1
|
Huh J, Hwang W. The Role of Anesthetic Management in Lung Cancer Recurrence and Metastasis: A Comprehensive Review. J Clin Med 2024; 13:6681. [PMID: 39597826 PMCID: PMC11594908 DOI: 10.3390/jcm13226681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Although surgical treatment is a primary approach, residual cancer cells and surgery-induced pathophysiological changes may promote cancer recurrence and metastasis. Anesthetic agents and techniques have recently been shown to potentially impact these processes by modulating surgical stress responses, immune function, inflammatory pathways, and the tumor microenvironment. Anesthetics can influence immune-modulating cytokines, induce pro-inflammatory factors such as HIF-1α, and alter natural-killer cell activity, affecting cancer cell survival and spread. Preclinical studies suggest volatile anesthetics may promote tumor progression by triggering pro-inflammatory signaling, while propofol shows potential antitumor properties through immune-preserving effects and reductions in IL-6 and other inflammatory markers. Additionally, opioids are known to suppress immune responses and stimulate pathways that may support cancer cell proliferation, whereas regional anesthesia may reduce these risks by decreasing the need for systemic opioids and volatile agents. Despite these findings, clinical data remain inconclusive, with studies showing mixed outcomes across patient populations. Current clinical trials, including comparisons of volatile agents with propofol-based total intravenous anesthesia, aim to provide clarity but highlight the need for further investigation. Large-scale, well-designed studies are essential to validate the true impact of anesthetic choice on cancer recurrence and to optimize perioperative strategies that support long-term oncologic outcomes for lung cancer patients.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
2
|
Cullinane C, Connolly RM, Corrigan M, Redmond HP, Foley C. Perioperative systemic IL-6 and immune-adipose- metabolism transcription in tumour and tumour adjacent breast cancer. Eur J Immunol 2024; 54:e2451049. [PMID: 39219238 DOI: 10.1002/eji.202451049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Surgical resection is the primary treatment approach for patients with breast cancer. Despite optimal multimodal treatment, metastatic recurrence remains a risk. Surgery-mediated systemic inflammation and local tissue inflammation generate an immunosuppressive and wound-healing environment that may accelerate cancer recurrence and metastasis post-operatively. Investigating the impact of surgery on local and systemic inflammation may provide knowledge for improvement of patient prognosis and treatment opportunities. Systemic cytokines were quantified in the blood plasma of patients with breast cancer pre-operatively, early post-operatively, and late post-operatively. Early post-operative levels of IL-6 were significantly elevated in patients who underwent mastectomy compared with wide local excision. Post-operative IL-6 levels correlate with clinicopathological features (age and BMI). The transcriptomes of local matched tumour and normal tumour adjacent (normal) breast tissue, from patients with breast cancer, were analysed by RNA-Seq. Elevated gene expressions of IL6, ADIPOQ, FABP4, LPL, PPARG, and CD36 in normal tissue were associated with worse overall survival of patients with ER-positive breast cancer. In tissue with higher expression of IL6 and ADIPOQ, a higher abundance of M2-like macrophage gene expression was identified. This study revealed perioperative systemic dynamics of inflammatory mediators and identified local immune-adipose-metabolism gene expression in tumour-adjacent tissue associated with pro-tumour function.
Collapse
Affiliation(s)
- Carolyn Cullinane
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| | - Roisin M Connolly
- Cork University Hospital, Wilton, Cork, Ireland
- Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mark Corrigan
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry P Redmond
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| | - Cathriona Foley
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
3
|
Wu F, Wang T, Tang X, Dong S, Luo L, Luo C, Ma J, Hu Y. AILDE Computer-Aided Discovery of Novel Ibuprofen-Coumarin Antitumor Lead Compounds Targeting Cyclooxygenase-2. ACS OMEGA 2024; 9:41021-41031. [PMID: 39371992 PMCID: PMC11447854 DOI: 10.1021/acsomega.4c06596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Starting from three ibuprofen-coumarin hit compounds, we designed 18 derivative compounds targeting cyclooxygenase-2 (COX-2) by introducing different substituents onto them by using the computational auto in silico ligand directing evolution (AILDE) method. After synthesizing and testing the activity, we found that 6 representative compounds have micromolar enzyme inhibitory activity against COX-2. Additionally, 16 compounds have shown certain inhibitory activity in cervical cancer cells. Among these compounds, 6c (IC50 = 0.606 μM, HeLa) and 7g (IC50 = 0.783 μM, HeLa) have exhibited excellent activity, which is approximately 10 times better than the commercial drug gefitinib. According to molecular simulation results, the halogen atoms of 6c and 7g on the coumarin ring can form halogen bonds with COX-2, which significantly improves their activity compared to their hit compounds 6a and 7a. However, the key interactions were lost in binding with COX-1. The calculation results revealed that the two compounds are selective COX-2 inhibitors, with potential selectivity indexes of 6-fold and 5-fold, respectively. The cell-based activity of compounds 6c and 7g toward HEK293 cells demonstrates that our compounds possess an acceptable safety toward normal cells. The results indicate that 6c and 7g can serve as potential lead compounds for further lucubrate.
Collapse
Affiliation(s)
- Fengxu Wu
- School
of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei
University of Medicine, Shiyan 442000, China
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Tianshuai Wang
- School
of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei
University of Medicine, Shiyan 442000, China
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoyu Tang
- School
of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei
University of Medicine, Shiyan 442000, China
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Sirui Dong
- Taihe
Hospital, China Anti-aging Center of Affiliated Hospital of Hubei
University of Medicine, Shiyan 442000, China
| | - Lun Luo
- School
of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei
University of Medicine, Shiyan 442000, China
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chao Luo
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
- School
of Basic Medical Sciences, Hubei University
of Medicine, Shiyan 442000, China
| | - Junkai Ma
- School
of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei
University of Medicine, Shiyan 442000, China
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yanggen Hu
- School
of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei
University of Medicine, Shiyan 442000, China
- Hubei
Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
4
|
Chun KS, Kim EH, Kim DH, Song NY, Kim W, Na HK, Surh YJ. Targeting cyclooxygenase-2 for chemoprevention of inflammation-associated intestinal carcinogenesis: An update. Biochem Pharmacol 2024; 228:116259. [PMID: 38705538 DOI: 10.1016/j.bcp.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Na-Young Song
- Department of Oral Biology, BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
5
|
Wang L, Ge J, Han H, Jia Y, Qin Y. Crosstalk between the nervous system and tumor microenvironment: Functional aspects and potential therapeutic strategies. Cancer Lett 2024; 594:216986. [PMID: 38797233 DOI: 10.1016/j.canlet.2024.216986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Recent advancements in understanding the tumor microenvironment (TME) have highlighted the critical role of the nervous system in cancer progression. This review comprehensively examines how the nervous system influences various aspects of tumorigenesis, including growth, motility, immune response, angiogenesis, and the behavior of cancer-associated fibroblasts (CAFs). We delineate the neurodevelopmental mechanisms associated with cancer, such as the secretion of neurotrophins and exosomes by cancer cells. Furthermore, we explore the emerging therapeutic strategy of targeting nerves associated with tumors. Evidence supporting this approach includes studies demonstrating direct tumor growth inhibition, enhanced efficacy of immunotherapy when combined with nervous system-modulating drugs, and the suppression of tumor blood vessel formation through nerve targeting. Finally, we discuss the current challenges in this field and emphasize the need for further exploration within cancer neuroscience.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Jingjing Ge
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, PR China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China.
