1
|
Gan YL, Lee YH. Indoleamine 2,3-Dioxygenase 1/Aryl Hydrocarbon Receptor Feedback Loop Mediates Anti-inflammation in lipopolysaccharide-stimulated Astrocytes to Dampen Inflammatory Neurotoxicity. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:1-10. [PMID: 39846297 DOI: 10.4103/ejpi.ejpi-d-24-00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
ABSTRACT Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia. However, the role of AhR in the astrocytic immune responses and its subsequent effects on microglial activation and neurotoxicity remain unclear. In this study, we used LPS-induced neuroinflammation in rat cortical glia-neuron (GN) mix cultures, which increased the expression of tumor necrosis factor-α and interleukin-6 and microglial activation. These proinflammatory responses were attenuated by a specific AhR agonist 6-formylindolo [3,2-b] carbazole (FICZ), but not by the AhR antagonist CH223191. CH223191, which inhibits LPS- and FICZ-induced AhR activation, enhanced neurotoxicity induced by LPS-glutamate co-treatment in GN mix cultures. Furthermore, inhibition of AhR expression and activation enhanced LPS-induced proinflammatory responses, and LPS-induced AhR activation was abrogated by the inhibition of IDO1 expression in astrocytes. Notably, AhR knockdown inhibited the anti-inflammatory effects of KYN while enhancing LPS-induced IDO1 expression in astrocytes, suggesting that AhR mediates the anti-inflammatory effect of KYN and the negative feedback regulation of IDO1 expression. Finally, we examined the role of astrocytic AhR in inflammatory astrogliosis-induced neurotoxicity by treating primary cortical neurons with LPS-treated astrocyte-conditioned medium (ACM). The results revealed that ACM derived from siAhR-transfected astrocytes increased neurotoxicity. In conclusion, inflammation-activated AhR mediates the anti-inflammatory effects and negative feedback regulation of the IDO1/KYN pathway in astrocytes, thereby dampening inflammatory astrogliosis-induced neurotoxicity.
Collapse
Affiliation(s)
- Yu-Ling Gan
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Jaikang C, Konguthaithip G, Amornlertwatana Y, Autsavapromporn N, Rattanachitthawat S, Monum T. Alterations in the Blood Kynurenine Pathway Following Long-Term PM2.5 and PM10 Exposure: A Cross-Sectional Study. Biomedicines 2024; 12:1947. [PMID: 39335463 PMCID: PMC11428296 DOI: 10.3390/biomedicines12091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Human exposure to PM2.5 and PM10 has been linked to respiratory and cardiovascular diseases through inflammation activation. The kynurenine pathway is associated with inflammation, and it is necessary to investigate the effects of long-term PM2.5 and PM10 exposure on this pathway. This study aimed to conduct a cross-sectional analysis of long-term PM2.5 and PM10 exposure's impact on the kynurenine pathway using proton NMR spectroscopy (1H-NMR). The participants were divided into a low-PM-exposure group (LG; n = 98), and a high-PM-exposure group (HG; n = 92). The metabolites of tryptophan were determined in blood by 1H-NMR. Serotonin, cinnabarinic acid, xanthurenic acid, 5-hydroxytryptophan, indoleacetic acid, tryptamine, melatonin, L-tryptophan, 5-hydroxy-L-tryptophol, indoxyl, 2-aminobenzoic acid, 5-HTOL, hydroxykynurenine, L-3-hydroxykynurenine, N-formyl kynurenine, 3-hydroxy anthranilic acid, kynurenic acid, and picolinic acid significantly increased (p < 0.05) in the HG group. Conversely, NAD and quinolinic acid significantly decreased in the HG group compared to the LG group. The enzyme activities of indoleamine 2,3-dioxygenase and formamidase significantly decreased, while kynureninase and kynurenine monooxygenase significantly increased. The kynurenine pathway is linked to inflammation and non-communicable diseases. Disruption of the kynurenine pathway from particulate matter might promote diseases. Reducing exposure to the particulate matter is crucial for preventing adverse health effects.
