1
|
Li Y, Zhang T, Mou Q, Liu S, Wu W, Wang S, Yan X, Liang J, Yan M, Liu W, Pan X. Overexpression of methionine sulfoxide reductase A alleviates acrylamide-induced neurotoxicity by mitigating lipid peroxidation and mitochondria-dependent apoptosis In vivo and In vitro. Food Chem Toxicol 2025; 199:115339. [PMID: 39986565 DOI: 10.1016/j.fct.2025.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Acrylamide (ACR) has garnered significant attention due to its neurotoxic effects. Oxidative stress, a key mechanism underlying ACR-induced neurotoxicity, is well-documented. Methionine sulfoxide reductase A (MsrA) plays a pivotal role in protecting various types of cells, including neuronal cells, against the effects of oxidative stress. However, the role of MsrA in ACR-induced neurotoxicity remains poorly understood. This study explored the effects of MsrA on ACR-induced neurotoxicity. After administering ACR by gavage at doses of 20 mg/kg, 30 mg/kg, and 40 mg/kg for 21 days, rats exhibited motor impairment and structural damage in the cerebellum. Both in vivo and in vitro, ACR dose-dependently reduced MsrA level, accompanied by increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, c-Jun N-terminal kinase (JNK) phosphorylation, and mitochondria-dependent neuronal apoptosis. To further ascertain the role of MsrA in mitigating ACR-induced neuronal apoptosis, SH-SY5Y cell line overexpressing MsrA was constructed. Overexpression of MsrA attenuated the ACR-induced increases in ROS and MDA levels. Additionally, alterations in mitochondrial membrane potential (MMP), mitochondrial ultrastructure, JNK phosphorylation, and mitochondria-dependent apoptosis caused by ACR were reversed in the cells overexpressing MsrA. These findings offer significant insights into the protective role of MsrA against ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tingting Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qiaoxing Mou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sirui Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wanxing Wu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Simei Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoyu Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China
| | - Jie Liang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Mengfan Yan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Weiying Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China.
| |
Collapse
|
2
|
Mao C, Mo Y, Jiang J, Fang S, Hu Z, Ke Z, Zhao H, Xu Y. Association between high plasma p-tau181 level and gait changes in patients with mild cognitive impairment. Sci Rep 2025; 15:14679. [PMID: 40287471 PMCID: PMC12033327 DOI: 10.1038/s41598-025-94472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Previous studies on gait changes in mild cognitive impairment (MCI) are inconsistent. Alzheimer's disease (AD) plasma biomarkers, amyloid beta (Aβ) and phosphorylated-tau (p-tau), are relevant to gait disorders. This study explores gait changes in MCI and the relationship between gait performance and AD plasma biomarkers. 231 participants were recruited and stratified based on p-tau181 levels into: low p-tau181 with normal cognition (lT-NC), low p-tau181 with MCI (lT-MCI), and high p-tau181 with MCI (hT-MCI). The same cohort was subsequently stratified by Aβ42/Aβ40 levels into: high Aβ42/Aβ40 with normal cognition (hA-NC), high Aβ42/Aβ40 with MCI (hA-MCI), and low Aβ42/Aβ40 with MCI (lA-MCI). Demographic, cognitive and gait data were compared across groups. The hT-MCI and lA-MCI groups were older than the other groups. Significant differences in stride length were found between lT-NC and hT-MCI, lT-MCI and hT-MCI, but not between lT-NC and lT-MCI. Neuropsychological assessments revealed poorer performance in hT-MCI and lT-MCI groups relative to lT-NC, while global cognitive function was comparable between hT-MCI and lT-MCI groups. No such associations were observed between stride length and Aβ42/Aβ40 levels. Decreased stride length, which is generally considered to be indicative of poorer gait, was significantly associated with elevated p-tau181 levels and independent of global cognitive status. These findings highlight the potential of p-tau181 as a biomarker for tau-related motor dysfunction in MCI.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| |
Collapse
|
3
|
Sun N, Xin J, Zhao Z, Chen Y, Gan B, Duan L, Luo J, Wang D, Zeng Y, Pan K, Jing B, Zeng D, Ma H, Wang H, Ni X. Improved effect of antibiotic treatments on the hippocampal spatial memory dysfunction of mice induced by high fluoride exposure: Insight from assembly processes and co-occurrence networks of gut microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118048. [PMID: 40112626 DOI: 10.1016/j.ecoenv.2025.118048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
High fluoride exposure was widely demonstrated to be related with brain memory impairment. Since the absorption of F- enters the body mainly through the gastrointestinal tract, studying the effects of excessive intake of fluoride on brain memory function in various gut microbiome states might have profound implications for the prevention of fluorosis because growing evidence revealed the significance of the "microbiota-gut-brain" axis (MGBA). In the present study, we aimed to illustrate the potential mechanism of gut microbiota on high fluoride exposure-induced hippocampal lesions and spatial memory dysfunction in mice by the various intestinal microecological environments, which were constructed by antibiotic treatment. Mice fed with normal (CG1 and Exp1 groups) or sodium-fluoride (CG2 and Exp2 groups; 24 mg/kg sodium fluoride per mouse) by gavage administration with or without antibiotic treatments, a combination of metronidazole (1 g/L) and ciprofloxacin (0.2 g/L) in drinking water. Mice gavaged with excessive sodium fluoride alone exhibited reduced weight gain, hippocampal tissue damages, spatial memory levels dysfunction, impaired intestinal permeability, decreased inflammatory cytokines expression and antioxidant capability in the hippocampal and ileal tissues. In contrast, antibiotic intervention significantly reversed these high fluoride exposure-induced hippocampal and ileal changes.16S rRNA high throughput sequencing found that ileal microbiota were dominated by abundant taxa, which is conducive to constructing microbial interaction networks and module communities, and identifying keystone species targeted by high fluoride exposure compared with colonic microbiome. In addition, the microbial community composition and assembly mechanism of ileal microbiome under the effects of antibiotics were suitable for revealing the characteristics of high fluoride environment. In the later analysis, Lactobacillus, Staphylococcus, Muribaculaceae and Robinsoniella were considered as the keystone species targeted by high fluoride-exposed mice based on the analysis of network node properties and niche overlap of ileal microbes. Spearman rank correlation demonstrated that these keystone species had significant effects on hippocampal memory levels and intestinal health, as well as microbial communities functions. Compared to previous researches, this study further revealed intestinal microbial coummunity mediated the underlying mechanism through antibiotic treatment against high fluoride-induce hippocampal spatial memory impairment.
Collapse
Affiliation(s)
- Ning Sun
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifang Zhao
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Yu Chen
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baoxing Gan
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixiao Duan
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiuyang Luo
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Wang
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hailin Ma
- Tibet Autonomous Region Key Laboratory for High Altitude Brain Science and Environmental Acclimatization, Tibet University, Lhasa 850000, China; Plateau Brain Science Research Center, Tibet University, Lhasa 850000, China.
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqin Ni
- Animal Micrzloecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
5
|
Khalifa M, Fayed RH, Ahmed YH, Abdelhameed MF, Essa AF, Khalil HMA. Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats. Psychopharmacology (Berl) 2025; 242:461-480. [PMID: 39441400 PMCID: PMC11861243 DOI: 10.1007/s00213-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study investigated the neuroprotective effect of ferulic acid (FA) against bisphenol A (BPA) induced Alzheimer's disease-like pathology in male rats. METHODS Rats were allocated into four groups, control, BPA, BPA + FA, and FA, respectively, for 40 days. Spatial working memory and recognition memory were evaluated. Moreover, the brain levels of oxidative stress biomarkers, proinflammatory cytokines, extracellular signal-regulated kinase (ERK), and phosphorylated serine/threonine protein kinase (p-Akt) were measured. We also determined the brain neuropathological protein levels, including Beta-Amyloid 1-42, total Tau (tTau), and phosphorylated Tau (pTau) proteins. Furthermore, brain levels of Acetylcholinesterase (AChE) and Beta-secretase (BACE) were assessed. Brain histological investigation and immunohistochemistry determination of glial fibrillar acidic protein (GFAP) were also performed. Moreover, docking simulation was adapted to understand the inhibitory role of FA on AChE, BACE-1, and ERK1/2. RESULTS Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA, which was associated with improved brain redox status. They also exhibited a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels. Moreover, they revealed a decline in beta-amyloid 1-42 and a significant improvement in tTau expression and pTau protein levels in the brain tissue. Further, the brain levels of AChE and BACE were substantially reduced in BPA + FA rats. The neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP. CONCLUSION FA could be a potent neuroprotectant agent against AD with a possible prospect for its therapeutic capabilities and nutritional supplement value due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Faculty of Veterinary medicine, King Salman International University, South sinai, Ras Sudr, Egypt
| |
Collapse
|
6
|
Wang Y, Liu Y, Zhang X, Jiao Y, Duan L, Cheng R, Yang N, Yan H. Acrylamide Induces Antiapoptotic Autophagy and Apoptosis by Activating PERK Pathway in SH-SY5Y Cells. TOXICS 2025; 13:41. [PMID: 39853039 PMCID: PMC11769407 DOI: 10.3390/toxics13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Acrylamide (ACR) is a commonly used organic compound that exhibits evident neurotoxicity in humans. Our previous studies showed that the mechanisms of ACR-caused neurotoxicity included apoptosis, PERK-mediated endoplasmic reticulum stress, and autophagy, but the relationships among them were still unclear. This paper investigated the relationships among apoptosis, autophagy, and the PERK pathway to demonstrate the mechanism of ACR neurotoxicity further. Different doses of ACR were set to value ACR toxicity. Then, a PERK inhibitor and autophagy inhibitor, GSK2606414 and 3-methyladenine (3-MA), were used separately to inhibit the PERK pathway and autophagy activation in SH-SY5Y cells under ACR treatment. With the increase of ACR dose, the apoptotic rate increased in a dose-dependent manner. After the inhibition of the PERK pathway, the activated apoptosis and autophagosome accumulation caused by ACR were alleviated. Under 3-MA and ACR treatment, the autophagy inhibition deteriorated apoptosis in SH-SY5Y cells but had no significant effect on ACR-induced PERK pathway activation; thus, PERK pathway-induced autophagy had an antiapoptotic role in this condition. This paper provides an experimental basis for exploring potential molecular targets to prevent and control ACR toxicity.