| |
Collapse
|
6
|
Chen LL, Li YQ, Kang ZH, Zhang X, Gu SY, Wang N, Shen XY. Blocking the interaction between circTNRC18 and LIN28A promotes trophoblast epithelial-mesenchymal transformation and alleviates preeclampsia. Mol Cell Endocrinol 2024; 579:112073. [PMID: 37774938 DOI: 10.1016/j.mce.2023.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Defects in migration and invasion caused by dysregulation of trophoblastic epithelial-mesenchymal transformation (EMT) play a vital role in preeclampsia (PE). We have previously shown that circTNRC18 inhibits the migration and EMT of trophoblasts; however, its role in PE remains unknown. Herein, we demonstrate that circTNRC18 interacts with an RNA-binding protein, lin-28 homolog A (LIN28A), and this interaction is enhanced in PE placental tissue. LIN28A overexpression suppresses circTNRC18-mediated inhibition of trophoblast migration, invasion, and EMT, whereas LIN28A knockdown promotes them. The intracellular distribution of LIN28A is regulated by circTNRC18, where it promotes the expression of insulin-like growth factor II by stabilizing its mRNA. circTNRC18 also promotes complex formation between GATA-binding factor 1 (GATA1) and sine oculis homeobox 1 (SIX1) by inhibiting LIN28A-GATA1 interaction. GATA1-SIX1 promotes transcription of grainyhead-like protein 2 homolog and circTNRC18-mediated regulation of cell migration and invasion. Moreover, blocking circTNRC18-LIN28A interaction with antisense nucleotides alleviates PE in a mouse model of reduced uterine perfusion pressure. Thus, targeting the circTNRC18-LIN28A regulatory axis may be a novel PE treatment method.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Ya-Qin Li
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Zhi-Hui Kang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Xuan Zhang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Su-Yan Gu
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Na Wang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Xue-Yan Shen
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
7
|
Sandbank E, Eckerling A, Margalit A, Sorski L, Ben-Eliyahu S. Immunotherapy during the Immediate Perioperative Period: A Promising Approach against Metastatic Disease. Curr Oncol 2023; 30:7450-7477. [PMID: 37623021 PMCID: PMC10453707 DOI: 10.3390/curroncol30080540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor excision is a necessary life-saving procedure in most solid cancers. However, surgery and the days before and following it, known as the immediate perioperative period (IPP), entail numerous prometastatic processes, including the suppression of antimetastatic immunity and direct stimulation of minimal residual disease (MRD). Thus, the IPP is pivotal in determining long-term cancer outcomes, presenting a short window of opportunity to circumvent perioperative risk factors by employing several therapeutic approaches, including immunotherapy. Nevertheless, immunotherapy is rarely examined or implemented during this short timeframe, due to both established and hypothetical contraindications to surgery. Herein, we analyze how various aspects of the IPP promote immunosuppression and progression of MRD, and how potential IPP application of immunotherapy may interact with these deleterious processes. We discuss the feasibility and safety of different immunotherapies during the IPP with a focus on the latest approaches of immune checkpoint inhibition. Last, we address the few past and ongoing clinical trials that exploit the IPP timeframe for anticancer immunotherapy. Accordingly, we suggest that several specific immunotherapies can be safely and successfully applied during the IPP, alone or with supporting interventions, which may improve patients' resistance to MRD and overall survival.
Collapse
Affiliation(s)
- Elad Sandbank
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Anabel Eckerling
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Adam Margalit
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Liat Sorski
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Shamgar Ben-Eliyahu
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
8
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
9
|
Pilipović I, Stojić-Vukanić Z, Prijić I, Jasnić N, Djordjević J, Leposavić G. β-Adrenoceptor Blockade Moderates Neuroinflammation in Male and Female EAE Rats and Abrogates Sexual Dimorphisms in the Major Neuroinflammatory Pathways by Being More Efficient in Males. Cell Mol Neurobiol 2023; 43:1237-1265. [PMID: 35798933 PMCID: PMC11414456 DOI: 10.1007/s10571-022-01246-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Our previous studies showed more severe experimental autoimmune encephalomyelitis (EAE) in male compared with female adult rats, and moderating effect of propranolol-induced β-adrenoceptor blockade on EAE in females, the effect associated with transcriptional stimulation of Nrf2/HO-1 axis in spinal cord microglia. This study examined putative sexual dimorphism in propranolol action on EAE severity. Propranolol treatment beginning from the onset of clinical EAE mitigated EAE severity in rats of both sexes, but to a greater extent in males exhibiting higher noradrenaline levels and myeloid cell β2-adrenoceptor expression in spinal cord. This correlated with more prominent stimulatory effects of propranolol not only on CX3CL1/CX3CR1/Nrf2/HO-1 cascade, but also on Stat3/Socs3 signaling axis in spinal cord microglia/myeloid cells (mirrored in the decreased Stat3 and the increased Socs3 expression) from male rats compared with their female counterparts. Propranolol diminished the frequency of activated cells among microglia, increased their phagocyting/endocyting capacity, and shifted cytokine secretory profile of microglia/blood-borne myeloid cells towards an anti-inflammatory/neuroprotective phenotype. Additionally, it downregulated the expression of chemokines (CCL2, CCL19/21) driving T-cell/monocyte trafficking into spinal cord. Consequently, in propranolol-treated rats fewer activated CD4+ T cells and IL-17+ T cells, including CD4+IL17+ cells coexpressing IFN-γ/GM-CSF, were recovered from spinal cord of propranolol-treated rats compared with sex-matched saline-injected controls. All the effects of propranolol were more prominent in males. The study as a whole disclosed that sexual dimorphism in multiple molecular mechanisms implicated in EAE development may be responsible for greater severity of EAE in male rats and sexually dimorphic action of substances affecting them. Propranolol moderated EAE severity more effectively in male rats, exhibiting greater spinal cord noradrenaline (NA) levels and myeloid cell β2-adrenoceptor (β2-AR) expression than females. Propranolol affected CX3CR1/Nrf2/HO-1 and Stat3/Socs3 signaling axes in myeloid cells, favored their anti-inflammatory/neuroprotective phenotype and, consequently, reduced Th cell reactivation and differentiation into highly pathogenic IL-17/IFN-γ/GM-CSF-producing cells.
Collapse
Affiliation(s)
- Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nebojša Jasnić
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjević
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia.
| |
Collapse
|
10
|
Perioperative escape from dormancy of spontaneous micro-metastases: A role for malignant secretion of IL-6, IL-8, and VEGF, through adrenergic and prostaglandin signaling. Brain Behav Immun 2023; 109:175-187. [PMID: 36646396 DOI: 10.1016/j.bbi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
We recently showed that a minimally-invasive removal of MDA-MB-231HM primary tumors (PTs) and elimination of their secreted factors (including IL-6, IL-8, VEGF, EGF, PDGF-aa, MIF, SerpinE1, and M-CSF), caused regression of spontaneous micro-metastases into a non-growing dormant state. To explore the underlying mechanisms and potential clinical ramifications of this phenomenon, we herein used the MDA-MB-231HM human breast cancer cell-line, in-vitro, and in vivo following orthotopic implantation in immune-deficient BALB/C nu/nu mice. Employing bioluminescence imaging, we found that adding laparotomy to minimally-invasive removal of the PT caused an outbreak of micro-metastases. However, perioperative β-adrenergic and COX-2 inhibition, using propranolol + etodolac, maintained metastatic dormancy following laparotomy. In-vitro, β-adrenergic agonists (epinephrine or metaproterenol) and prostaglandin-E2 markedly increased MDA-MB-231HM secretion of the pro-metastatic factors IL-6, IL-8, and VEGF, whereas cortisol reduced their secretion, effects that were maintained even 12 h after the washout of these agonists. In-vivo, laparotomy elevated IL-6 and IL-8 levels in both plasma and ex-vivo PT spontaneous secretion, whereas perioperative propranolol + etodolac administration blocked these effects. Similar trends were evident for EGF and MIF. Promoter-based bioinformatics analyses of excised PT transcriptomes implicated elevated NF-kB activity and reduced IRF1 activity in the gene regulatory effects of laparotomy, and these effects were inhibited by pre-surgical propranolol + etodolac. Taken together, our findings suggest a novel mechanism of post-operative metastatic outbreak, where surgery-induced adrenergic and prostanoid signaling increase the secretion of pro-metastatic factors, including IL-6, IL-8, and VEGF, from PT and possibly residual malignant tissue, and thereby prevent residual disease from entering dormancy.
Collapse
|
11
|
Liang Y, Wu G, Luo T, Xie H, Zuo Q, Huang P, Li H, Chen L, Lu H, Chen Q. 10-Gingerol Enhances the Effect of Taxol in Triple-Negative Breast Cancer via Targeting ADRB2 Signaling. Drug Des Devel Ther 2023; 17:129-142. [PMID: 36712945 PMCID: PMC9880022 DOI: 10.2147/dddt.s390602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
Purpose Although paclitaxel is widely used in cancer treatment, severe side effects and drug resistance limit its clinical use. 10-gingerol (10-G) is a natural compound isolated from ginger, which displays anti-inflammatory, antioxidant, and antiproliferative properties. However, the chemotherapy-sensitization effect of 10-G on triple-negative breast cancer (TNBC) has not been fully clarified. This study is aimed at investigating the effect of 10-G on the paclitaxel sensitivity in TNBC, and its underlying mechanism. Methods The study was determined through in vitro and in vivo experiments. Cell viability and proliferation were detected by cell counting kit 8 (CCK-8) and colony formation. To detect cell apoptosis, flow cytometry and TUNEL were used. The expression of proteins was detected by Western blotting and immunohistochemistry. The molecular docking and gene knockout were corroborated by interactions between 10-G and adrenoceptor Beta 2 (ADRB2). The body weight of mice, histopathology and organs (kidney and spleen) coefficients were used to monitor the drug toxicities. Results In vitro, 10-G increased the sensitivity of TNBC cells to paclitaxel, and could synergistically promote the apoptosis of TNBC cells induced by paclitaxel. In combination with molecular docking and lentivirus knockdown studies, ADRB2 was identified as a 10-G binding protein. 10-G inhibited ADRB2 by binding to the active site of ADRB2. Knockdown of ADRB2 reduces the proliferation activity of TNBC cells but also attenuates the sensitizing effects of 10-G to paclitaxel. Western blotting and immunohistochemistry showed that 10-G played an anti-proliferation and chemotherapy-sensitizing role by inhibiting the ADRB2/ERK signal. Toxicity evaluation showed that 10-G would not increase hepatorenal toxicity with paclitaxel. Conclusion This data suggests that 10-G may be used as a new chemotherapeutic synergist in combination with paclitaxel to enhance anticancer activity. The potential value of ADRB2 as a target for improving chemotherapy sensitivity was also emphasized.