Collapse
Affiliation(s)
- Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Giatgong Konguthaithip
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Minhas PS, Jones JR, Latif-Hernandez A, Sugiura Y, Durairaj AS, Wang Q, Mhatre SD, Uenaka T, Crapser J, Conley T, Ennerfelt H, Jung YJ, Liu L, Prasad P, Jenkins BC, Ay YA, Matrongolo M, Goodman R, Newmeyer T, Heard K, Kang A, Wilson EN, Yang T, Ullian EM, Serrano GE, Beach TG, Wernig M, Rabinowitz JD, Suematsu M, Longo FM, McReynolds MR, Gage FH, Andreasson KI. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer's disease pathologies. Science 2024; 385:eabm6131. [PMID: 39172838 DOI: 10.1126/science.abm6131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/25/2024] [Indexed: 08/24/2024]
Abstract
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.
Collapse
Affiliation(s)
- Paras S Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amira Latif-Hernandez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yuki Sugiura
- Central Institute for Experimental Medicine and Life Science, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- WPI-Bio2Q Research Center, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821 Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Aarooran S Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Siddhita D Mhatre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Takeshi Uenaka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua Crapser
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Travis Conley
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannah Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yoo Jin Jung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ling Liu
- Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton 08544 NJ, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yeonglong Albert Ay
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew Matrongolo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ryan Goodman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Traci Newmeyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kelly Heard
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Austin Kang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua D Rabinowitz
- Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton 08544 NJ, USA
| | - Makoto Suematsu
- Central Institute for Experimental Medicine and Life Science, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- WPI-Bio2Q Research Center, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821 Japan
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Melanie R McReynolds
- Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton 08544 NJ, USA
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- The Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA
| |
Collapse
|
4
|
Minhas PS, Jones JR, Latif-Hernandez A, Sugiura Y, Durairaj AS, Uenaka T, Wang Q, Mhatre SD, Liu L, Conley T, Ennerfelt H, Jung YJ, Prasad P, Jenkins BC, Goodman R, Newmeyer T, Heard K, Kang A, Wilson EN, Ullian EM, Serrano GE, Beach TG, Rabinowitz JD, Wernig M, Suematsu M, Longo FM, McReynolds MR, Gage FH, Andreasson KI. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer's disease pathologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.598940. [PMID: 38979192 PMCID: PMC11230169 DOI: 10.1101/2024.06.23.598940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.
Collapse
|
5
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
6
|
Pamart G, Gosset P, Le Rouzic O, Pichavant M, Poulain-Godefroy O. Kynurenine Pathway in Respiratory Diseases. Int J Tryptophan Res 2024; 17:11786469241232871. [PMID: 38495475 PMCID: PMC10943758 DOI: 10.1177/11786469241232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 03/19/2024] Open
Abstract
The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.
Collapse
Affiliation(s)
- Guillaume Pamart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Odile Poulain-Godefroy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
7
|
Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H. Altered Tryptophan-Kynurenine Pathway in Delirium: A Review of the Current Literature. Int J Mol Sci 2023; 24:5580. [PMID: 36982655 PMCID: PMC10056900 DOI: 10.3390/ijms24065580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
Collapse
Affiliation(s)
- Ang Hui Phing
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Ma Q, Ma W, Song TZ, Wu Z, Liu Z, Hu Z, Han JB, Xu L, Zeng B, Wang B, Sun Y, Yu DD, Wu Q, Yao YG, Zheng YT, Wang X. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zool Res 2022; 43:1041-1062. [PMID: 36349357 PMCID: PMC9700497 DOI: 10.24272/j.issn.2095-8137.2022.443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs. However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000 single-nucleus transcriptomes of the lung, liver, kidney, and cerebral cortex in rhesus macaques ( Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multi-organ dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019 (COVID-19). Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway, which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy (an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection, which may facilitate the development of therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Zhaobo Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenxiang Hu