Collapse
Affiliation(s)
- Yiqi Wang
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Liu
- Department of Laboratory Medicine, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310000, China
| | - Xing Zhang
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Yang Jiao
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lian Duan
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Ruijie Cheng
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Ning Yang
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Hong Yan
- MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| |
Collapse
|
7
|
Ye J, Fan H, Shi R, Song G, Wu X, Wang D, Xia B, Zhao Z, Zhao B, Liu X, Wang Y, Dai X. Dietary lipoic acid alleviates autism-like behavior induced by acrylamide in adolescent mice: the potential involvement of the gut-brain axis. Food Funct 2024; 15:3395-3410. [PMID: 38465655 DOI: 10.1039/d3fo05078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ge Song
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
8
|
Wang TB, He Y, Li RC, Yu YX, Liu Y, Qi ZQ. Rosmarinic acid mitigates acrylamide induced neurotoxicity via suppressing endoplasmic reticulum stress and inflammation in mouse hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155448. [PMID: 38394736 DOI: 10.1016/j.phymed.2024.155448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.
Collapse
Affiliation(s)
- Tian-Bao Wang
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Ying He
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Rui-Cheng Li
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu-Xi Yu
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu Liu
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| | - Zhong-Quan Qi
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Govindaraju I, Sana M, Chakraborty I, Rahman MH, Biswas R, Mazumder N. Dietary Acrylamide: A Detailed Review on Formation, Detection, Mitigation, and Its Health Impacts. Foods 2024; 13:556. [PMID: 38397533 PMCID: PMC10887767 DOI: 10.3390/foods13040556] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In today's fast-paced world, people increasingly rely on a variety of processed foods due to their busy lifestyles. The enhanced flavors, vibrant colors, and ease of accessibility at reasonable prices have made ready-to-eat foods the easiest and simplest choice to satiate hunger, especially those that undergo thermal processing. However, these foods often contain an unsaturated amide called 'Acrylamide', known by its chemical name 2-propenamide, which is a contaminant formed when a carbohydrate- or protein-rich food product is thermally processed at more than 120 °C through methods like frying, baking, or roasting. Consuming foods with elevated levels of acrylamide can induce harmful toxicity such as neurotoxicity, hepatoxicity, cardiovascular toxicity, reproductive toxicity, and prenatal and postnatal toxicity. This review delves into the major pathways and factors influencing acrylamide formation in food, discusses its adverse effects on human health, and explores recent techniques for the detection and mitigation of acrylamide in food. This review could be of interest to a wide audience in the food industry that manufactures processed foods. A multi-faceted strategy is necessary to identify and resolve the factors responsible for the browning of food, ensure safety standards, and preserve essential food quality traits.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Maidin Sana
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Rajib Biswas
- Department of Physics, Tezpur University, Tezpur 784028, Assam, India;
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| |
Collapse
|
10
|
Liu S, Yang D, Dong S, Luo Y, Zhang T, Li S, Bai Y, Li L, Ma Y, Liu J. Effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath of corpus callosum in offspring rats. Toxicol Res (Camb) 2024; 13:tfae014. [PMID: 38314039 PMCID: PMC10836055 DOI: 10.1093/toxres/tfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/15/2023] [Indexed: 02/06/2024] Open
Abstract
Acrylamide is an alkene known to induce neurotoxicity in humans and experimental animals. However, the effects of acrylamide on the development of myelin sheath are unclear. The present study was to explore the effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath in offspring rats. Four groups of thirty-two pregnant Sprague-Dawley rats were exposed to 0, 4.5, 9 and 18 mg/kg BW acrylamide by gavage from gestational day 15 to postnatal day 13. The corpus callosum of nine offspring rats per group were dissected in postpartum day 14. Structural changes and lipid contents in myelin sheaths were examined by transmission electron microscopy(TEM) and Luxol Fast Blue staining(LFB). The expression of MBP and PLP was evaluated by immunohistochemistry and Western blotting. TEM showed that the myelin sheaths in the 18 mg/kg group were disordered compared with control group. Luxol Fast Blue staining gradually decreased with increasing acrylamide maternal exposure. The immunohistochemistry and Western Blotting results showed that maternal exposure to acrylamide caused a decreasing trend in MBP and PLP in the corpus callosum of rats at postnatal day 14. Furthermore, these reduced protein levels may be neurodevelopmental toxicity's mechanism in response to maternal exposure to acrylamide.
Collapse
Affiliation(s)
- Shuping Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Dehui Yang
- Lianjiang People’s Hospital, No. 30 Renmin Avenue Middle, Lianjiang City, Zhanjiang City, Guangdong Province, Lianjiang 524400, PR China
| | - Suqiu Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Yuyou Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Tong Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Siyuan Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Yanxian Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Lixia Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Yuxin Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Lim JL, Lin CJ, Huang CC, Chang LC. Curcumin-derived carbon quantum dots: Dual actions in mitigating tau hyperphosphorylation and amyloid beta aggregation. Colloids Surf B Biointerfaces 2024; 234:113676. [PMID: 38056413 DOI: 10.1016/j.colsurfb.2023.113676] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The amyloid cascade and tau hypotheses both hold significant implications for the pathogenesis of Alzheimer's disease (AD). Curcumin shows potential by inhibiting the aggregation of amyloid beta (Aβ) and reducing tau hyperphosphorylation, however, its use is limited due to issues with solubility and bioavailability. Carbon dots, recognized for their high biocompatibility and optimal water solubility, have demonstrated the capability to inhibit either Aβ or tau aggregation. Nonetheless, their effects on tau hyperphosphorylation are yet to be extensively explored. This study aims to evaluate the water-soluble curcumin-derived carbon quantum dots (Cur-CQDs) synthesized via an eco-friendly method, designed to preserve the beneficial effects of curcumin while overcoming solubility challenges. The synthesis of Cur-CQDs involves a single-step dry heating process using curcumin, resulting in dots that exhibit negligible cytotoxicity to SH-SY5Y cells at the examined concentrations. Notably, Cur-CQDs have shown the ability to simultaneously mitigate Aβ aggregation and tau hyperphosphorylation. Therefore, it is suggested that Cur-CQDs may hold potential for AD treatment, a hypothesis deserving of further research.
Collapse
Affiliation(s)
- Jie Lay Lim
- School of Pharmacy, College of Medicine, National Taiwan University, Taiwan, 33 Linsen S. Rd., Zhongzheng Dist., Taipei City 100025, Taiwan.