Collapse
Affiliation(s)
- Yuqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Guosong Wu
- Nanfang Hospital Baiyun Branch, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Tianyu Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Haimei Xie
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Qian Zuo
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Ping Huang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Huachao Li
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Hai Lu
- The First People’s Hospital of Shaoguan, Shaoguan, Guangdong, 512099, People’s Republic of China,Hai Lu, The First People’s Hospital of Shaoguan, No. 3, South Dongdi Road, Shaoguan, 512099, People’s Republic of China, Tel +86 15622187291, Email
| | - Qianjun Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China,Correspondence: Qianjun Chen, Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510102, People’s Republic of China, Email
| |
Collapse
|
12
|
Taylor MR, Steineck A, Lahijani S, Hall AG, Jim HSL, Phelan R, Knight JM. Biobehavioral Implications of Chimeric Antigen Receptor T-cell Therapy: Current State and Future Directions. Transplant Cell Ther 2023; 29:19-26. [PMID: 36208728 DOI: 10.1016/j.jtct.2022.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable clinical responses in hematologic malignancies. Recent advances in CAR T-cell therapy have expanded its application into other populations including older patients and those with central nervous system and solid tumors. Although its clinical efficacy has been excellent for some malignancies, CAR T-cell therapy is associated with severe and even life-threatening immune-mediated toxicities, including cytokine release syndrome and neurotoxicity. There is a strong body of scientific evidence highlighting the connection between immune activation and neurocognitive and psychological phenomena. To date, there has been limited investigation into this relationship in the context of immunotherapy. In this review, we present a biobehavioral framework to inform current and future cellular therapy research and contribute to improving the multidimensional outcomes of patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Mallory R Taylor
- Division of Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, Washington; Palliative Care and Resilience Program, Seattle Children's Research Institute, Seattle, Washington
| | - Angela Steineck
- Division of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Sheila Lahijani
- Division of Medical Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | - Anurekha G Hall
- Division of Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida
| | - Rachel Phelan
- Division of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Jennifer M Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Bel’skaya LV, Loginova AI, Sarf EA. Pro-Inflammatory and Anti-Inflammatory Salivary Cytokines in Breast Cancer: Relationship with Clinicopathological Characteristics of the Tumor. Curr Issues Mol Biol 2022; 44:4676-4691. [PMID: 36286034 PMCID: PMC9600028 DOI: 10.3390/cimb44100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the work was to compare the salivary cytokine profile of breast cancer patients with the clinicopathological characteristics of the tumor. The study included 113 patients with breast cancer (main group, mean age 54.1 years) and 111 patients with breast fibroadenomas (control group, mean age 56.7 years). Before treatment, saliva samples were collected from all patients and the content of cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, MCP-1, and TNF-α) was determined. The content of cytokines in saliva correlates well with the clinicopathological characteristics of breast cancer. The level of all salivary cytokines increases at advanced stages of breast cancer and at a low degree of tumor differentiation. The exception is MCP-1, for which there is an extremely high content for well-differentiated breast cancer. A statistically significant increase in the content of MCP-1, IL-1β, IL-2, IL-4, and IL-10 was found in triple-negative breast cancer. For the first time, the correlation of salivary levels of TNF-α, IL-1β, and IL-6 with HER2 status, MCP-1, IL-1β, IL-2, and IL-4 with the hormonal status of the tumor was shown. The relationship between the level of IL-2, IL-10, and IL-18 in saliva with the level of Ki-67 expression has been established.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky Str, Omsk 644099, Russia
- Correspondence:
| | | | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky Str, Omsk 644099, Russia
| |
Collapse
|
15
|
Liu Y, Tian S, Ning B, Huang T, Li Y, Wei Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front Immunol 2022; 13:1032294. [PMID: 36275706 PMCID: PMC9579304 DOI: 10.3389/fimmu.2022.1032294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in the understanding of psychoneuroimmunology in the past decade have emphasized the notion that stress and cancer are interlinked closely. Durable chronic stress accelerated tumorigenesis and progression, which is unfavorable for clinical outcomes of cancer patients. Available evidence has provided unprecedented knowledge about the role and mechanisms of chronic stress in carcinogenesis, the most well-known one is dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). With abnormal activation of neuroendocrine system, stress-related hormones contribute to increased oncogenes expression, exacerbated chronic inflammation and impaired immunologic function. In addition, accumulating studies have demonstrated that diverse stress interventions including pharmacological approaches, physical exercises and psychological relaxation have been administered to assist in mental disorders reduction and life quality improvement in cancer patients. In this review, we systematically summarize the connection and mechanisms in the stress-immune-cancer axis identified by animal and clinical studies, as well as conclude the effectiveness and deficiencies of existing stress management strategies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Ricon-Becker I, Haldar R, Shabat Simon M, Gutman M, Cole SW, Ben-Eliyahu S, Zmora O. Effect of perioperative COX-2 and beta-adrenergic inhibition on 5-year disease-free-survival in colorectal cancer: A pilot randomized controlled Colorectal Metastasis PreventIon Trial (COMPIT). Eur J Surg Oncol 2022. [DOI: 10.1016/j.ejso.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Propranolol: A “Pick and Roll” Team Player in Benign Tumors and Cancer Therapies. J Clin Med 2022; 11:jcm11154539. [PMID: 35956154 PMCID: PMC9369479 DOI: 10.3390/jcm11154539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Research on cancer therapies focuses on processes such as angiogenesis, cell signaling, stemness, metastasis, and drug resistance and inflammation, all of which are influenced by the cellular and molecular microenvironment of the tumor. Different strategies, such as antibodies, small chemicals, hormones, cytokines, and, recently, gene editing techniques, have been tested to reduce the malignancy and generate a harmful microenvironment for the tumor. Few therapeutic agents have shown benefits when administered alone, but a few more have demonstrated clear improvement when administered in combination with other therapeutic molecules. In 2008 (and for the first time in the clinic), the therapeutic benefits of the β-adrenergic receptor antagonist, propranolol, were described in benign tumors, such as infantile hemangioma. Propranolol, initially prescribed for high blood pressure, irregular heart rate, essential tremor, and anxiety, has shown, in the last decade, increasing evidence of its antitumoral properties in more than a dozen different types of cancer. Moreover, the use of propranolol in combination therapies with other drugs has shown synergistic antitumor effects. This review highlights the clinical trials in which propranolol is taking part as adjuvant therapy at single administration or in combinatorial human trials, arising as a good pick and roll partner in anticancer strategies.
Collapse
|
19
|
The immunomodulatory effects of antihypertensive therapy: A review. Biomed Pharmacother 2022; 153:113287. [PMID: 35728352 DOI: 10.1016/j.biopha.2022.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hypertension remains the leading preventable risk factor for stroke and coronary artery disease, significantly contributing to all-cause global mortality and predisposing patients to renal and heart failure, as well as peripheral vascular disease. Due to the widespread usage of antihypertensive drugs, global mean blood pressure has remained unchanged or even slightly decreased over the past four decades. However, considering the broad spectrum of mechanisms involved in the action of antihypertensive drugs and the prevalence of their target receptors on immune cells, possible immunomodulatory effects which may exert beneficial effects of lowering blood pressure but also potentially alter immune function should be considered. In this review, we attempt to assess the consequences to immune system function of administering the five most commonly prescribed groups of antihypertensive drugs and to explain the mechanisms behind those interactions. Finally, we show potential gaps in our understanding of the effects of antihypertensive drugs on patient health. With regard to the widespread use of these drugs in the adult population worldwide, the discussed results may be of vital importance to evidence-based decision-making in daily clinical practice.