- LivzonBio, Inc., Zhuhai, Guangdong 519045, China
| | - Jian-Bao Han
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Bo Zeng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yinuo Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Dan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China. E-mail:
| |
Collapse
|
9
|
Xiao W, Li J, Gao X, Yang H, Su J, Weng R, Gao Y, Ni W, Gu Y. Involvement of the gut-brain axis in vascular depression via tryptophan metabolism: A benefit of short chain fatty acids. Exp Neurol 2022; 358:114225. [PMID: 36100045 DOI: 10.1016/j.expneurol.2022.114225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Cerebral hemodynamic dysfunction and hypoperfusion have been found to underlie vascular depression, but whether the gut-brain axis is involved remains unknown. In this study, a rat model of bilateral common carotid artery occlusion (BCCAO) was adopted to mimic chronic cerebral hypoperfusion. A reduced sucrose preference ratio, increased immobility time in the tail suspension test and forced swim test, and compromised gut homeostasis were found. A promoted conversion of tryptophan (Trp) into kynurenine (Kyn) instead of 5-hydroxytryptamine (5-HT) was observed in the hippocampus and gut of BCCAO rats. Meanwhile, 16S ribosomal RNA gene sequencing suggested a compromised profile of the gut SCFA-producing microbiome, with a decreased serum level of SCFAs revealed by targeted metabolomics analysis. With SCFA supplementation, BCCAO rats exhibited ameliorated depressive-like behaviors and improved gut dysbiosis, compared with the salt-matched BCCAO group. Enzyme-linked immunosorbent assays and quantitative RT-PCR suggested that SCFA supplementation suppressed the conversion of Trp to Kyn and rescued the reduction in 5-HT levels in the hippocampus and gut. In addition to inhibiting the upregulation of inflammatory cytokines, SCFA supplementation ameliorated the activated oxidative stress and reduced the number of microglia and the expression of its proinflammatory markers in the hippocampus post BCCAO. In conclusion, our data suggested the participation of the gut-brain axis in vascular depression, shedding light on the neuroprotective potential of treatment with gut-derived SCFAs.
Collapse
Affiliation(s)
- Weiping Xiao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Ruiyuan Weng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China.
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
10
|
Distinct Patterns of GR Transcriptional Regulation in Liver and Muscle of LPS-Challenged Weaning Piglets. Int J Mol Sci 2022; 23:ijms23158072. [PMID: 35897645 PMCID: PMC9331734 DOI: 10.3390/ijms23158072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid receptor (GR), which is ubiquitously expressed in nearly all cell types of various organs, mediates the tissue-specific metabolic and immune responses to maintain homeostasis and ensure survival under stressful conditions or pathological challenges. The neonatal period is metabolically demanding, and piglets are subjected to multiple stressors in modern intensive farms, especially around weaning. The liver is more responsive to LPS challenge compared to muscle, which is indicated by significantly increased TLR4 and p-p65, TNF-α, and IL-6 levels in association with GR down-regulation at both mRNA and protein levels. GR binding to the putative nGRE on TNF-α and IL-6 gene promoters decreased in the liver, but not muscle, upon LPS stimulation. The transcriptional regulation of GR also showed striking differences between liver and muscle. GR exon 1 mRNA variants 1–4, 1–5, and 1–6 were down-regulated in both liver and muscle, but a significant up-regulation of GR exon 1–9/10 mRNA variants abolished the change of total GR mRNA in the muscle in response to LPS stimulation. The significant down-regulation of GR in the liver corresponded with significantly decreased binding of p-GR and diminished histone acetylation in GR gene promoters. These results indicate that tissue-specific GR transcriptional regulation is involved in the differential inflammation responses between liver and muscle.
Collapse
|
11
|
Neuroinflammation in Post-Traumatic Stress Disorder. Biomedicines 2022; 10:biomedicines10050953. [PMID: 35625690 PMCID: PMC9138406 DOI: 10.3390/biomedicines10050953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/07/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a well-known mental illness, which is caused by various stressors, including memories of past physical assaults and psychological pressure. It is diagnosed as a mental and behavioral disorder, but increasing evidence is linking it to the immune system and inflammatory response. Studies on the relationship between inflammation and PTSD revealed that patients with PTSD had increased levels of inflammatory cytokine biomarkers, such as interleukin-1, interleukin-6, tumor necrosis factor-α, nuclear factor-κB, and C-reactive protein, compared with healthy controls. In addition, animal model experiments imitating PTSD patients suggested the role of inflammation in the pathogenesis and pathophysiology of PTSD. In this review, we summarize the definition of PTSD and its association with increased inflammation, its mechanisms, and future predictable diseases and treatment possibilities. We also discuss anti-inflammatory treatments to address inflammation in PTSD.