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, 2 Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, 2 Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan.
| | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taiwan, 33 Linsen S. Rd., Zhongzheng Dist., Taipei City 100025, Taiwan.
| |
Collapse
|
12
|
Radbakhsh S, Butler AE, Moallem SA, Sahebkar A. The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders. Curr Med Chem 2024; 31:5937-5952. [PMID: 37278037 DOI: 10.2174/0929867330666230602145817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a crucial molecule implicated in plastic modifications related to learning and memory. The expression of BDNF is highly regulated, which can lead to significant variability in BDNF levels in healthy subjects. Changes in BDNF expression might be associated with neuropsychiatric diseases, particularly in structures important for memory processes, including the hippocampus and parahippocampal areas. Curcumin is a natural polyphenolic compound that has great potential for the prevention and treatment of age-related disorders by regulating and activating the expression of neural protective proteins such as BDNF. This review discusses and analyzes the available scientific literature on the effects of curcumin on BDNF production and function in both in vitro and in vivo models of disease.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Pang P, Zhang X, Yuan J, Yan H, Yan D. Acrylamide interferes with autophagy and induces apoptosis in Neuro-2a cells by interfering with TFEB-regulated lysosomal function. Food Chem Toxicol 2023; 177:113818. [PMID: 37172712 DOI: 10.1016/j.fct.2023.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Acrylamide (ACR), a well-documented human neurotoxicant that is widely exists in starchy foods. More than 30% of human daily energy is provided by ACR-containing foods. Evidence indicated that ACR can induce apoptosis and inhibit autophagy, but the mechanisms are limited. Transcription Factor EB (TFEB) is a major transcriptional regulator of the autophagy-lysosomal biogenesis that regulates autophagy processes and cell degradation. Our study aimed to investigated the potential mechanisms of TFEB-regulated lysosomal function in ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. Our results found that ACR exposure inhibited the autophagic flux, as revealed by the elevated LC3-II/LC3-I and p62 levels and a notable increased autophagosomes. ACR exposure reduced the amounts of LAMP1 and mature cathepsin D and caused an accumulation of ubiquitinated proteins, which suggests lysosomal dysfunction. In addition, ACR increased cellular apoptosis via decreasing Bcl-2 expression, increasing Bax and cleaved caspase-3 expression, and raising the apoptotic rate. Interestingly, TFEB overexpression alleviated the ACR-induced lysosomal dysfunction, and then mitigated the autophagy flux inhibition and cellular apoptosis. On the other hand, TFEB knockdown exacerbated the ACR-induced lysosomal dysfunction, autophagy flux inhibition, and cellular apoptosis. These findings strongly suggested that TFEB- regulated lysosomal function is responsible for ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. The present study hopes to explore new sensitive indicators in the mechanism of ACR neurotoxicity and thus provide new targets for the prevention and treatment of ACR intoxication.
Collapse
Affiliation(s)
- Pengcheng Pang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China; Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China; Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China.
| |
Collapse
|
14
|
Xin J, Zhu B, Wang H, Zhang Y, Sun N, Cao X, Zheng L, Zhou Y, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Li F, Xia Y, Xu P, Ni X. Prolonged fluoride exposure induces spatial-memory deficit and hippocampal dysfunction by inhibiting small heat shock protein 22 in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131595. [PMID: 37224709 DOI: 10.1016/j.jhazmat.2023.131595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Millions of residents in areas with high-fluoride drinking water supply ingest excessive levels of fluoride for long periods. This study investigated the mechanisms and impacts of lifelong exposure to naturally occurring moderate-high-fluoride drinking water on spatial-memory function by studying mice in controlled experiments. Spatial-memory deficits and disorders of hippocampal neuronal electrical activity were observed in mice exposed to 25-ppm or 50-ppm-fluoride drinking water for 56 weeks, but not in adult or old mice exposed to 50 ppm fluoride for 12 weeks. Ultrastructural analysis showed severely damaged hippocampal mitochondria, evidenced by reduced mitochondrial membrane potential and ATP content. Mitochondrial biogenesis was impaired in fluoride-exposed mice, manifesting as a significantly reduced mtDNA content, mtDNA-encoded subunits mtND6 and mtCO1, and respiratory complex activities. Fluoride reduced expression of Hsp22, a beneficial mediator of mitochondrial homeostasis, and decreased levels of signaling for the PGC-1α/TFAM pathway-which regulates mitochondrial biogenesis-and the NF-κβ/STAT3 pathway-which regulates mitochondrial respiratory chain enzyme activity. Hippocampus-specific Hsp22-overexpression improved fluoride-induced spatial-memory deficits by activating the PGC-1α/TFAM and STAT3 signaling pathways, while Hsp22-silencing aggravated the deficits by inhibiting both pathways. Downregulation of Hsp22 plays a vital role in fluoride-induced spatial-memory deficits by impacting mtDNA-encoding subsets and mitochondrial respiratory chain enzyme activity.
Collapse
Affiliation(s)
- Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Zhu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liqin Zheng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fali Li
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Xu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
16
|
AdipoRon mitigates tau pathology and restores mitochondrial dynamics via AMPK-related pathway in a mouse model of Alzheimer's disease. Exp Neurol 2023; 363:114355. [PMID: 36868546 DOI: 10.1016/j.expneurol.2023.114355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complicated and refractory neurodegenerative disease that is typically characterized by memory loss and multiple cognitive impairments. Multiple neuropathology including hyperphosphorylated tau formation and accumulation, dysregulated mitochondrial dynamics, and synaptic damage have been well implicated in the progression of AD. So far, there are few valid and effective therapeutic modalities for treatment. AdipoRon, a specific adiponectin (APN) receptor agonist, is reported to be associated with cognitive deficits improvement. In the present study, we attempt to explore the potential therapeutic effects of AdipoRon on tauopathy and related molecular mechanisms. METHODS In this study, P301S tau transgenic mice were used. The plasma level of APN was detected by ELISA. The level of APN receptors was qualified by western blot and immunofluorescence. 6-month-old mice were treated with AdipoRon or vehicle by oral administration daily for 4 months. The benefits of AdipoRon on tau hyperphosphorylation, mitochondrial dynamics, and synaptic function were detected by western blot, immunohistochemistry, immunofluorescence, Golgi staining and transmission electron microscopy. Morris water maze test and novel object recognition test were conducted to explore memory impairments. RESULTS Compared with wild-type mice, the expression of APN in plasma in 10-month-old P301S mice was obviously decreased. APN receptors in the hippocampus were increased in the hippocampus. AdipoRon treatment significantly rescued memory deficits in P301S mice. Besides, AdipoRon treatment was also detected to improve synaptic function, enhance mitochondrial fusion, and mitigate hyperphosphorylated tau accumulation in P301S mice and SY5Y cells. Mechanistically, AMPK/SIRT3 and AMPK/GSK3β signaling pathways are demonstrated to be involved in AdipoRon-mediated benefits on mitochondrial dynamics and tau accumulation, respectively, and inhibition of AMPK related pathways showed counteracted effects. CONCLUSION Our results demonstrated that AdipoRon treatment could significantly mitigate tau pathology, improve synaptic damage, and restore mitochondrial dynamics via the AMPK-related pathway, which provides a novel potential therapeutic approach to retard the progression of AD and other tauopathies diseases.
Collapse
|
17
|
Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023; 159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongju Shi
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Ogawa B, Nakanishi Y, Wakamatsu M, Takahashi Y, Shibutani M. Repeated administration of acrylamide for 28 days suppresses adult neurogenesis of the olfactory bulb in young-adult rats. Toxicol Lett 2023; 378:1-9. [PMID: 36801352 DOI: 10.1016/j.toxlet.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acrylamide (AA) is a neurotoxicant that inhibits synaptic function in distal axons. We previously found that AA decreased neural cell lineages during late-stage differentiation of adult hippocampal neurogenesis and downregulated genes related to neurotrophic factor, neuronal migration, neurite outgrowth, and synapse formation in the hippocampal dentate gyrus in rats. To investigate whether olfactory bulb (OB)-subventricular zone (SVZ) neurogenesis is similarly affected by AA exposure, AA was administered to 7-week-old male rats via oral gavage at doses of 0, 5, 10, and 20 mg/kg for 28 days. Immunohistochemical analysis revealed that AA decreased the numbers of doublecortin-positive (+) cells and polysialic acid-neural cell adhesion molecule+ cells in the OB. On the other hand, the numbers of doublecortin+ cells and polysialic acid-neural cell adhesion molecule+ cells in the SVZ did not change with AA exposure, suggesting that AA impaired neuroblasts migrating in the rostral migratory stream and OB. Gene expression analysis in the OB revealed that AA downregulated Bdnf and Ncam2, which are related to neuronal differentiation and migration. These results suggest that AA decreased neuroblasts in the OB by suppressing neuronal migration. Thus, AA decreased neuronal cell lineages during late-stage differentiation of adult neurogenesis in the OB-SVZ, similar to the effect on adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan; Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | - Masaki Wakamatsu
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
19
|
Ottonelli I, Sharma A, Ruozi B, Tosi G, Duskey JT, Vandelli MA, Lafuente JV, Nozari A, Muresanu DF, Buzoianu AD, Tian ZR, Zhang Z, Li C, Feng L, Wiklund L, Sharma HS. Nanowired Delivery of Curcumin Attenuates Methamphetamine Neurotoxicity and Elevates Levels of Dopamine and Brain-Derived Neurotrophic Factor. ADVANCES IN NEUROBIOLOGY 2023; 32:385-416. [PMID: 37480467 DOI: 10.1007/978-3-031-32997-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Barbara Ruozi
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesia and Critical Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Dafin Fior Muresanu
- "RoNeuro" Institute for Neurological Research and Diagnosis, Cluj-Napoca, Romania
- Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Kharazmi K, Alani B, Heydari A, Ardjmand A. Protection against Morphine-Induced Inhibitory Avoidance Memory Impairment in Rat by Curcumin: Possible Role of Nitric Oxide/ cAMP-Response Element Binding Protein Pathway. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:594-602. [PMID: 36380970 PMCID: PMC9652497 DOI: 10.30476/ijms.2022.92131.2339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although a substantial body of research suggests curcumin (CUR) has the preventive potential in memory impairment, the mechanism by which CUR prevents memory loss is still being investigated. This study employs an inhibitory avoidance (IA) model to investigate whether CUR can prevent morphine (Mor)-induced memory impairment as well as the possible role of cAMP-response element binding (CREB) protein, and nitric oxide (NO) signaling in this mechanism. METHODS This experimental study was conducted at the Animal Lab of the Physiology Research Center, Kashan University of Medical Sciences (Kashan, Iran) in 2018. Forty rats were randomly divided into four groups: control, CUR (pretreatment gavage of CUR [10 mg/Kg] for 35 days), Mor (7.5 mg/Kg, i.p.), and CUR+Mor (n=10 per group). Following the evaluation of the IA memory and locomotor activity of the animals, the CREB protein expression in the hippocampus and NO metabolites (NOx) level in the brain tissue were also investigated. The data were analyzed using Sigmaplot software (version 14.0) by using the ANOVA, Kruskal-Wallis, Holm-Sidak, and Dunn's post hoc tests. P<0.05 was considered to be statistically significant. RESULTS In the Mor group, the IA memory of the rats was significantly impaired (P=0.001). CUR prevented the Mor-induced IA memory impairment (P=0.075). While the Mor treatment decreased the phosphorylated CREB (p-CREB) expression, the CUR+Mor cotreatment increased p-CREB expression (P=0.010). Nevertheless, the Mor treatment increased the total CREB expression (P=0.010). The NOx concentration in the brain tissue was decreased following the Mor treatment (P=0.500) but increased after the CUR+Mor cotreatment (P=0.001). CONCLUSION The present findings suggest that CUR prevents the memory impairment of rats, possibly through NO and its downstream CREB signaling.