Collapse
|
20
|
Ghazal LV, Cole S, Salsman JM, Wagner L, Duan F, Gareen I, Lux L, Parsons SK, Cheung C, Loeb DM, Prasad P, Dinner S, Zebrack B. Social Genomics as a Framework for Understanding Health Disparities Among Adolescent and Young Adult Cancer Survivors: A Commentary. JCO Precis Oncol 2022; 6:e2100462. [PMID: 35772048 PMCID: PMC9259142 DOI: 10.1200/po.21.00462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lauren V. Ghazal
- Center for Improving Patient and Population Health, School of Nursing, University of Michigan, Ann Arbor, MI
| | - Steve Cole
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - John M. Salsman
- Wake Forest School of Medicine, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC
| | - Lynne Wagner
- Wake Forest School of Medicine, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC
| | - Fenghai Duan
- Department of Biostatistics, Brown University, Providence, RI
| | - Ilana Gareen
- Department of Epidemiology and the Center for Statistical Sciences, Brown University School of Public Health, Providence, RI
| | - Lauren Lux
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Susan K. Parsons
- Institute for Clinical Research and Health Policy Studies, Tufts Cancer Center, Tufts Medical Center, Boston, MA
| | | | | | - Pinki Prasad
- Louisiana State University Health, New Orleans, LA
| | - Shira Dinner
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Brad Zebrack
- Division of Cancer Control and Population Sciences, School of Social Work, Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Hanalis-Miller T, Nudelman G, Ben-Eliyahu S, Jacoby R. The Effect of Pre-operative Psychological Interventions on Psychological, Physiological, and Immunological Indices in Oncology Patients: A Scoping Review. Front Psychol 2022; 13:839065. [PMID: 35572335 PMCID: PMC9094613 DOI: 10.3389/fpsyg.2022.839065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction The stressful pre-operative period exerts a profound impact on psychological, physiological and immunological outcomes. Oncological surgeries, in particular, elicit significantly higher stress responses than most other surgeries. Managing these responses through psychological interventions may improve long-term outcomes. The purpose of the current research was to review studies that have explored pre-operative psychological interventions in cancer patients in order to map the types of current interventions and provide an initial assessment of whether these interventions improved psychological, physiological, and/or immunological indices as well as long-term cancer outcomes. Methods A systematic literature search for studies that included pre-operative psychological interventions in oncology patients was conducted, using the databases PubMed and Web of Science. Inclusion criteria included studies pertaining to oncological surgery in adults, study designs that included a clearly defined pre-operative psychological intervention and control group. Results We found 44 studies, each using one of the following interventions: psychoeducation, cognitive interventions, relaxation techniques, integrated approaches. All the studies reported improved immediate post-operative psychological, physiological, and/or immunological outcomes. Only a few studies addressed long-term cancer outcomes, and only one reported improved survival. Conclusions Research on pre-operative interventions with cancer patients is missing systematic methods. Studies provide varying results, which makes it difficult to compare them and reach reliable conclusions. There is considerable heterogeneity in the literature regarding the specific intervention used, the timing of intervention, the characteristics of the patients studied and the outcome measures. In order to improve research in this field, including the measurement of long-term outcomes, we suggest some steps that should be taken in further research.
Collapse
Affiliation(s)
| | - Gabriel Nudelman
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel Aviv-Yafo, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Rebecca Jacoby
- Stress, Hope and Cope Laboratory, School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel Aviv-Yafo, Israel
| |
Collapse
|
22
|
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 2022; 237:2107-2127. [PMID: 35243626 DOI: 10.1002/jcp.30707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of β2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by β2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Sivanesan S, Taskén KA, Grytli HH. Association of β-Blocker Use at Time of Radical Prostatectomy With Rate of Treatment for Prostate Cancer Recurrence. JAMA Netw Open 2022; 5:e2145230. [PMID: 35080602 PMCID: PMC8792886 DOI: 10.1001/jamanetworkopen.2021.45230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Importance The perioperative period has gained attention as a window of opportunity to prevent cancer recurrence. Evidence in support of a role for nonselective β-blockers (nsBBs) in cancer treatment is increasing, and counteracting cancer recurrence associated with perioperative stress and catecholamine is one of the suggested mechanisms of action. Objective To explore whether use of nsBBs at the time of radical prostatectomy is associated with a lower rate of treatment for prostate cancer recurrence. Design, Setting, and Participants This cohort study analyzed prospectively collected data from the Cancer Registry of Norway, Norwegian Patient Registry, Norwegian Prescription Database, and Norwegian Cause of Death Registry. Of 12 298 eligible patients, this study included 11 117 treatment-naive patients with prostate cancer (ie, no prior hormonal therapy, radiotherapy, or chemotherapy) who underwent radical prostatectomy in Norway from January 1, 2008, to December 31, 2015, with a minimum progression-free follow-up of 6 months. Data analysis was performed from April 20, 2020, to April 30, 2021. Exposures Use of nsBBs and selective β-blockers (sBBs) at time of radical prostatectomy. Main Outcomes and Measures Treatment for cancer recurrence after radical prostatectomy (defined as initiation of hormonal therapy, radiotherapy, or chemotherapy) or, if no treatment was identified, cancer-specific mortality. Results The study included 11 117 men with prostate cancer (median [IQR] age at radical prostatectomy, 64.8 [60.4-68.3] years). Of these, 1622 (14.6%) later received treatment for cancer recurrence during a median follow-up of 4.3 years (IQR, 2.4-6.3 years). Use of nsBBs at time of surgery among 209 patients was significantly associated with a lower risk of treatment for cancer recurrence (adjusted hazard ratio [aHR], 0.64; 95% CI, 0.42-0.96; P = .03). No such association was observed for use of sBBs (aHR, 0.96; 95% CI, 0.84-1.11; P = .62). Subanalyses with (1) relaxed inclusion criteria allowing for inclusion also of patients with early progression (within 6 months) and (2) only the healthiest patients (Eastern Cooperative Oncology Group performance status of 0) supported the main findings. Conclusions and Relevance In this cohort study, use of nsBB but not sBBs at the time of radical prostatectomy was associated with less treatment initiation for cancer recurrence. This finding, together with accumulated preclinical and clinical evidence, provides a foundation for initiation of an interventional study.
Collapse
Affiliation(s)
- Shivanthe Sivanesan
- Department of Urology, Oslo University Hospital, Oslo, Norway
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Austlid Taskén
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
24
|
Chang A, Sloan EK, Antoni MH, Knight JM, Telles R, Lutgendorf SK. Biobehavioral Pathways and Cancer Progression: Insights for Improving Well-Being and Cancer Outcomes. Integr Cancer Ther 2022; 21:15347354221096081. [PMID: 35579197 PMCID: PMC9118395 DOI: 10.1177/15347354221096081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
The relationship between psychosocial factors and cancer has intrigued people for centuries. In the last several decades there has been an expansion of mechanistic research that has revealed insights regarding how stress activates neuroendocrine stress-response systems to impact cancer progression. Here, we review emerging mechanistic findings on key pathways implicated in the effect of stress on cancer progression, including the cellular immune response, inflammation, angiogenesis, and metastasis, with a primary focus on the mediating role of the sympathetic nervous system. We discuss converging findings from preclinical and clinical cancer research that describe these pathways and research that reveals how these stress pathways may be targeted via pharmacological and mind-body based interventions. While further research is required, the body of work reviewed here highlights the need for and feasibility of an integrated approach to target stress pathways in cancer patients to achieve comprehensive cancer treatment.
Collapse
Affiliation(s)
- Aeson Chang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC, Australia
| | - Michael H. Antoni
- Departments of Psychology, Psychiatry, and Behavioral Sciences, and Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jennifer M. Knight
- Department of Psychiatry and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel Telles
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Susan K. Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Anisman H, Kusnecov AW. Stress, immunity, and cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21:767-785. [PMID: 34508247 DOI: 10.1038/s41568-021-00395-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
The notion that stress and cancer are interlinked has dominated lay discourse for decades. More recent animal studies indicate that stress can substantially facilitate cancer progression through modulating most hallmarks of cancer, and molecular and systemic mechanisms mediating these effects have been elucidated. However, available clinical evidence for such deleterious effects is inconsistent, as epidemiological and stress-reducing clinical interventions have yielded mixed effects on cancer mortality. In this Review, we describe and discuss specific mediating mechanisms identified by preclinical research, and parallel clinical findings. We explain the discrepancy between preclinical and clinical outcomes, through pointing to experimental strengths leveraged by animal studies and through discussing methodological and conceptual obstacles that prevent clinical studies from reflecting the impacts of stress. We suggest approaches to circumvent such obstacles, based on targeting critical phases of cancer progression that are more likely to be stress-sensitive; pharmacologically limiting adrenergic-inflammatory responses triggered by medical procedures; and focusing on more vulnerable populations, employing personalized pharmacological and psychosocial approaches. Recent clinical trials support our hypothesis that psychological and/or pharmacological inhibition of excess adrenergic and/or inflammatory stress signalling, especially alongside cancer treatments, could save lives.