Collapse
|
12
|
Moravcová S, Spišská V, Pačesová D, Hrubcová L, Kubištová A, Novotný J, Bendová Z. Circadian control of kynurenine pathway enzymes in the rat pineal gland, liver, and heart and tissue- and enzyme-specific responses to lipopolysaccharide. Arch Biochem Biophys 2022; 722:109213. [DOI: 10.1016/j.abb.2022.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
|
13
|
Millischer V, Heinzl M, Faka A, Resl M, Trepci A, Klammer C, Egger M, Dieplinger B, Clodi M, Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation 2021; 18:158. [PMID: 34273987 PMCID: PMC8286561 DOI: 10.1186/s12974-021-02196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Administration of lipopolysaccharide (LPS) from Gram-negative bacteria, also known as the human endotoxemia model, is a standardized and safe model of human inflammation. Experimental studies have revealed that peripheral administration of LPS leads to induction of the kynurenine pathway followed by depressive-like behavior and cognitive dysfunction in animals. The aim of the present study is to investigate how acute intravenous LPS administration affects the kynurenine pathway in healthy male human subjects. Methods The present study is a prospective, single-blinded, randomized, placebo-controlled cross-over study to investigate the effects of intravenously administered LPS (Escherichia coli O113, 2 ng/kg) on tryptophan and kynurenine metabolites over 48 h and their association with interleukin-6 (IL-6) and C-reactive protein (CRP). The study included 10 healthy, non-smoking men (18–40 years) free from medication. Statistical differences in tryptophan and kynurenine metabolites as well as associations with IL-6 and CRP in LPS and placebo treated subjects were assessed with linear mixed-effects models. Results Systemic injection of LPS was associated with significantly lower concentrations of plasma tryptophan and kynurenine after 4 h, as well as higher concentrations of quinolinic acid (QUIN) after 48 h compared to the placebo injection. No differences were found in kynurenic acid (KYNA) or picolinic acid plasma concentrations between LPS or placebo treatment. The KYNA/kynurenine ratio peaked at 6 h post LPS injection while QUIN/kynurenine maintained significantly higher from 3 h post LPS injection until 24 h. The kynurenine/tryptophan ratio was higher at 24 h and 48 h post LPS treatment. Finally, we report an association between the kynurenine/tryptophan ratio and CRP. Conclusions Our findings strongly support the concept that an inflammatory challenge with LPS induces the kynurenine pathway in humans, activating both the neurotoxic (QUIN) and neuroprotective (KYNA) branch of the kynurenine pathway. Trial registration This study is based on a study registered at ClinicalTrials.gov, NCT03392701. Registered 21 December 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02196-x.
Collapse
Affiliation(s)
- Vincent Millischer
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Translational Psychiatry, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Heinzl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Anthi Faka
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Resl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Ada Trepci
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Klammer
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Margot Egger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Linz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Linz, Austria
| | - Martin Clodi
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria. .,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria.