Collapse
Affiliation(s)
- Khatereh Kharazmi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,
Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,
Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Liu Y, Wang Y, Zhang X, Jiao Y, Duan L, Dai L, Yan H. Chronic acrylamide exposure resulted in dopaminergic neuron loss, neuroinflammation and motor impairment in rats. Toxicol Appl Pharmacol 2022; 451:116190. [PMID: 35917840 DOI: 10.1016/j.taap.2022.116190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Acrylamide (ACR) as a by-product of Maillard reaction is widely present in food. Although ACR is known to exhibit neurotoxicity, most studies about ACR neurotoxicity are currently short-term high-dose providing limited reference value for human exposure. The present study aims to determine the effects of chronic ACR exposure on dopaminergic neurons in rat nigra and the potential mechanism from the perspective of NLRP3 inflammasome-mediated neuroinflammation. The SD rats were maintained on treated drinking water providing dosages of 0, 0.5, or 5 mg/kg/day ACR for 12 months. ACR exposure caused motor dysfunction in rats, which was associated with dopaminergic neuron loss, α-Synuclein (α-Syn) accumulation and decreased brain-derived neurotrophic factor (BDNF) in nigra. ACR activated microglia by increasing Iba-1+, Iba-1+CD68+ positive cells and the percentage of ameboid-shaped ones in rat nigra. ACR markedly upregulated the protein levels of NLRP3 inflammasome constituents NLRP3 and caspase-1 and inflammatory cytokine IL-1β. ACR chronic exposure increased the risk of Parkinson's disease (PD) like dopaminergic neuron depletion in nigra potentially through NLRP3 inflammasome-mediated neuroinflammtion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China; Department of Clinical Laboratory, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, PR China
| | - Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Lian Duan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Lingling Dai
- Experimental Teaching Center of Preventive Medicine School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China.
| |
Collapse
|
22
|
Cao S, Xue J, Chen L, Hao Y, Lu M, Feng M, Wang H, Zhou J, Yao C. Effects of the Chinese herbal medicine Hong Huang decoction, on myocardial injury in breast cancer patients who underwent anthracycline-based chemotherapy. Front Cardiovasc Med 2022; 9:921753. [PMID: 35935647 PMCID: PMC9353583 DOI: 10.3389/fcvm.2022.921753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To assess the effects of Hong Huang Decoction (HHD), a Chinese herbal medicine, on myocardial injury in breast cancer patients who underwent anthracycline (ANT)-based chemotherapy. Methods A total of 51 patients with breast cancer who underwent an ANT-based chemotherapy program and met the inclusion/exclusion criteria were allocated to the treatment or placebo groups using a random number generation process. Patients in the treatment group received liquid HHD twice a day. Treatment was given from 1 day prior to chemotherapy up to the end of chemotherapy (after 6 months). Participants in the placebo group received a placebo over the same schedule. Left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), diagnostic markers of acute myocardial infarction [e.g., lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and B-type natriuretic peptide (BNP)], nitric oxide (NO), superoxide dismutase (SOD), as well as pro-inflammatory cytokines [e.g., tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and human C-reactive protein (CRP)], and anti-inflammatory cytokine interleukin-10 (IL-10), were outcome measures assessed before chemotherapy, 3 and 6 months after chemotherapy. Results Compared to the placebo group, the GLS value was significantly higher in the treatment group (19.95 ± 1.16 vs. 19.06 ± 1.64, P ≤ 0.001). Significant differences were also noted for levels of SOD (689.71 ± 203.60 vs. 807.88 ± 182.10, P < 0.05), IL-6 (58.04 ± 22.06 vs. 194.20 ± 40.14, P ≤ 0.001), IL-10 (237.90 ± 94.98 vs. 68.81 ± 32.92, P ≤ 0.001), NO (75.05 ± 26.39 vs. 55.83 ± 19.37, P ≤ 0.005), and TNF-α (301.80 ± 134.20 vs. 680.30 ± 199.60, P ≤ 0.001) in the patients before chemotherapy compared to 6 months after initiating chemotherapy. Conclusion HHD regulated the levels of IL-6, IL-10, SOD, NO, and TNF-α. The results demonstrated that GLS is a better indicator of early myocardial injury compared to LVEF, and HHD could modulate oxidative stress to protect against ANT cardio toxicity. Clinical trial registration Chinese Clinical Trial Registry, identifier ChiCTR1900022394. Date of registration: 2019-04-09.
Collapse
Affiliation(s)
- Sihan Cao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingxian Xue
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Hao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meijuan Lu
- Department of Echocardiography, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Feng
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Wang
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Zhou
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Yao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Zhao M, Deng L, Lu X, Fan L, Zhu Y, Zhao L. The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41151-41167. [PMID: 35088269 DOI: 10.1007/s11356-021-18146-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (ACR) is a typical environmental contaminant, presenting potential health hazards that have been attracting increasing attention. Its neurotoxicity is known to cause significant damage to health. However, the mechanisms of ACR-induced neurotoxicity require further clarification. This study uses a mouse model to explore how ACR-induced oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation mutually contribute to neurotoxicity. A distinct increase in the cellular reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) content and a significant decrease in the glutathione (GSH) content after ACR exposure were indicative of oxidative stress. Moreover, ACR caused neurological defects associated with gait abnormality and neuronal loss while suppressing the acetylcholine (ACh) and dopamine (DA) levels and increasing the protein expression of α-synuclein (α-syn), further inhibiting cholinergic and dopaminergic neuronal function. Additionally, ACR treatment caused an inflammatory response via nuclear factor-kappa B (NF-κB) activation and increased the protein expression of NOD-like receptor protein-3 (NLRP3), consequently activating the NLRP3 inflammasome constituents, including cysteinyl aspartate specific proteinase 1 (Caspase-1), apoptosis-associated speck-like protein containing CARD (ASC), N domain gasdermin D (N-GSDMD), interleukin-1β (IL-1β), and IL-18. The results revealed the underlying molecular mechanism of ACR-induced neurotoxicity via oxidative stress, neurotransmission impairment, and neuroinflammation-related signal cascade. This information will further improve the development of an alternative pathway strategy for investigating the risk posed by ACR. The hypothetical mechanism of ACR-induced neurotoxicity in vivo.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoxuan Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Yang Zhu
- Bioprocess Engineering Group, Wageningen University and Research, P.O. Box 16, 6700AA, Wageningen, Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
24
|
Blueberry Anthocyanins Extract Attenuates Acrylamide-Induced Oxidative Stress and Neuroinflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7340881. [PMID: 35651724 PMCID: PMC9151000 DOI: 10.1155/2022/7340881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Acrylamide (AA) is a widespread environmental and dietary-derived neurotoxin, which can induce oxidative stress and associated inflammation in the brain. Anthocyanins widely occur as natural antioxidant and anti-inflammatory phytochemicals. Herein, the protective effects of blueberry anthocyanins extract (BAE) against AA-induced neurotoxicity were investigated in rats. The rats were pretreated with BAE (175 mg/kg body weight/day) by oral gavage for the first 7 days, followed by the co-administration of BAE and AA (35 mg/kg body weight/day) by oral gavage for the next 12 days. Results showed that BAE significantly decreased the malondialdehyde (MDA) production, and increased glutathione (GSH) and antioxidant enzyme levels; and it also suppressed microglial activation, astrocytic reaction, and pro-inflammatory cytokine expressions. Furthermore, BAE elevated the extracellular signal-related kinase (ERK)/cAMP response elements binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway, and relieved the accumulation of amyloid beta (Aβ) 1-42 and 1-40 after AA exposure. Consequently, AA-induced neuronal necrosis and downregulation of synaptosomal-associated protein 25 (SNAP-25) were attenuated by BAE in the hippocampus and cerebral cortex. In conclusion, BAE can exert a protective function on neurons and synapses against AA-induced oxidative stress and neuroinflammation.
