincinnati, Summer Undergraduate Research Fellowship Program
| | | | - Stephen C. Benoit
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience
| | - Brent Myers
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience
| | - Matia B. Solomon
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience
| | - James P. Herman
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience
| |
Collapse
|
20
|
Portes A, Giestal-de-Araujo E, Fagundes A, Pandolfo P, de Sá Geraldo A, Lira MLF, Amaral VF, Lagrota-Candido J. Leishmania amazonensis infection induces behavioral alterations and modulates cytokine and neurotrophin production in the murine cerebral cortex. J Neuroimmunol 2016; 301:65-73. [DOI: 10.1016/j.jneuroim.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
|
21
|
Costa-Ferreira W, Vieira JO, Almeida J, Gomes-de-Souza L, Crestani CC. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors. Front Pharmacol 2016; 7:262. [PMID: 27588004 PMCID: PMC4988975 DOI: 10.3389/fphar.2016.00262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/04/2016] [Indexed: 01/26/2023] Open
Abstract
Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jonas O Vieira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jeferson Almeida
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Lucas Gomes-de-Souza
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| |
Collapse
|