| | - Lilly Schwieler
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135:111200. [PMID: 33421734 PMCID: PMC7834135 DOI: 10.1016/j.biopha.2020.111200] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the corona virus disease (COVID-19) has had major global impact. The relationship between severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection and psychiatric diseases is of great concern, with an evident link between corona virus infections and various central and peripheral nervous system manifestations. Unmitigated neuro-inflammation has been noted to underlie not only the severe respiratory complications of the disease but is also present in a range of neuro-psychiatric illnesses. Several neurological and psychiatric disorders are characterized by immune-inflammatory states, while treatments for these disorders have distinct anti-inflammatory properties and effects. With inflammation being a common contributing factor in SARS-CoV-2, as well as psychiatric disorders, treatment of either condition may affect disease progression of the other or alter response to pharmacological treatment. In this review, we elucidate how viral infections could affect pre-existing psychiatric conditions and how pharmacological treatments of these conditions may affect overall progress and outcome in the treatment of SARS-CoV-2. We address whether any treatment-induced benefits and potential adverse effects may ultimately affect the overall treatment approach, considering the underlying dysregulated neuro-inflammatory processes and potential drug interactions. Finally, we suggest adjunctive treatment options for SARS-CoV-2-associated neuro-psychiatric symptoms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Christiaan B Brink
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Francois P Viljoen
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
15
|
Gurczynski SJ, Pereira NL, Hrycaj SM, Wilke C, Zemans RL, Moore BB. Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology. JCI Insight 2021; 6:139965. [PMID: 33491663 PMCID: PMC7934859 DOI: 10.1172/jci.insight.139965] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aryl-hydrocarbon receptor (AHR) is an intracellular sensor of aromatic hydrocarbons that sits at the top of various immunomodulatory pathways. Here, we present evidence that AHR plays a role in controlling IL-17 responses and the development of pulmonary fibrosis in response to respiratory pathogens following bone marrow transplant (BMT). Mice infected intranasally with gamma-herpesvirus 68 (γHV-68) following BMT displayed elevated levels of the AHR ligand, kynurenine (kyn), in comparison with control mice. Inhibition or genetic ablation of AHR signaling resulted in a significant decrease in IL-17 expression as well as a reduction in lung pathology. Lung CD103+ DCs expressed AHR following BMT, and treatment of induced CD103+ DCs with kyn resulted in altered cytokine production in response to γHV-68. Interestingly, mice deficient in the kyn-producing enzyme indolamine 2-3 dioxygenase showed no differences in cytokine responses to γHV-68 following BMT; however, isolated pulmonary fibroblasts infected with γHV-68 expressed the kyn-producing enzyme tryptophan dioxygenase (TDO2). Our data indicate that alterations in the production of AHR ligands in response to respiratory pathogens following BMT results in a pro-Th17 phenotype that drives lung pathology. We have further identified the TDO2/AHR axis as a potentially novel form of intercellular communication between fibroblasts and DCs that shapes immune responses to respiratory pathogens.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Nicolas L Pereira
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Steven M Hrycaj
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Carol Wilke
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Rachel L Zemans
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Bethany B Moore
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Sorgdrager F, van Der Ley CP, van Faassen M, Calus E, Nollen EA, Kema IP, van Dam D, De Deyn PP. The Effect of Tryptophan 2,3-Dioxygenase Inhibition on Kynurenine Metabolism and Cognitive Function in the APP23 Mouse Model of Alzheimer's Disease. Int J Tryptophan Res 2020; 13:1178646920972657. [PMID: 33447045 PMCID: PMC7780178 DOI: 10.1177/1178646920972657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is associated with progressive endogenous neurotoxicity and hampered inflammatory regulation. The kynurenine (Kyn) pathway, which is controlled by tryptophan 2,3-dioxygenase (TDO), produces neuroactive and anti-inflammatory metabolites. Age-related Kyn pathway activation might contribute to AD pathology in humans, and inhibition of TDO was found to reduce AD-related cellular toxicity and behavioral deficits in animal models. To further explore the effect of aging on the Kyn pathway in the context of AD, we analyzed Kyn metabolite profiles in serum and brain tissue of the APP23 amyloidosis mouse model. We found that aging had genotype-independent effects on Kyn metabolite profiles in serum, cortex, hippocampus and cerebellum, whereas serum concentrations of many Kyn metabolites were reduced in APP23 mice. Next, to further establish the role of TDO in AD-related behavioral deficits, we investigated the effect of long-term pharmacological TDO inhibition on cognitive performance in APP23 mice. Our results indicated that TDO inhibition reversed recognition memory deficits without producing measurable changes in cerebral Kyn metabolites. TDO inhibition did not affect spatial learning and memory or anxiety-related behavior. These data indicate that age-related Kyn pathway activation is not specific for humans and could represent a cross-species phenotype of aging. These data warrant further investigation on the role of peripheral Kyn pathway disturbances and cerebral TDO activity in AD pathophysiology.