Collapse
|
25
|
Jin T, Zhang Y, Botchway BOA, Zhang J, Fan R, Zhang Y, Liu X. Curcumin can improve Parkinson's disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem Toxicol 2022; 164:113091. [PMID: 35526734 DOI: 10.1016/j.fct.2022.113091] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a common progressive neurodegenerative disease, and presently has no curative agent. Curcumin, as one of the natural polyphenols, has great potential in neurodegenerative diseases and other different pathological settings. The brain-derived neurotrophic factor (BDNF) and phosphatidylinositol 3 kinase (PI3k)/protein kinase B (Akt) signaling pathways are significantly involved nerve regeneration and anti-apoptotic activities. Currently, relevant studies have confirmed that curcumin has an optimistic impact on neuroprotection via regulating BDNF and PI3k/Akt signaling pathways in neurodegenerative disease. Here, we summarized the relationship between BDNF and PI3k/Akt signaling pathway, the main biological functions and neuroprotective effects of curcumin via activating BDNF and PI3k/Akt signaling pathways in Parkinson's disease. This paper illustrates that curcumin, as a neuroprotective agent, can delay the progression of Parkinson's disease by protecting nerve cells.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Pharmacology, Medical College, Shaoxing University, Zhejiang, China
| | - Ruihua Fan
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Yufeng Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
26
|
Yan D, Dai L, Zhang X, Wang Y, Yan H. Subchronic Acrylamide Exposure Activates PERK-eIF2α Signaling Pathway and Induces Synaptic Impairment in Rat Hippocampus. ACS Chem Neurosci 2022; 13:1370-1381. [PMID: 35442627 DOI: 10.1021/acschemneuro.1c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Acrylamide (ACR), a well-documented neurotoxicant to humans, is extensively found in starchy foods. More than 30% of the typical daily calorie intake comes from ACR-containing foods. Epidemiological and toxicological studies have found that ACR exposure is associated with mild cognitive change in men and experimental animals. However, there is limited information on the mechanisms by which ACR exposure induces memory deficits. The aberrant activation of the PKR-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) signaling pathway is emerging as a major common theme in cognitive decline. The present study is designed to explore the effect of subchronic ACR exposure on the PERK signaling and the synaptic impairment to elucidate the potential mechanism of ACR-induced cognitive dysfunction in rat. ACR exposure at 5 and 10 (mg/kg)/day by gavage for 14 weeks results in gait abnormality and cognitive impairment in rats, which were accompanied by neuronal loss, glial cell proliferation, and synaptic ultrastructure damage in the hippocampus. ACR reduced the expression of phosphorylated cAMP response element-binding protein (P-CREB), brain-derived neurotrophic factor (BDNF), and synaptic vesicle proteins synapsin-1 and synaptophysin synthesis. ACR also excessively activates the PERK-eIF2α signaling, resulting in overexpression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4). This work helps to propose a possible mechanism of subchronic exposure of ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, P. R. China
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Lingling Dai
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, P. R. China
| | - Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, P. R. China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, P. R. China
| |
Collapse
|
27
|
Wang F, Fan B, Chen C, Zhang W. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food Chem Toxicol 2022; 163:112982. [DOI: 10.1016/j.fct.2022.112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
28
|
Zhao M, Zhang B, Deng L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front Nutr 2022; 9:859189. [PMID: 35399689 PMCID: PMC8993146 DOI: 10.3389/fnut.2022.859189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Acrylamide (ACR), a potential neurotoxin, is produced by the Maillard reaction between reducing sugars and free amino acids during food processing. Over the past decade, the neurotoxicity of ACR has caused increasing concern, prompting many related studies. This review summarized the relevant literature published in recent years and discussed the exposure to occupational, environmental, and daily ACR contamination in food. Moreover, ACR metabolism and the potential mechanism of ACR-induced neurotoxicity were discussed, with particular focus on the axonal degeneration of the nervous system, nerve cell apoptosis, oxidative stress, inflammatory response, and gut-brain axis homeostasis. Additionally, the limitations of existing knowledge, as well as new perspectives, were examined, specifically regarding the connection between the neurotoxicity caused by ACR and neurodegenerative diseases, NOD-like receptor protein 3 (NLRP3) inflammasome-related neuroinflammation, and microbiota-gut-brain axis signaling. This review might provide systematic information for developing an alternative pathway approach to assess ACR risk.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Boya Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Yan D, Wang N, Yao J, Wu X, Yuan J, Yan H. Curcumin Attenuates the PERK-eIF2α Signaling to Relieve Acrylamide-Induced Neurotoxicity in SH‑SY5Y Neuroblastoma Cells. Neurochem Res 2022; 47:1037-1048. [PMID: 35037165 DOI: 10.1007/s11064-021-03504-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023]
Abstract
Curcumin is a natural polyphenolic compound with neuroprotective and antioxidant properties. Acrylamide (ACR) is a by-product of food processing that produces neurotoxicity in humans and animals. The pancreatic endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor-2α (eIF2α) signaling is involved in the occurrence of neurotoxicities. This study is aimed to investigate the protective effect of curcumin on ACR-induced cytotoxicity and explore the role of PERK-eIF2α signaling in this process. ACR exposure at 2.5 mM for 24 h caused oxidative stress as revealed by the distinct increase in cellular reactive oxygen species (ROS) and malondialdehyde (MDA) level, and a significant decrease in glutathione (GSH) content. ACR induced phosphorylated tau aggregation, phosphorylated cAMP response elements binding protein (CREB) reduction, and Bax/Bcl-2 ratio up-regulation in SH-SY5Y cells. ACR also activated the PERK-eIF2α signaling in SH-SY5Y cells and triggered the activation of glycogen synthase kinase-3β (GSK-3β), up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Curcumin pretreatment significantly attenuated ACR-induced neuronal toxicity as revealed by the ameliorated cell viability, mitigated intracellular ROS and MDA level, and elevated GSH content. Moreover, curcumin pretreatment inhibited PERK-dependent eIF2α phosphorylation, further suppressed GSK-3β and ATF4 function, and abolished abnormal tau phosphorylation, P-CREB reduction, and CHOP-induced apoptosis in SH-SY5Y cells. These results provided empirical evidence between curcumin and PERK-eIF2α signaling in ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China
| | - Na Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China.
| |
Collapse
|
31
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
32
|
Deng L, Zhao M, Cui Y, Xia Q, Jiang L, Yin H, Zhao L. Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug Chem Toxicol 2021; 45:2601-2612. [PMID: 34551652 DOI: 10.1080/01480545.2021.1979030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acrylamide (ACR) is a potential neurotoxin commonly found in the environment, as well as in food repeatedly exposed heat processing, but the mechanism underpinning ACR-induced neurotoxicity remains unclear. This study investigated the potential association and underlying signal transduction of oxidative stress, apoptosis, and autophagy associated with ACR-triggered neurotoxicity. Therefore, U87-MG cells were treated with varying ACR concentrations, while the cell activity reduction depended on the specific dosage and time parameters. Biochemical analyses showed that ACR significantly increased the reactive oxygen species (ROS), malondialdehyde (MDA), and Ca2+ levels while decreasing the glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm), finally leading to a higher cell apoptotic rate. Moreover, ACR induced U87-MG cell apoptosis and autophagy via ROS-triggered expression in the mitochondrial apoptosis pathway, NF-κB activation, and autophagosome accumulation. In addition, the autophagosome accumulation induced by ACR could probably be ascribed to blocked autophagic flux, inhibiting the autophagosomes from combining with lysosomes, while the inhibition of autophagy caused by ACR further promoted the initiation of apoptosis. In conclusion, the results indicated that the apoptotic and autophagic pathways responded to ACR-induced neurotoxicity. However, inhibited protective autophagy further promoted apoptotic progression. New insights may be derived from these cellular responses that can help develop diverse pathway strategies for assessing the risk posed by ACR.HIGHLIGHTSACR induced mitochondrial- and caspase-dependent apoptosis in U87-MG cells.ACR regulated the autophagic markers and blocked autophagic flux in U87-MG cells.ACR inhibited protective autophagy and promoted apoptotic initiation in U87-MG cells.