Collapse
Affiliation(s)
- Anabel Eckerling
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Liu SF, Lee CK, Huang KC, Lin LY, Hsieh MY, Lin TT. Long-Term Effect of Non-Selective Beta-Blockers in Patients With Rheumatoid Arthritis After Myocardial Infarction-A Nationwide Cohort Study. Front Pharmacol 2021; 12:726044. [PMID: 34621167 PMCID: PMC8490958 DOI: 10.3389/fphar.2021.726044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Rheumatoid arthritis (RA) is an independent nontraditional risk factor for incidence of myocardial infarction (MI) and post-MI outcome is impaired in the RA population. Use of beta-blockers improves the long-term survival after MI in the general population while the protective effect of beta-blockers in RA patients is not clear. We investigate the impact of beta-blockers on the long-term outcome of MI among RA patients. Methods: We identified RA subjects from the registries for catastrophic illness and myocardial infarction from 2003 to 2013. The enrolled subjects were divided into three groups according to the prescription of beta-blockers (non-user, non-selective, and β1-selective beta-blockers). The primary endpoint was all-cause mortality. We adjusted clinical variables and utilized propensity scores to balance confounding bias. Cox proportional hazards regression models were used to estimate the incidence of mortality in different groups. Results: A total of 1,292 RA patients with myocardial infarction were enrolled, where 424 (32.8%), 281 (21.7%), and 587 (45.5%) subjects used non-user, non-selective, and β1-selective beta-blockers, respectively. Use of beta-blockers was associated with lower risk of all-cause mortality after adjustment with comorbidities, medications (adjusted hazard ratio [HR] 0.871; 95% confidence interval [CI] 0.727–0.978), and propensity score (HR 0.882; 95% CI 0.724–0.982). Compared with β1-selective beta-blockers, treatment with non-selective beta-blockers (HR 0.856; 95% CI 0.702–0.984) was significantly related to lower risk of mortality. The protective effect of non-selective beta-blockers remained in different subgroups including sex and different anti-inflammatory drugs. Conclusion: Use of beta-blockers improved prognosis in post-MI patients with RA. Treatment with non-selective beta-blockers was significantly associated with reduced risk of mortality in RA patients after MI rather than β1-selective beta-blockers.
Collapse
Affiliation(s)
- Sheng-Fu Liu
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-chu, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kuo Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-chu, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chih Huang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-chu, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lian-Yu Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Mu-Yang Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-chu, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Ting-Tse Lin
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-chu, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
COVID-19 and Acute Coronary Syndromes: From Pathophysiology to Clinical Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4936571. [PMID: 34484561 PMCID: PMC8410438 DOI: 10.1155/2021/4936571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Acute coronary syndromes (ACS) are frequently reported in patients with coronavirus disease 2019 (COVID-19) and may impact patient clinical course and mortality. Although the underlying pathogenesis remains unclear, several potential mechanisms have been hypothesized, including oxygen supply/demand imbalance, direct viral cellular damage, systemic inflammatory response with cytokine-mediated injury, microvascular thrombosis, and endothelial dysfunction. The severe hypoxic state, combined with other conditions frequently reported in COVID-19, namely sepsis, tachyarrhythmias, anemia, hypotension, and shock, can induce a myocardial damage due to the mismatch between oxygen supply and demand and results in type 2 myocardial infarction (MI). In addition, COVID-19 promotes atherosclerotic plaque instability and thrombus formation and may precipitate type 1 MI. Patients with severe disease often show decrease in platelets count, higher levels of d-dimer, ultralarge von Willebrand factor multimers, tissue factor, and prolongation of prothrombin time, which reflects a prothrombotic state. An endothelial dysfunction has been described as a consequence of the direct viral effects and of the hyperinflammatory environment. The expression of tissue factor, von Willebrand factor, thromboxane, and plasminogen activator inhibitor-1 promotes the prothrombotic status. In addition, endothelial cells generate superoxide anions, with enhanced local oxidative stress, and endothelin-1, which affects the vasodilator/vasoconstrictor balance and platelet aggregation. The optimal management of COVID-19 patients is a challenge both for logistic and clinical reasons. A deeper understanding of ACS pathophysiology may yield novel research insights and therapeutic perspectives in higher cardiovascular risk subjects with COVID-19.
Collapse
|
29
|
Scheff NN, Saloman JL. Neuroimmunology of cancer and associated symptomology. Immunol Cell Biol 2021; 99:949-961. [PMID: 34355434 DOI: 10.1111/imcb.12496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Evolutionarily the nervous system and immune cells have evolved to communicate with each other to control inflammation and host responses against injury. Recent findings in neuroimmune communication demonstrate that these mechanisms extend to cancer initiation and progression. Lymphoid structures and tumors, which are often associated with inflammatory infiltrate, are highly innervated by multiple nerve types (e.g. sympathetic, parasympathetic, sensory). Recent preclinical and clinical studies demonstrate that targeting the nervous system could be a therapeutic strategy to promote anti-tumor immunity while simultaneously reducing cancer-associated neurological symptoms, such as chronic pain, fatigue, and cognitive impairment. Sympathetic nerve activity is associated with physiological or psychological stress, which can be induced by tumor development and cancer diagnosis. Targeting the stress response through suppression of sympathetic activity or activation of parasympathetic activity has been shown to drive activation of effector T cells and inhibition of myeloid derived suppressor cells within the tumor. Additionally, there is emerging evidence that sensory nerves may regulate tumor growth and metastasis by promoting or inhibiting immunosuppression in a tumor-type specific manner. Since neural effects are often tumor-type specific, further study is required to optimize clinical therapeutic strategies. This review examines the emerging evidence that neuroimmune communication can regulate anti-tumor immunity as well as contribute to development of cancer-related neurological symptoms.
Collapse
Affiliation(s)
- Nicole N Scheff
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jami L Saloman
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Ricon-Becker I, Fogel E, Cole SW, Haldar R, Lev-Ari S, Gidron Y. Tone it down: Vagal nerve activity is associated with pro-inflammatory and anti-viral factors in breast cancer – An exploratory study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 7:100057. [PMID: 35757058 PMCID: PMC9216392 DOI: 10.1016/j.cpnec.2021.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
In response to adverse social-environmental conditions, leukocytes gene expression profile is altered in a pattern recognized as the conserved transcriptional response to adversity (CTRA). This entails the up-regulated expression of pro-inflammatory genes and down-regulated expression of genes involved in type-I interferon (IFN) related anti-viral immunity. In contrast, vagal nerve activity is recognized as a significant anti-inflammatory modulator. In this work, we investigated the association between CTRA and vagal activity indicated by the standard deviation of all NN interval (SDNN), a measure of heart-rate variability, in breast cancer patients awaiting surgery (n = 16). This association was tested both at the molecular leukocyte transcription factor activity level, as well as at the cytokines serum levels. We found an association between higher SDNN and increased interferon (IFN) related anti-viral pathways, both on the leukocyte transcription factor level and serum protein level. Unexpectedly, we also found a positive correlation between higher SDNN and pro-inflammatory transcription factor activity and cytokine serum level, potentially suggesting that increased vagal activity was induced by increased inflammation, in the context of pre-surgical stress and the presence of malignant tissue. Transcription origin analysis (TOA) suggests a role for monocyte and B-cells in the anti-inflammatory and anti-metastatic effects induced by vagal nerve signaling. Larger prospective studies are needed to verify and elaborate on the results from this small cross-sectional study. Increased HRV is associated with increased anti-viral immunity. Unexpectedly, HRV is also associated with increased pro-inflammatory signaling. Findings are evident separately at transcription factor activity level as well as at cytokine serum levels. Macrophages and B cells emerge as the origin of these differences. Findings may shed light on novel pathways in which vagal nerve activity modulate cancer progression.