Collapse
Affiliation(s)
- Fjh Sorgdrager
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C P van Der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Calus
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - E A Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - I P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D van Dam
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - P P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
17
|
Wetzel LA, Hurtado M, MacDowell Kaswan ZA, McCusker RH, Steelman AJ. Deletion of indoleamine 2,3 dioxygenase (Ido)1 but not Ido2 exacerbates disease symptoms of MOG 35-55-induced experimental autoimmune encephalomyelitis. Brain Behav Immun Health 2020; 7:100116. [PMID: 34589873 PMCID: PMC8474387 DOI: 10.1016/j.bbih.2020.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with pathological features of inflammation, demyelination, and neurodegeneration. Several lines of evidence suggest that the enzymes indoleamine 2,3-dioxygenase (Ido)1 and/or Ido2 influences susceptibility to autoimmune diseases. Deletion of Ido1 exacerbates experimental autoimmune encephalomyelitis (EAE) an animal model of MS. However, no data exist on the role of Ido2 in the pathogenesis of EAE. We investigated whether deletion of Ido2 affected the pathogenesis of EAE. Temporal expression of interferon gamma (Ifng), Ido1 variants, Ido2 variants, as well as genes encoding enzymes of the kynurenine pathway in the spleen and spinal cord of C57BL/6 mice with or without EAE were determined by RT-qPCR. Moreover, EAE was induced in C57BL/6, two Ido1 knockout strains (Ido1KO and Ido1TK) and one Ido2 knockout mouse strain (Ido2-/-) and disease monitored by clinical scores and weight change. Performance on the rotarod was performed on days 0, 5, 10 and 15 post induction. The extent of demyelination in the spinal cord was determined after staining with Oil red O. The development of EAE altered gene expression in both the spleen and spinal cord. Deletion of Ido1 exacerbated the clinical symptoms of EAE. In stark contrast, EAE in Ido2-/- mice did not differ clinically or histologically from control mice. These results confirm a protective role for Ido1, on the pathogenesis of MOG35-55-induced EAE in C57BL/6J mice.
Collapse
Affiliation(s)
- Lisa A. Wetzel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Myrna Hurtado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zoe A. MacDowell Kaswan
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew J. Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
18
|
Achtyes E, Keaton SA, Smart L, Burmeister AR, Heilman PL, Krzyzanowski S, Nagalla M, Guillemin GJ, Escobar Galvis ML, Lim CK, Muzik M, Postolache TT, Leach R, Brundin L. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun 2020; 83:239-247. [PMID: 31698012 PMCID: PMC6906225 DOI: 10.1016/j.bbi.2019.10.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Depression during pregnancy and the post-partum is common, with severe cases resulting in suicidal behavior. Despite the urgent and unmet medical need, the biological underpinnings of peri-partum depression remain unclear. It has been suggested that it is triggered by dynamic changes of the immune system during pregnancy and at delivery. Therefore, we investigated whether a pro-inflammatory status in plasma, together with changes in the kynurenine pathway activity, is associated with the development of severe depression and suicidal behavior in the post-partum. Our cross-sectional study targets a unique, understudied population in which the pronounced severity of symptoms required hospitalization. We analyzed plasma IL-1β, IL-2, IL-6, IL-8, TNF-α, tryptophan, serotonin, kynurenine, nicotinamide, quinolinic- and kynurenic acids in post-partum women diagnosed with peripartum onset depression (PPD) and healthy controls (n = 165). We assessed depression severity using the Edinburgh Postnatal Depression Scale and suicidality using the Columbia-Suicide Severity Rating Scale. We found that increased plasma IL-6 and IL-8 and reductions of serotonin, IL-2 and quinolinic acid were associated with the severity of depressive symptoms and increased the risk for PPD. Moreover, women with lower serotonin levels were at an increased risk for suicidal behavior, even when adjusting for depression severity, psychosocial factors, age BMI, and medication. Our results indicate that severe depression in the post-partum involves dysregulation of the immune response and the kynurenine pathway, with a concomitant reduction in serotonin levels. We propose that inflammatory cytokines and the kynurenine pathway are potential treatment targets in PPD, opening up the possibility of novel therapeutic strategies targeting the peripartum.