Collapse
Affiliation(s)
- Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Yanan Cui
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Quanming Xia
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| |
Collapse
|
33
|
Wang Y, Duan L, Zhang X, Jiao Y, Liu Y, Dai L, Yan H. Effect of long-term exposure to acrylamide on endoplasmic reticulum stress and autophagy in rat cerebellum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112691. [PMID: 34450424 DOI: 10.1016/j.ecoenv.2021.112691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide (ACR) is a widely used chemical compound that has neurotoxicity in human, but whether ACR could impair the cerebellum and the related mechanism were still unknown. This study aimed to observe the changes in behavioral performance and cerebellar morphology caused by chronic ACR exposure, and to evaluate its influence on apoptosis, endoplasmic reticulum stress (ERS) and autophagy. Rats were treated with 0, 0.5 and 5 mg/kg ACR by drinking water for 12 months. Results showed that 5 mg/kg ACR treatment damaged the gait, balance ability, hindlimb muscle strength and motor coordination ability of rats. The results of hematoxylin and eosin and Nissl staining indicated that ACR impaired the structures of all three layers of the cerebellum, especially the Purkinje cell layer, showing abnormal morphology with nucleus condensation and pyknosis. Accumulation of autophagosomes, dilated endoplasmic reticulum and swollen mitochondria were observed in neurons under transmission electron microscopy. The enhanced apoptotic rates and the increased Bax expression indicated the elevated level of apoptosis. The results of Western blot showed that ACR treatment elevated protein levels of Beclin1, LC3-II/LC3-I, p-PERK/t-PERK, ATF4 and CHOP, indicating the initiation of autophagy, the activation of PERK pathway in ERS. This work helps to demonstrate the ACR neurotoxicity on cerebellum under chronic treatment and its underlying mechanism.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lian Duan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lingling Dai
- Experimental Teaching Center of Preventive Medicine School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China.
| |
Collapse
|
34
|
Ege D. Action Mechanisms of Curcumin in Alzheimer's Disease and Its Brain Targeted Delivery. MATERIALS 2021; 14:ma14123332. [PMID: 34208692 PMCID: PMC8234049 DOI: 10.3390/ma14123332] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
AD is a chronic neurodegenerative disease. Many different signaling pathways, such as Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of the most promising is curcumin; however, because it has difficulty permeating the blood–brain barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating AD and indicated the challenges that require further research.
Collapse
Affiliation(s)
- Duygu Ege
- Biomedical Engineering, Boğaziçi University, Rasathane Cd, Kandilli Campus, Istanbul 34684, Turkey
| |
Collapse
|
35
|
Elsawy H, Alzahrani AM, Alfwuaires M, Sedky A, El-Trass EE, Mahmoud O, Abdel-Moneim AM, Khalil M. Analysis of silymarin-modulating effects against acrylamide-induced cerebellar damage in male rats: Biochemical and pathological markers. J Chem Neuroanat 2021; 115:101964. [PMID: 33965515 DOI: 10.1016/j.jchemneu.2021.101964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acrylamide (ACR) is a well-proven neurotoxin and potential food carcinogen in humans and rodent models. Silymarin (SIL) is a flavonoid mixture isolated from seeds, leaves, and fruits of Silymarin marianum (milk thistle) that possesses a free-radical scavenging effect. OBJECTIVE In this work, the primary focus was to investigate the efficacy of SIL to mitigate ACR-induced subacute neurotoxic effects and oxidative changes in rat cerebellum. METHODS Adult male rats were treated intraperitoneally with ACR (50 mg/kg) with or without SIL (160 mg/kg). The neuropathology and biochemical parameters viz. lipid peroxidation (measured as levels of malondialdehyde or MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), serotonin (5-hydroxytryptamine; 5-HT), dopamine (DA), and cathepsin D (CTSD) in the cerebellum have been evaluated. RESULTS The data showed that ACR induced redox disruptions as measured by increased MDA levels and inhibition of CAT, SOD, and GPx antioxidant enzyme activities. Besides, cerebellar monoamine neurotransmitters, 5-HT and DA, were depleted in ACR-treated rats. Furthermore, ACR administration caused a significant elevation of CTSD activity, indicating that ACR could trigger apoptosis or apoptosis-like death. At the tissue level, cerebellar cortex sections from ACR-treated animals were characterized by severe neuronal damage. The administration of SIL to ACR-treated rats remarkably alleviated all the aforementioned ACR-induced effects. CONCLUSION SIL has a potent therapeutic effect against ACR-induced cerebellar neurotoxicity in experimental rats via the attenuation of oxidative/antioxidative responses and the inhibition of CTSD-activity.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia.
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia.
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman E El-Trass
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Omar Mahmoud
- Essex Partnership University NHS Foundation Trust: Harlow, Essex, Great Britain, United Kingdom.
| | - Ashraf M Abdel-Moneim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mahmoud Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon.
| |
Collapse
|
36
|
Zhang Y, Sun Q, Fan A, Dong G. Isoflurane triggers the acute cognitive impairment of aged rats by damaging hippocampal neurons via the NR2B/CaMKII/CREB pathway. Behav Brain Res 2021; 405:113202. [PMID: 33636236 DOI: 10.1016/j.bbr.2021.113202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022]
Abstract
Isoflurane was responsible for acute neuronal impairment, but its potential molecular mechanisms in damaging hippocampal neurons had not been clearly understood. This study aimed to explore the underlying mechanism of how isoflurane affected the cognitive function of aged rats by damaging the hippocampal neurons. Acute cognitive impairment was found in aged Wistar rats via Morris water maze test and Y-maze test after isoflurane anesthesia in a dose-dependent manner compared with the control group in vivo. Isoflurane also decreased the viabilities and strengthened the apoptotic potential of hippocampal neurons by damaging the mitochondria in a time-dependent manner compared with the control group which was reported by MTT, immunofluorescent assay, flow cytometry and western blot assay in vitro. Isoflurane jeopardized hippocampal neurons by directly inactivating the NR2B/CaMKII/CREB pathway and its harmful effects could be ameliorated by adding CaMKII activator CdCl2. These findings provided evidence that the cognitive ability of aged rats was injured by isoflurane exposure and isoflurane also inhibited the viability and enhanced the apoptosis of hippocampal neurons by damaging the mitochondria through inhibition of the NR2B/CaMKII/CREB pathway and its harmful roles could be partially ameliorated by CdCl2. Our study demonstrated that isoflurane could cause acute neuronal damage and we provided fresh insights that contributed to the safe use of anesthetic agents and the prevention of PND in elderly people.
Collapse
Affiliation(s)
- Yuangui Zhang
- Department of Anesthesiology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang City, Shandong Province, 261000, China
| | - Qingqing Sun
- Department of Anesthesiology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang City, Shandong Province, 261000, China
| | - Aixia Fan
- Department of Anesthesiology, Xintai People's Hospital, No. 1329, Xinfu Road, Xintai City, Shandong Province, 271200, China
| | - Guimin Dong
- Department of Anesthesiology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang City, Shandong Province, 261000, China.
| |
Collapse
|
37
|
Lindeman B, Johansson Y, Andreassen M, Husøy T, Dirven H, Hofer T, Knutsen HK, Caspersen IH, Vejrup K, Paulsen RE, Alexander J, Forsby A, Myhre O. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reprod Toxicol 2021; 101:93-114. [PMID: 33617935 DOI: 10.1016/j.reprotox.2021.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
Collapse
Affiliation(s)
- Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Trine Husøy
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle K Knutsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine Vejrup
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jan Alexander
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
38
|
Liu Y, Yan D, Wang Y, Zhang X, Wang N, Jiao Y, Yan H. Subchronic exposure to acrylamide caused behaviour disorders and related pathological and molecular changes in rat cerebellum. Toxicol Lett 2021; 340:23-32. [PMID: 33421551 DOI: 10.1016/j.toxlet.2021.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Acrylamide (ACR) is a neurotoxin with moderate acute toxicity. Significant level of ACR exists in diet and drinking water. Occupational exposure causes motor function impairment, but the underlying mechanisms remain poorly defined. This study aims to explore whether microtubule-associated protein tau phosphorylation, excessive activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway and BDNF decline are involved in cerebellar neuron lesions and motor dysfunction after subchronic ACR exposure. The present results displayed that ACR caused gait abnormality and hind foot splay in rats. The HE and Nissl staining results revealed that ACR exposure aggravated cerebellar neuron lesions especially in purkinje cell layer. ACR markedly increased tau phosphorylation at Ser262 and Ser396/404 and inhibited the level of phosphorylation of glycogen synthase kinase 3β (P-GSK3β) at Ser9. The PERK-eukaryotic initiation factor-2α (eIF2α)-activating transcription factor 4 (ATF4) pathway was activated to promote CHOP expression and then to accelerate neuron lesions. Furthermore, ACR significantly decreased P-CREB at Ser133 and BDNF expression, which might be related to the inhibition of upstream signals from extracellular signal-related kinase (ERK) and protein kinase B (Akt). This work helps to elucidate the underlying mechanisms of ACR-induced neurotoxicity and present a potential target for prevention against the neurotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Na Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China.