Collapse
Affiliation(s)
- Itay Ricon-Becker
- School of Psychological Sciences, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Corresponding author. Neuroimmunology Research Unit, Prof. Shamgar Ben-Eliyahu's Laboratory, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | - Efrat Fogel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Steve W. Cole
- Division of Hematology-Oncology, Department of Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, USA
| | - Rita Haldar
- School of Psychological Sciences, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Lev-Ari
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yori Gidron
- Faculty of Health Sciences and Welfare University of Haifa, Haifa, Israel
| |
Collapse
|
31
|
Pan C, Wu J, Zheng S, Sun H, Fang Y, Huang Z, Shi M, Liang L, Bin J, Liao Y, Chen J, Liao W. Depression accelerates gastric cancer invasion and metastasis by inducing a neuroendocrine phenotype via the catecholamine/β 2 -AR/MACC1 axis. Cancer Commun (Lond) 2021; 41:1049-1070. [PMID: 34288568 PMCID: PMC8504143 DOI: 10.1002/cac2.12198] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/11/2021] [Indexed: 01/07/2023] Open
Abstract
Background Depression is a common, easily ignored, accompanied disease of gastric cancer (GC) patients and is often observed with elevated plasma catecholamine levels. Depression frequently promotes GC progression and leads to poor clinical outcomes; however, the molecular mechanisms underlying depression‐induced GC progression remain poorly understood. We aimed to study the effects of depression on GC progression and explore possible mechanisms mediating the action of depression‐associated catecholamines on GC. Methods Depression states of GC patients were graded using the Patient Health Questionnaire‐9, and plasma catecholamine levels were examined by high performance liquid chromatography coupled with tandem mass spectrometry. Migrative and invasive GC cells were examined using transwell assays, and metastatic GC niches were imaged using bioluminescence technology in a depression mouse model established with chronic unpredictable mild stress. Mouse depression‐like behaviors were assessed through sucrose preference, forced swimming, and tail suspension tests. Characteristics of the neuroendocrine phenotype were observed via RT‐PCR, Western blotting, flow cytometry, and transmission electron microscopy. Results Fifty‐one GC patients (age: 53.61 ± 1.79 years; cancer duration: 3.71 ± 0.33 months; depression duration: 2.37 ± 0.38 months; male‐to‐female ratio: 1.55:1) were enrolled in the study. Depression grade was significantly higher in GC patients showing higher plasma levels of catecholamines (epinephrine: P = 0.018; noradrenaline: P = 0.009), higher oncogene metastasis‐associated in colon cancer‐1 (MACC1) level (P = 0.018), and metastasis (P < 0.001). Further, depression‐associated catecholamine specifically bound to the beta‐2 adrenergic receptor (β2‐AR) and upregulated MACC1 expression, and thus promoting neuroendocrine phenotypic transformation through direct binding between MACC1 and synaptophysin. Eventually, the neuroendocrine phenotypic transformation accelerated GC invasion in vitro and metastasis in vivo. However, β2‐AR antagonist ICI‐118,551 or MACC1 silencing effectively blocked the catecholamine‐induced neuroendocrine phenotypic transformation and eliminated depression‐enhanced GC migration and invasion. Moreover, β2‐AR blocking or MACC1 silencing prevented GC metastasis attributed to a neuroendocrine phenotype in a depression mouse model. Conclusions Catecholamine‐induced neuroendocrine phenotypes of GC cells led to depression‐accelerated GC invasion and metastasis via the β2‐AR/MACC1 axis, while β2‐AR antagonist or MACC1 silencing could reverse it, showing promising potential therapeutic strategies for improving the outcome of GC patients with comorbid depression.
Collapse
Affiliation(s)
- Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Sout4hern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Sout4hern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
32
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
33
|
Mravec B. Neurobiology of Cancer: Introduction of New Drugs in the Treatment and Prevention of Cancer. Int J Mol Sci 2021; 22:6115. [PMID: 34204103 PMCID: PMC8201304 DOI: 10.3390/ijms22116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Research on the neurobiology of cancer, which lies at the border of neuroscience and oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate processes associated with cancer initiation and progression. This research has also shown that several drugs which modulate interactions between the nervous system and the tumor micro- and macroenvironments significantly reduced the progression of cancer in animal models. Encouraging results were also provided by prospective clinical trials investigating the effect of drugs that reduce adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as well as in humans. However, even if many experimental and clinical findings have confirmed the preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system on processes related to cancer initiation and progression, several questions remain unanswered. Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss questions that need to be answered before their introduction into conventional cancer treatment and prevention.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
34
|
Diaz A, Taub CJ, Lippman ME, Antoni MH, Blomberg BB. Effects of brief stress management interventions on distress and leukocyte nuclear factor kappa B expression during primary treatment for breast cancer: A randomized trial. Psychoneuroendocrinology 2021; 126:105163. [PMID: 33611132 PMCID: PMC9295339 DOI: 10.1016/j.psyneuen.2021.105163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND A randomized controlled trial (RCT) of 5-week stress management interventions teaching cognitive behavioral therapy (CBT) or relaxation training (RT) techniques showed decreases in stress and serum inflammatory markers over 12 months in women undergoing treatment for breast cancer (BCa). To understand the molecular mechanisms involved, we examined the effects of these interventions on the transcription factor NF-κB DNA binding activity in leukocytes in parallel with circulating inflammatory markers, stress management skill efficacy and multiple distress indicators. METHODS This is a secondary analysis using blood samples of 51 BCa patients (Stage 0-III) with high cancer-specific distress selected from a completed RCT (NCT02103387). Women were randomized to one of three conditions, CBT, RT or health education control (HE). Blood samples and self-reported distress measures (Affects Balance Scale-Negative Affect [ABS-NA], Impact of Events Scale-hyperarousal [IES-H] and intrusive thoughts [IES-I]) were collected at baseline (T0) and 12-month follow-up (T2). Self-reported distress measures and perceived stress management skills (PSMS) were also measured immediately post-intervention (baseline + 2 months: T1). Repeated measures analyses compared changes in distress and NF-κB expression among conditions, controlling for age, stage of cancer, days from surgery to baseline, and receipt of chemotherapy and radiation. Regression analyses related T0 to T2 change in NF-κB expression with T0 to T1 changes in self-reported PSMS and distress measures. Exploratory regression analyses also associated change in NF-κB expression with change in serum cytokines (IL-1β, IL-6 and TNF-α); and s100A8/A9, a circulating inflammatory marker important in breast cancer progression. RESULTS There was a significant condition (CBT/RT, HE)xtime (T0, T2) effect on NF-κB, F(1, 39)= 5.267, p = 0.036, wherein NF-κB expression significantly increased over time for HE but did not change for RT or CBT. Greater increases in PSMS from T0 to T1 were associated with less increase in NF-κB expression over 12 months (β = -0.426, t(36) = -2.637, p = 0.048). We found that women assigned to active intervention (CBT/RT) had significant decreases in ABS-NA (F(1, 40)= 6.537, p = 0.028) and IES-I (F(1, 40)= 4.391, p = 0.043) from T0 to T1 compared to women assigned to HE, who showed no change over time (p's > 0.10). For women assigned to CBT or RT, lower NF-κB expression at T2 was related to less ABS-NA, IES-H, and IES-I, all p's < 0.05, although T0-T1 change in distress was not related to T0-T2 change in NF-κB expression for those in an active intervention. CONCLUSIONS Brief CBT or RT stress management interventions can mitigate increases in pro-inflammatory leukocyte NF-κB binding over 12 months of primary treatment in highly distressed BCa patients. These effects are likely brought about by improved stress management skills.
Collapse
Affiliation(s)
- Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chloe J Taub
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael H Antoni
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
35
|
Tai CJ, Yang YH, Tseng TG, Chang FR, Wang HC. Association Between Digoxin Use and Cancer Incidence: A Propensity Score-Matched Cohort Study With Competing Risk Analysis. Front Pharmacol 2021; 12:564097. [PMID: 33867973 PMCID: PMC8044813 DOI: 10.3389/fphar.2021.564097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Previous studies neglected death as a critical competing risk while estimating the cancer risk for digoxin users. Therefore, the current study aims to assess the effectiveness of digoxin on cancer prevention by competing risk analysis. Methods: We performed a population-based retrospective cohort study using the Taiwan National Health Insurance Research database between 1998 and 2010. After one-to-one propensity score-matching from 36,160 patients with defined criteria, we enrolled 758 patients both in digoxin and β-blocker group for further analysis. Results: The results showed that the digoxin group had higher all-cause mortality than the β-blocker group in the 4- year (10.4 vs. 4.9%) and 8 years (13.6 vs. 7.0%) follow-up. The subdistribution HR of cancer incidence in the digoxin group compared to the β-blocker group was 1.99 (95% confidence interval [CI]: 1.22-3.01) and 1.46 (95% CI: 1.01-2.15) in the 4 years and 8 years follow-up, respectively. Conclusions: The result of our study showed the usage of digoxin has no benefit in cancer prevention compared with β-blocker. The possibility of β-blocker as a new drug candidate for cancer prevention needs further clinical evaluation. The current study also emphasized the necessity of competing risk analysis applying to similar clinical researches.
Collapse
Affiliation(s)
- Chi-Jung Tai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Family Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| | - Yi-Hsin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzyy-Guey Tseng
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
37
|
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021; 21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.