Collapse
Affiliation(s)
- Eric Achtyes
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Sarah A Keaton
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA; Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - LeAnn Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Amanda R Burmeister
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Patrick L Heilman
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Stanislaw Krzyzanowski
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Madhavi Nagalla
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | | | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Maria Muzik
- Department of Psychiatry, University of Michigan-Michigan Medicine, Ann Arbor, MI, USA
| | - Teodor T Postolache
- Department of Psychiatry, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA; Rocky Mountain MIRECC for Suicide Prevention, Aurora, CO, USA
| | - Richard Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA; Department of Obstetrics, Gynecology and Women's Health, Spectrum Health Medical Group, Grand Rapids, MI, USA
| | - Lena Brundin
- Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA; Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
19
|
Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, Li X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019; 22:592-602. [PMID: 31124390 DOI: 10.1080/10253890.2019.1617267] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated that there are significant changes in the gut microbiota (GM) of humans with depression and animal models of depression and chronic stress. In our present study, we determined whether an alteration in GM is a decisive factor in anxiety-like and depression-like behavior and its impact on brain neurochemistry. An antibiotic cocktail was used to deplete the GM of mice before they were colonized, via fecal microbiota transplantation (FMT), by the GM of control mice or mice that had been exposed to chronic unpredictable mild stress (CUMS donors). The CUMS-donor group of mice and the mice that were colonized by their microbiota (the CUMS-recipient group) both showed higher levels of anxiety- and depression-like behavior compared to the controls. The GM community of the CUMS-donor and CUMS-recipient was distinctively different from the controls, with the CUMS group characterized by a lower relative abundance of Lactobacillus and a higher relative abundance of Akkermansia. Interestingly, FMT affected both behavior and neuroinflammation. Mice given the CUMS microbiota had significant elevations of interferon-γ (IFN-γ) and the tumor necrosis factor-alpha (TNF-α) in the hippocampus, which were accompanied by upregulated indoleamine 2,3-dioxygenase 1 (IDO1) in the hippocampus. These results suggest that GM modulates pro-inflammatory cytokines in the hippocampus through dysfunctional microbiota-gut-brain axis, exacerbating anxiety- and depression-like phenotypes. Key Points Chronic unpredictable mild stress increased anxiety- and depression-like behavior in mice. Mice colonized with gut microbiota (GM) from stressed mice showed similar behaviors. The GM composition of the donor and recipient mice was also comparable. Their relative pattern of two bacteria has been tied to neuroinflammatory activity. The results suggest a link between GM, brain function, and anxiety and depression.
Collapse
Affiliation(s)
- Nannan Li
- a Department of Geriatrics Cardiology, First Hospital of China Medical University , Shenyang , China
| | - Qi Wang
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yan Wang
- c Mental Health Center, China Medical University , Shenyang , China
| | - Anji Sun
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yiwei Lin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Ye Jin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Xiaobai Li
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
20
|
Hori H, Kim Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci 2019; 73:143-153. [PMID: 30653780 DOI: 10.1111/pcn.12820] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
While post-traumatic stress disorder (PTSD) is currently diagnosed based solely on classic psychological and behavioral symptoms, a growing body of evidence has highlighted a link between this disorder and alterations in the immune and inflammatory systems. Epidemiological studies have demonstrated that PTSD is associated with significantly increased rates of physical comorbidities in which immune dysregulation is involved, such as metabolic syndrome, atherosclerotic cardiovascular disease, and autoimmune diseases. In line with this, a number of blood biomarker studies have reported that compared to healthy controls, individuals with PTSD exhibit significantly elevated levels of proinflammatory markers, such as interleukin-1β, interleukin-6, tumor necrosis factor-α, and C-reactive protein. Moreover, various lines of animal and human research have suggested that inflammation is not only associated with PTSD but also can play an important role in its pathogenesis and pathophysiology. In this review, we first summarize evidence suggestive of increased inflammation in PTSD. We then examine findings that suggest possible mechanisms of inflammation in this disorder in terms of two different but interrelated perspectives: putative causes of increased proinflammatory activities and potential consequences that inflammation generates. Given that there is currently a dearth of treatment options for PTSD, possibilities of new therapeutic approaches using pharmacological and non-pharmacological treatments/interventions that have anti-inflammatory effects are also discussed. Despite the increasing attention given to the inflammatory pathology of PTSD, there remains much to be elucidated, including more detailed mechanisms of inflammation, potential usefulness of inflammatory biomarkers as diagnostic and prognostic markers, and efficacy of novel treatment strategies targeting inflammation.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
21
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|