| |
Collapse
|
39
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
40
|
Attoff K, Johansson Y, Cediel-Ulloa A, Lundqvist J, Gupta R, Caiment F, Gliga A, Forsby A. Acrylamide alters CREB and retinoic acid signalling pathways during differentiation of the human neuroblastoma SH-SY5Y cell line. Sci Rep 2020; 10:16714. [PMID: 33028897 PMCID: PMC7541504 DOI: 10.1038/s41598-020-73698-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Acrylamide (ACR) is a known neurotoxicant which crosses the blood–brain barrier, passes the placenta and has been detected in breast milk. Hence, early-life exposure to ACR could lead to developmental neurotoxicity. The aim of this study was to elucidate if non-cytotoxic concentrations of ACR alter neuronal differentiation by studying gene expression of markers significant for neurodevelopment in the human neuroblastoma SH-SY5Y cell model. Firstly, by using RNASeq we identified two relevant pathways that are activated during 9 days of retinoic acid (RA) induced differentiation i.e. RA receptor (RAR) activation and the cAMP response element-binding protein (CREB) signalling pathways. Next, by qPCR we showed that 1 and 70 µM ACR after 9 days exposure alter the expression of 13 out of 36 genes in the RAR activation pathway and 18 out of 47 in the CREB signalling pathway. Furthermore, the expression of established neuronal markers i.e. BDNF, STXBP2, STX3, TGFB1 and CHAT were down-regulated. Decreased protein expression of BDNF and altered ratio of phosphorylated CREB to total CREB were confirmed by western blot. Our results reveal that micromolar concentrations of ACR sustain proliferation, decrease neurite outgrowth and interfere with signalling pathways involved in neuronal differentiation in the SH-SY5Y cell model.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andrea Cediel-Ulloa
- Unit of Toxicology Sciences, Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden.,Department for organismal biology, Uppsala University, Uppsala, Sweden
| | - Jessica Lundqvist
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rajinder Gupta
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Anda Gliga
- Unit of Toxicology Sciences, Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. .,Department for organismal biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Zhang W, Bai S, Yang J, Zhang Y, Liu Y, Nie J, Meng D, Shi R, Yao Z, Wang M, Wang H, Li C. FoxO1 overexpression reduces Aβ production and tau phosphorylation in vitro. Neurosci Lett 2020; 738:135322. [PMID: 32860886 DOI: 10.1016/j.neulet.2020.135322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Forkhead box O1 (FoxO1), a key molecule in the regulation of cell growth, differentiation and metabolism, is an important transcription factor. However, the effect of FoxO1 on Alzheimer's disease (AD) needs further investigation. In this study, we aimed to explore the function and mechanism of FoxO1 in amyloid-β (Aβ) production and tau phosphorylation in AD. First, compared with the age matched wild-type (WT) mice, we showed that FoxO1 protein levels were reduced in the cortices but nearly unchanged in the hippocampi of 6-month-old APPswe/PSEN1dE9 transgenic mice expressing Swedish APP and Presenilin1 delta exon 9 mutations (APP/PS1 mice). Then, we found that overexpression of FoxO1 significantly attenuated Aβ production through inhibiting the amyloidogenic processing of β-amyloid precursor protein (APP), mediated by the key enzymes BACE1 and PS1, in N2a/APPsw cells. Furthermore, in FoxO1-overexpressing HEK293/Tau cells, the decreased levels of tau phosphorylation at selective sites (S262 and T231) were accompanied by increasing the expression of p-GSK-3β (S9), and reducing p-ERK. In contrast, the total tau (Tau-5), non-phosphorylated tau (Tau-1), p-Tau (S404), CDK5 and PP2A levels remained unchanged. These findings indicate that FoxO1 is related to AD and suggest FoxO1 as a therapeutic target for AD that reduces the levels of both Aβ expression and tau phosphorylation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shanshan Bai
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jianhua Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yimin Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Youcai Liu
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Junjiu Nie
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dongli Meng
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruling Shi
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhaoyang Yao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, China
| | - Hecheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| | - Cuiping Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
42
|
Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 2020; 21:62. [PMID: 32811563 PMCID: PMC7437006 DOI: 10.1186/s40360-020-00440-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Acrylamide (ACR) formed during heating of tobacco and carbohydrate-rich food as well as widely applied in industries has been known as a well-established neurotoxic pollutant. Although the precise mechanism is unclear, enhanced apoptosis, oxidative stress and inflammation have been demonstrated to contribute to the ACR-induced neurotoxicity. In this study, we assessed the possible anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin, the most active component in a popular spice known as turmeric, on the neurotoxicity caused by ACR in rats. Methods Curcumin at the dose of 50 and 100 mg/kg was orally given to ACR- intoxicated Sprague-Dawley rats exposed by ACR at 40 mg/kg for 4 weeks. All rats were subjected to behavioral analysis. The HE staining and terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) staining were used to detect histopathological changes and apoptotic cells, respectively. The mRNA and protein expressions of apoptosis-related molecule telomerase reverse transcriptase (TERT) were detected using real-time PCR and immunohistochemistry, respectively. The contents of malondialdehyde (MDA) and glutathione (GSH) as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured as the indicators for evaluating the level of oxidative stress in brain. The levels of pro-inflammatory cytokinestumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the cerebral homogenates were detected using ELISA assay. Results ACR-induced weigh loss, deficits in motor function as well as pathological alterations in brains were significantly improved in rats administrated with 50 and 100 mg/kg curcumin. TUNEL-positive apoptotic cells in curcumin-treated ACR intoxicated brains were less than those in the ACR model group. Curcumin administration especially at the dose of 100 mg/kg upregulated the TERT mRNA expression and enhanced the number of TERT-positive cells in ACR-intoxicated cortex tissues. Moreover, curcumin treatment reduced the concentrations of TNF-α, IL-1β and MDA, while increased the GSH contents as well as the SOD and GSH-Px activities in the cerebral homogenates, in comparison to ACR control group. Conclusions These data suggested the anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on ACR-induced neurotoxicity in rats. Maintaining TERT-related anti-apoptotic function might be one mechanism underlying the protective effect of curcumin on ACR-intoxicated brains.
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaolu Cao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
43
|
Bu Q, Huang Y, Li M, Dai Y, Fang X, Chen K, Liu Q, Xue A, Zhong K, Huang Y, Gao H, Cen X. Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food Chem Toxicol 2020; 144:111643. [PMID: 32763439 DOI: 10.1016/j.fct.2020.111643] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Acrylamide (ACR) is a common food contaminant with neurotoxic effects that are formed in the Maillard browning reaction during the heat processing of food. Importantly, pregnant women are also exposed to ACR in food during pregnancy and thus, the fetus is likely affected. However, the mechanisms of ACR-caused neurotoxicity on human brain development are still unclear. Many recent studies employed cerebral organoids based on human embryonic stem cells (hESC) for investigating human neurodevelopmental disorders and toxicity. Here, we generated hESC-derived cerebral organoids to evaluate the neurodevelopmental toxicity of ACR. The results indicated that exposure to ACR significantly altered the transcriptional profile, increased nuclear factor erythroid 2-related factor 2 (NRF2)-mediated gene expression, induced cell apoptosis, repressed neuronal differentiation, and promoted tau hyperphosphorylation in cerebral organoids, which may contribute to ACR-induced neurodevelopmental toxicity. These results indicate that the risk of transplacental exposure of the fetus to ACR should be evaluated and pregnant mothers should limit their exposure to ACR.