Collapse
Affiliation(s)
- Maya Schiller
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Asya Rolls
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
38
|
Ben-Eliyahu S. Tumor Excision as a Metastatic Russian Roulette: Perioperative Interventions to Improve Long-Term Survival of Cancer Patients. Trends Cancer 2020; 6:951-959. [DOI: 10.1016/j.trecan.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 01/27/2023]
|
39
|
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome?-Lessons Learned From Cancer. Front Immunol 2020; 11:588724. [PMID: 33117402 PMCID: PMC7561388 DOI: 10.3389/fimmu.2020.588724] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 infection is a new threat to global public health in the 21st century (2020), which has now rapidly spread around the globe causing severe pneumonia often linked to Acute Respiratory Distress Syndrome (ARDS) and hyperinflammatory syndrome. SARS-CoV-2 is highly contagious through saliva droplets. The structural analysis suggests that the virus enters human cells through the ligation of the spike protein to angiotensin-converting enzyme 2 (ACE2). The progression of Covid-19 has been divided into three main stages: stage I—viral response, stage II—pulmonary phase, and stage III—hyperinflammation phase. Once the patients enter stage III, it will likely need ventilation and it becomes difficult to manage. Thus, it will be of paramount importance to find therapies to prevent or slow down the progression of the disease toward stage III. The key event leading to hyperinflammation seems to be the activation of Th-17 immunity response and Cytokine storm. B2-adrenergic receptors (B2ARs) are expressed on airways and on all the immune cells such as macrophages, dendritic cells, B and T lymphocytes. Blocking (B2AR) has been proven, also in clinical settings, to reduce Th-17 response and negatively modulate inflammatory cytokines including IL-6 while increasing IFNγ. Non-selective beta-blockers are currently used to treat several diseases and have been proven to reduce stress-induced inflammation and reduce anxiety. For these reasons, we speculate that targeting B2AR in the early phase of Covid-19 might be beneficial to prevent hyperinflammation.
Collapse
Affiliation(s)
- Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico "Fondazione G. Pascale", Naples, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Giuseppe Palma
- Animal Facility, Istituto Nazionale Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico "Fondazione G. Pascale", Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) "Fondazione G. Pascale", Naples, Italy
| | - Vincenzo Desiderio
- Section of Histology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
40
|
Guo SW, Martin DC. The perioperative period: a critical yet neglected time window for reducing the recurrence risk of endometriosis? Hum Reprod 2020; 34:1858-1865. [PMID: 31585460 DOI: 10.1093/humrep/dez187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
While surgery is commonly the management of symptomatic endometriosis when patients do not respond to medical or supportive therapy, recurrence after surgery poses a serious challenge, and repeat surgery increases the risk of premature ovarian failure, adhesion and organ injury. Conceivably, the recurrent endometriotic lesions could arise from minimal residual lesions (MRLs) or from de novo lesions. However, several lines of evidence suggest that the former is more likely. So far, most, if not all, efforts to combat recurrence have been focused on postoperative medication of hormonal drugs to reduce recurrence risk through lesional dormancy and possibly atrophy. However, the perioperative period may exert a disproportionally high impact on the risk of recurrence; it is likely to be amendable for possible intervention but has been generally neglected. Indeed, many perioperative factors are known to or conceivably could facilitate the recurrence of endometriosis through the suppression of cell-mediated immunity due to the activation of adrenergic signaling and the release of prostaglandins. Perioperative use of β-blockers and/or nuclear factor κB/jCycloxygenase 2 (NF-κB/COX-2) inhibitors may boost the cell-mediated immunity suppressed by surgery, resulting in the partial or even complete removal of MRLs and reduced recurrence risk. This is both biologically plausible and supported by a recent experimental study. We call for more research on possible perioperative interventions to reduce the recurrence risk of endometriosis. The potential payoff might be a substantial reduction in the risk of recurrence and cost when compared with the traditional approach of postoperative intervention.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Dan C Martin
- School of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Institutional Review Board, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
41
|
Dai S, Mo Y, Wang Y, Xiang B, Liao Q, Zhou M, Li X, Li Y, Xiong W, Li G, Guo C, Zeng Z. Chronic Stress Promotes Cancer Development. Front Oncol 2020; 10:1492. [PMID: 32974180 PMCID: PMC7466429 DOI: 10.3389/fonc.2020.01492] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Stress is an inevitable part of life. Chronic stress on account of reasons like adversity, depression, anxiety, or loneliness/social isolation can endanger human health. Recent studies have shown that chronic stress can induce tumorigenesis and promote cancer development. This review describes the latest progress of research on the molecular mechanisms by which chronic stress promotes cancer development. Primarily, chronic stress activates the classic neuroendocrine system [the hypothalamic-pituitary-adrenal (HPA) axis] and the sympathetic nervous system (SNS) and leads to a decline and dysfunction of the prefrontal cortex and the hippocampus under stress. Stress hormones produced during the activation of both the HPA axis and the SNS can promote tumorigenesis and cancer development through a variety of mechanisms. Chronic stress can also cause corresponding changes in the body's immune function and inflammatory response, which is significant because a long-term inflammatory response and the decline of the body's immune surveillance capabilities are implicated in tumorigenesis. Stress management is essential for both healthy people and cancer patients. Whether drugs that limit the signaling pathways downstream of the HPA axis or the SNS can suppress chronic stress-induced cancers or prolong patient survival deserves further study.
Collapse
Affiliation(s)
- Shirui Dai
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Abstract
Communication between the nervous and immune systems is required for the body to regulate physiological homeostasis. Beta-adrenergic receptors expressed on immune cells mediate the modulation of immune response by neural activity. Activation of beta-adrenergic signaling results in suppression of antitumor immune response and limits the efficacy of cancer immunotherapy. Beta-adrenergic signaling is also involved in regulation of hematopoietic reconstitution, which is critical to the graft-versus-tumor (GVT) effect and to graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT). In this review, the function of beta-adrenergic signaling in mediating tumor immunosuppression will be highlighted. We will also discuss the implication of targeting beta-adrenergic signaling to improve the efficacy of cancer immunotherapy including the GVT effect, and to diminish the adverse effects including GVHD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Xuefang Cao
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
43
|
Haldar R, Ricon-Becker I, Radin A, Gutman M, Cole SW, Zmora O, Ben-Eliyahu S. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: A randomized controlled trial. Cancer 2020; 126:3991-4001. [PMID: 32533792 DOI: 10.1002/cncr.32950] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Preclinical studies have implicated excess release of catecholamines and prostaglandins in the mediation of prometastatic processes during surgical treatment of cancer. In this study, we tested the combined perioperative blockade of these pathways in patients with colorectal cancer (CRC). METHODS In a randomized, double-blind, placebo-controlled biomarker trial involving 34 patients, the β-blocker propranolol and the COX2-inhibitor etodolac were administered for 20 perioperative days, starting 5 days before surgery. Excised tumors were subjected to whole genome messenger RNA profiling and transcriptional control pathway analyses. RESULTS Drugs were well-tolerated, with minor complications in both the treatment group and the placebo group. Treatment resulted in a significant improvement (P < .05) of tumor molecular markers of malignant and metastatic potential, including 1) reduced epithelial-to-mesenchymal transition, 2) reduced tumor infiltrating CD14+ monocytes and CD19+ B cells, and 3) increased tumor infiltrating CD56+ natural killer cells. Transcriptional activity analyses indicated a favorable drug impact on 12 of 19 a priori hypothesized CRC-related transcription factors, including the GATA, STAT, and EGR families as well as the CREB family that mediates the gene regulatory impact of β-adrenergic- and prostaglandin-signaling. Alterations observed in these transcriptional activities were previously associated with improved long-term clinical outcomes. Three-year recurrence rates were assessed for long-term safety analyses. An intent-to-treat analysis revealed that recurrence rates were 12.5% (2/16) in the treatment group and 33.3% (6/18) in the placebo group (P = .239), and in protocol-compliant patients, recurrence rates were 0% (0/11) in the treatment group and 29.4% (5/17) in the placebo group (P = .054). CONCLUSIONS The favorable biomarker impacts and clinical outcomes provide a rationale for future randomized placebo-controlled trials in larger samples to assess the effects of perioperative propranolol/etodolac treatment on oncological clinical outcomes.