Collapse
Affiliation(s)
- Qian Bu
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yan Huang
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Meng Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xin Fang
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Ke Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kai Zhong
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yina Huang
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Xiaobo Cen
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Liao Q, Li Q, Zhao Y, Jiang P, Yan Y, Sun H, Liu W, Feng F, Qu W. Design, synthesis and biological evaluation of novel carboline-cinnamic acid hybrids as multifunctional agents for treatment of Alzheimer’s disease. Bioorg Chem 2020; 99:103844. [DOI: 10.1016/j.bioorg.2020.103844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023]
|
45
|
Dai C, Xiao X, Zhang Y, Xiang B, Hoyer D, Shen J, Velkov T, Tang S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect Dis 2020; 6:715-724. [PMID: 32037797 DOI: 10.1021/acsinfecdis.9b00341] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peripheral neurotoxicity often occurs in patients receiving parenteral polymyxin therapy (i.e., colistin methanesulfonate or polymyxin B). The present study aimed to investigate the protective effect of curcumin on colistin-induced peripheral neurotoxicity using a murine model. Female C57BL/6 mice (n = 10 in each group) were randomly divided into the following: (1) control group (saline), (2) curcumin only group (200 mg/kg/day; orally), (3) colistin only group (18 mg/kg/day; i.p.), (4) colistin (18 mg/kg/day) plus curcumin 50 mg/kg/day group, (5) colistin (18 mg/kg/day) plus curcumin 100 mg/kg/day group, (6) colistin (18 mg/kg/day) plus curcumin 200 mg/kg/day group; all mice were treated for 7 days. Orally applied curcumin was detected in the brain, cerebellum, and sciatic nerve. Co-administration of oral curcumin markedly improved colistin-induced impaired sensory and motor dysfunctions in a dose-dependent manner. Curcumin supplementation at 100 and 200 mg/kg significantly decreased lipid peroxidation and upregulated catalase (CAT) and superoxide dismutase (SOD) activities, ATP levels, and Na+/K+-ATPase activity in sciatic nerve tissue, compared to the colistin alone group. Curcumin supplementation at 200 mg/kg upregulated the levels of AKT, NGF, mTOR, Nrf2, and HO-1 mRNA and concomitantly downregulated Bax, caspases-3, and -9 mRNA; it also decreased caspase-3 and caspase-9 activity. In summary, for the first time, our study reveals that the protective effect of oral curcumin on colistin induced peripheral neurotoxicity is associated with the activation of NGF/Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of curcumin as an oral neuroprotective agent coadministered during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Biao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
46
|
Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H. Prenatal bisphenol A exposure contributes to Tau pathology: Potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology 2020; 438:152442. [PMID: 32278051 DOI: 10.1016/j.tox.2020.152442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. BPA exposure especially occupational perinatal exposure to has been linked to numerous adverse effects for the offspring. Available data have shown that perinatal exposure to BPA contributes to neurodegenerative pathological changes; however, the potential mechanisms remain unclear. This study attempted to investigate the long-term consequences of perinatal exposure to BPA on the offspring mouse brain. The pregnant mice were given either a vehicle control or BPA (2, 10, 100 μg/kg/d) from day 6 of gestation until weaning (P6-PND21, foetal and neonatal exposure). At 3, 6 and 9 months of age, the neurotoxic effects in the offspring in each group were investigated. We found that the spine density but not the dendritic branches in the hippocampus were noticeably reduced at 6 and 9 months of age. Meanwhile, p-Tau, the characteristic protein for tauopathy, was dramatically increased in both the hippocampus and cortex at 3-9 months of age. Mechanically, the balance of kinase and protein phosphatase, which plays critical roles in p-Tau regulation, was disturbed. It indicated that GSK3β and CDK5, two critical kinases, were activated in most of the BPA perinatal exposure group, while protein phosphatase 2A (PP2A), one of the important phosphatases, regulated p-Tau expression through its demethylation, methylation and phosphorylation. Taken together, the present study may be translatable to the human occupational BPA exposure due to a similar exposure level. BPA perinatal exposure causes long-term adverse effects on the mouse brain and may be a risk factor for tauopathies, and the CDK5/GSK3β/PP2A axis might be a promising therapeutic target for BPA-induced neurodegenerative pathological changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
47
|
Liu Y, Zhang X, Yan D, Wang Y, Wang N, Liu Y, Tan A, Chen X, Yan H. Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicol Appl Pharmacol 2020; 393:114949. [DOI: 10.1016/j.taap.2020.114949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
|
48
|
Garcinol pacifies acrylamide induced cognitive impairments, neuroinflammation and neuronal apoptosis by modulating GSK signaling and activation of pCREB by regulating cathepsin B in the brain of zebrafish larvae. Food Chem Toxicol 2020; 138:111246. [PMID: 32156567 DOI: 10.1016/j.fct.2020.111246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
The presence of acrylamide (ACR) in food results in evident cognitive decline, accumulation of misfolded proteins, neurotoxicity, neuroinflammation, and neuronal apoptosis leading to progressive neurodegeneration. Here, we used 4 dpf zebrafish larvae exposed to ACR (1mM/3days) as our model, and neuronal proteins were analyzed. Next, we tested the effect of garcinol (GAR), a natural histone-acetylation inhibitor, whose neuroprotection mechanism of action remains to be fully elucidated. Our result revealed that ACR exposure significantly impaired cognitive behavior, downregulated oxidative repair machinery, and enhanced microglia-induced neuronal apoptosis. Moreover, ACR mediated cathepsin-B (CAT-B) translocation acted as the intracellular secretase for the processing of amyloid precursor protein (APP) and served as an additional risk factor for tau hyper-phosphorylation. Here, GAR suppresses ACR mediated CATB translocation as similar with standard inhibitor CA-074. And, this pharmacological repression helped in inhibiting amyloidogenic APP processing and downstream tau hyper-phosphorylation. GAR neuroprotection was accompanied by CREB, ATF1, and BDNF activation promoting neuronal survival. At the same time, GAR subdued cdk5 and GSK3β, the link between APP processing and tau hyper-phosphorylation. Taken together, our findings indicate that GAR rescued from ACR mediated behavioral defects, oxidative injury, neuroinflammation, undesirable APP processing, tau hyper-phosphorylation which in turn found to be CATB dependent.
Collapse
|
49
|
Sun R, Chen W, Cao X, Guo J, Wang J. Protective Effect of Curcumin on Acrylamide-Induced Hepatic and Renal Impairment in Rats: Involvement of CYP2E1. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20910548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As a chemical extensively used in industrial areas and formed during heating of carbohydrate-rich foods and tobacco, acrylamide (ACR) has been demonstrated to exert a variety of systemic toxic effects including hepatotoxicity and nephrotoxicity. In the present study, we investigated the effect of curcumin, a natural polyphenolic compound in a popular spice known as turmeric, on the hepatic and renal impairment caused by ACR exposure to 40 mg/kg for 4 weeks in rats. The administration of curcumin at doses of 50 and 100 mg/kg to ACR-intoxicated rats significantly decreased the serum levels of alanine transaminase, aspartate transaminase, creatinine, and urea; improved the histological changes of liver and kidney caused by ACR; reduced the number of apoptotic cells; as well as relieved ACR-induced hepatic and renal oxidative stress. Moreover, curcumin inhibited the CYP2E1 overexpression induced by ACR in the liver and kidney tissues. Therefore, curcumin could be applied as a potential strategy for the intervention of ACR-induced systemic toxicity. The inhibition of CYP2E1 might be involved in the protection of curcumin against ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Rui Sun
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Wenhui Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Xiaolu Cao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| |
Collapse
|
50
|
Yang S, Shao T, Yu P, Cao R, Zhang M, Wen K, Fan M, He B. Neuronostatin promotes soluble Aβ1-42 oligomers -induced spatial learning and memory impairments in mice. Behav Brain Res 2019; 364:62-74. [PMID: 30753874 DOI: 10.1016/j.bbr.2019.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/06/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Neuronostatin (NST) is composed of a 13-amino acid and amidated peptide hormone encoded in the somatostatin (SST) gene, and plays an important physiological function in diverse tissues. Previous studies have shown that intracerebroventricular (i.c.v.) and intra-hippocampally administration of NST can significantly decrease the percentage of novel object exploration time in the step-down test. In this study, to define the contribution of NST to cognitive impairments induced by soluble Aβ42 oligomers (oAβ), along with the underlying mechanisms. This study used behavioral, biochemical and immunohistological methods to find that i.c.v. administration of NST (3 nmol/mouse) disrupted the ability of spatial learning and memory in mice, led to increase the levels of cAMP, GPR107 protein expression and phosphorylation of PKA at Thr197 in the cortex and hippocampus. NST promoted oAβ (1 nmol/mouse) -induced cognitive impairments, subsequently co-injection of NST and oAβ increased the levels of GPR107 expression and PKA phosphorylation, which also led to hyperactivation of GFAP in the cortex and neuroinflammation cytokines (IL-1β, IL-6 and TNFα) both in the cortex and hippocampus. Moreover, it was demonstrated that co-administration of NST and oAβ had increased the phosphorylation of Akt and GSK3β and reduced the levels of ATP and hexokinase (HK) activity in the cortex. Therefore, taken together, this study provided powerful insight into the mechanism of NST for memory impairments induced by oAβ, and may potentially serve as a promising target for future Alzheimer's disease interventions.
Collapse
Affiliation(s)
- Shaobin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Tingji Shao
- Department of Pharmacy, Gansu Provincial People's Hospital, Lanzhou, Gansu, 730000, China
| | - Peng Yu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruidong Cao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Mingyu Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Kang Wen
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Maorong Fan
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Bosheng He
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|