Collapse
Affiliation(s)
- Rita Haldar
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Arielle Radin
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Mordechai Gutman
- Department of Surgery and Transplantation, Sheba Medical Center, Ramat-Gan, Israel
| | - Steve W Cole
- Departments of Medicine and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Oded Zmora
- Department of Surgery, Shamir Medical Center, Be'er-Ya'akov, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
44
|
Wu J, Meng X, Jia Y, Chai J, Wang J, Xue X, Dang T. Long non-coding RNA HNF1A-AS1 upregulates OTX1 to enhance angiogenesis in colon cancer via the binding of transcription factor PBX3. Exp Cell Res 2020; 393:112025. [PMID: 32325080 DOI: 10.1016/j.yexcr.2020.112025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Colon cancer shows characteristics of metastasis, which is associated with angiogenesis. Increasing evidence highlights long non-coding RNAs (lncRNAs) as important participants in angiogenesis of cancers, including colon cancer. Hence, this study investigated the role of HNF1A-AS1 in angiogenesis of colon cancer. RT-qPCR and Western blot analysis were applied to detect HNF1A-AS1 and OTX1 expression in colon cancer tissues and cell lines. Then the interactions among HNF1A-AS1, PBX3, OTX1 and ERK/MAPK pathway were evaluated with RNA pull-down, RIP, ChIP and dual-luciferase reporter gene assays. Next, HCT116 and SW620 cells were treated with si-HNF1A-AS1 and/or oe-OTX1 plasmids to assess the effects of HNF1A-AS1 and OTX1 on angiogenesis, which was further evaluated in nude mice injected with SW620 cells transfected with sh-HNF1A-AS1 or sh-OTX1 lentivirus. HNF1A-AS1 and OTX1 were highly expressed in colon cancer. Silencing of HNF1A-AS1 inhibited angiogenesis of colon cancer in vivo and in vitro. HNF1A-AS1 increased the OTX1 expression by binding to transcription factor PBX3 to promote angiogenesis in colon cancer. Further, HNF1A-AS1 upregulated OTX1 to activate the ERK/MAPK pathway. Altogether, our findings identified HNF1A-AS1 as a tumor-promoting RNA in colon cancer, which could serve as a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Jinbao Wu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| | - Yanbin Jia
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China; Nursing College of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| | - Jing Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| | - Xiaohui Xue
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| |
Collapse
|
45
|
Li G, Ma X, Xu L. The roles of zinc finger proteins in non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat Rev Clin Oncol 2020; 17:313-326. [PMID: 32066936 DOI: 10.1038/s41571-019-0319-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The immediate perioperative period (days before and after surgery) is hypothesized to be crucial in determining long-term cancer outcomes: during this short period, numerous factors, including excess stress and inflammatory responses, tumour-cell shedding and pro-angiogenic and/or growth factors, might facilitate the progression of pre-existing micrometastases and the initiation of new metastases, while simultaneously jeopardizing immune control over residual malignant cells. Thus, application of anticancer immunotherapy during this critical time frame could potentially improve patient outcomes. Nevertheless, this strategy has rarely been implemented to date. In this Perspective, we discuss apparent contraindications for the perioperative use of cancer immunotherapy, suggest safe immunotherapeutic and other anti-metastatic approaches during this important time frame and specify desired characteristics of such interventions. These characteristics include a rapid onset of immune activation, avoidance of tumour-promoting effects, no or minimal increase in surgical risk, resilience to stress-related factors and minimal induction of stress responses. Pharmacological control of excess perioperative stress-inflammatory responses has been shown to be clinically feasible and could potentially be combined with immune stimulation to overcome the direct pro-metastatic effects of surgery, prevent immune suppression and enhance immunostimulatory responses. Accordingly, we believe that certain types of immunotherapy, together with interventions to abrogate stress-inflammatory responses, should be evaluated in conjunction with surgery and, for maximal effectiveness, could be initiated before administration of adjuvant therapies. Such strategies might improve the overall success of cancer treatment.
Collapse
|
47
|
Paravertebral block with propofol anaesthesia does not improve survival compared with sevoflurane anaesthesia for breast cancer surgery: independent discussion of a randomised controlled trial. Br J Anaesth 2020; 124:19-24. [DOI: 10.1016/j.bja.2019.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
|
48
|
Franzoni MS, Brandi A, de Oliveira Matos Prado JK, Elias F, Dalmolin F, de Faria Lainetti P, Prado MCM, Leis-Filho AF, Fonseca-Alves CE. Tumor-infiltrating CD4 + and CD8 + lymphocytes and macrophages are associated with prognostic factors in triple-negative canine mammary complex type carcinoma. Res Vet Sci 2019; 126:29-36. [PMID: 31425936 DOI: 10.1016/j.rvsc.2019.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the association of CD3+, CD4+, and CD8+ T cells and tumor-infiltrating macrophages (TIMs) with the clinical parameters of female dogs harboring mammary gland tumors. Thirty female dogs affected with mammary carcinomas were used, and all tumors were histologically classified as complex carcinoma and were triple-negative phenotype determined by immunohistochemistry. Freshly frozen sections were used to determine CD3+, CD4+ and CD8+ T cells by immunohistochemistry, and TIMs were determined by immunofluorescence assays. Ten out of the 30 dogs showed lymph node metastasis at diagnosis. Fifteen dogs had a tumor of grade I (15/30), nine (9/30) had a tumor of grade II and six (6/30) had a tumor of grade III. The mean overall survival was 680.5 days (± 200.4). Dogs with sentinel lymph node positivity (10/30) (P = .0035) and dogs that developed metastasis (P = .0001) showed a shorter survival time. In addition, dogs with a high level of inflammatory infiltrate in tumor tissues presented a shorter survival time (P = .0001) than that of other dogs. Dogs with tumors containing higher numbers of CD3+ T cells (P = .001), CD4+ T cells (P = .001), or TIM cells (P < .0001) showed a shorter survival time than that of other dogs. Our results suggested that characteristics of immune cell infiltrates, including CD3+ T cells, CD4+ T cells, and TIMs, can be used as potential prognostic indicators for predicting clinical outcomes in dogs with mammary gland tumors, particularly tumors with a complex histological subtype and triple-negative phenotype.
Collapse
Affiliation(s)
- Mayara Simão Franzoni
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Andressa Brandi
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science São Paulo State University - UNESP, Botucatu, SP, Brazil
| | | | - Fabiana Elias
- Superintendencia Unidade Hospitalar Veterinaria Universitaria, Federal University of the Fronteira Sul, Realeza, Brazil
| | - Fabíola Dalmolin
- Superintendencia Unidade Hospitalar Veterinaria Universitaria, Federal University of the Fronteira Sul, Realeza, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Maria Carolina Mangini Prado
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science São Paulo State University - UNESP, Botucatu, SP, Brazil; Universidade Paulista - UNIP, Bauru, SP, Brazil.
| |
Collapse
|
49
|
Cata JP, Corrales G, Speer B, Owusu-Agyemang P. Postoperative acute pain challenges in patients with cancer. Best Pract Res Clin Anaesthesiol 2019; 33:361-371. [DOI: 10.1016/j.bpa.2019.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
|
50
|
Lamkin DM, Srivastava S, Bradshaw KP, Betz JE, Muy KB, Wiese AM, Yee SK, Waggoner RM, Arevalo JMG, Yoon AJ, Faull KF, Sloan EK, Cole SW. C/EBPβ regulates the M2 transcriptome in β-adrenergic-stimulated macrophages. Brain Behav Immun 2019; 80:839-848. [PMID: 31132458 PMCID: PMC6660400 DOI: 10.1016/j.bbi.2019.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
At the M2 terminal of the macrophage activation spectrum, expression of genes is regulated by transcription factors that include STAT6, CREB, and C/EBPβ. Signaling through β-adrenergic receptors drives M2 activation of macrophages, but little is known about the transcription factors involved. In the present study, we found that C/EBPβ regulates the signaling pathway between β-adrenergic stimulation and expression of Arg1 and several other specific genes in the greater M2 transcriptome. β-adrenergic signaling induced Cebpb gene expression relatively early with a peak at 1 h post-stimulation, followed by peak Arg1 gene expression at 8 h. C/EBPβ transcription factor activity was elevated at the enhancer region for Arg 1 at both 4 and 8 h after stimulation but not near the more proximal promoter region. Knockdown of Cebpb suppressed the β-adrenergic-induced peak in Cebpb gene expression as well as subsequent accumulation of C/EBPβ protein in the nucleus, which resulted in suppression of β-adrenergic-induced Arg1 gene expression. Analysis of genome-wide transcriptional profiles identified 20 additional M2 genes that followed the same pattern of regulation by β-adrenergic- and C/EBPβ-signaling. Promoter-based bioinformatic analysis confirmed enrichment of binding motifs for C/EBPβ transcription factor across these M2 genes. These findings pinpoint a mechanism that may be targeted to redirect the deleterious influence of β-adrenergic signaling on macrophage involvement in M2-related diseases such as cancer.
Collapse
Affiliation(s)
- Donald M Lamkin
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles 90095, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, United States.
| | - Shreyesi Srivastava
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Karen P Bradshaw
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Jenna E Betz
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Kevin B Muy
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Anna M Wiese
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Shelby K Yee
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Rebecca M Waggoner
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Jesusa M G Arevalo
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States; Divison of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, United States
| | - Alexander J Yoon
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Kym F Faull
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles 90095, United States; Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States
| | - Erica K Sloan
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, United States; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3002, Australia
| | - Steve W Cole
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles 90095, United States; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles 90095, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, United States; Divison of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, United States
| |
Collapse
|