1
|
Xu K, Liu X, Zeng Q, Liu Y, Shan L, Ji L, Wu Y, Wu J, Chen Y, Li Y, Huang S, Jiang C, Hong X, Wu C, Wang Z. Cannabinoid CB 2 receptor controls chronic itch by regulating spinal microglial activation and synaptic transmission. Cell Rep 2025; 44:115559. [PMID: 40222011 DOI: 10.1016/j.celrep.2025.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic itch is a devastating clinical condition, and its central mechanisms remain poorly understood. We reported that spinal cannabinoid receptor type 2 (CB2R) activation exerts antipruritic effects and that itch escalates in mice lacking Cnr2 in mouse models of dermatitis and psoriasis. In the spinal cord, CB2R is mainly expressed in microglia, and microglial ablation or inhibition attenuated chronic itch, suggesting that microglial activation contributes to chronic itch. Particularly, conditional Cnr2 deletion in microglia also exacerbated chronic itch in mice. Single-cell RNA sequencing and molecular mechanistic studies suggest that CB2R activation reprogrammed microglia by inducing anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) and reducing itch-related p38 and signal transducer and activator of transcription 1 (STAT1) phosphorylation. Finally, CB2R activation suppressed neuronal excitability and synaptic transmission in gastrin-releasing peptide (GRP)/GRP receptor (GRPR) interneurons and ascending projection neurons by inhibiting microglia-derived cytokines. These findings demonstrate that microglial activation contributes to chronic itch, while CB2R activation in microglia alleviates chronic itch via neuro-immune interactions.
Collapse
Affiliation(s)
- Kangtai Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuefei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qian Zeng
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yaqi Liu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Leyan Shan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luyao Ji
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yifei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yiming Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yitong Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Songqiang Huang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Chaoran Wu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; SUSTech Homeostatic Medicine Institute, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Zhu X, Dai X, Chen W, Li Y, Liu Y, Shan C, Wang J, Meng J. Chi3l1 Knockout Mitigates Chronic Itch and Cutaneous Inflammation in Mice. J Invest Dermatol 2025; 145:975-979.e4. [PMID: 39366519 DOI: 10.1016/j.jid.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Xingyun Zhu
- School of Life Sciences, Henan University, Henan, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Yanqing Li
- School of Life Sciences, Henan University, Henan, China
| | - Yang Liu
- School of Life Sciences, Henan University, Henan, China
| | - Chunxu Shan
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
3
|
Emmert H, Rademacher F, Hübenthal M, Gläser R, Norsgaard H, Weidinger S, Harder J. Type 2 Cytokine-Dependent Skin Barrier Regulation in Personalized 2-Dimensional and 3-Dimensional Skin Models of Atopic Dermatitis: A Pilot Study. JID INNOVATIONS 2025; 5:100309. [PMID: 39385749 PMCID: PMC11460444 DOI: 10.1016/j.xjidi.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 10/12/2024] Open
Abstract
Keratinocytes (KCs) from healthy donors stimulated with type 2 cytokines are often used to experimentally study atopic dermatitis (AD) inflammatory responses. Owing to potential intrinsic alterations, it seems favorable to use KCs from patients with AD. KCs isolated from hair follicles offer a noninvasive approach to investigate AD-derived KCs. To evaluate whether such AD-derived KCs are suitable to mimic AD inflammatory responses, we compared hair follicle-derived KCs from healthy donors with those from patients with AD in a type 2 cytokine environment. Stimulation of AD-derived KCs with IL-4 and IL-13 induced higher expression changes of AD-associated markers than that of healthy KCs. The combination of IL-4 and IL-13 generally induced highest expression changes, but IL-13 alone also induced significant changes of AD-specific markers. Similar to the 2-dimensional cultures, IL-4/IL-13 stimulation of 3-dimensional skin models generated with AD-derived KCs modulated the expression of several AD-relevant factors. Whole-transcriptome analysis revealed that IL-4 and IL-13 acted similarly on these 3-dimensional skin models. Histologically, IL-13 alone and in combination with IL-4 increased epidermal spongiosis, a histological hallmark of AD skin. Taken together, our pilot study suggests that hair follicle-derived KCs from patients with AD represent a useful model system to study AD-related inflammation in a personalized in vitro model.
Collapse
Affiliation(s)
- Hila Emmert
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Rademacher
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Hübenthal
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hanne Norsgaard
- Department of Translational Sciences, Research & Early Development, LEO Pharma, Ballerup, Denmark
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Soung J, Ständer S, Gutermuth J, Pau-Charles I, Dawson Z, Yang FE, Sun L, Pierce E, Elmaraghy H, Stein-Gold L. Lebrikizumab monotherapy impacts on quality of life scores through improved itch and sleep interference in two Phase 3 trials. J DERMATOL TREAT 2024; 35:2329240. [PMID: 38679419 DOI: 10.1080/09546634.2024.2329240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Lebrikizumab improved itch, interference of itch on sleep, and quality of life (QoL) in patients with moderate-to-severe atopic dermatitis (AD), in two Phase 3 trials at 16 weeks compared to placebo. OBJECTIVES We assess improvements in itch and sleep interference due to itch and their impact on QoL measurements after treatment. METHODS Data were analyzed from ADvocate1 (NCT04146363) and ADvocate2 (NCT04178967) in patients with moderate-to-severe AD. QoL was evaluated using Dermatology Life Quality Index (DLQI) at Week 16 in patients (>16 years of age) who were itch responders/non-responders (defined as ≥4-point improvement in Pruritus Numeric Rating Scale) or Sleep-Loss Scale responders/non-responders (defined as ≥2-point improvement in itch interference on sleep). RESULTS In ADvocate1 and ADvocate2, significantly greater proportions of itch responders had a clinically meaningful improvement in measures related to QoL (DLQI scores (0/1), ≤5 DLQI total score and ≥4-point DLQI improvement) compared to itch non-responders. In both studies, a significantly greater proportion of Sleep-Loss Scale responders, reported a DLQI score of (0/1), DLQI total score of ≤5 and DLQI improvement of ≥4 points compared to Sleep-Loss Scale non-responders. CONCLUSIONS Improvement in itch and sleep interference due to itch is associated with improvement in the QoL of patients after treatment with lebrikizumab for moderate-to-severe AD. ClinicalTrials.gov registration NCT04146363 (ADvocate1) and NCT04178967 (ADvocate2).
Collapse
Affiliation(s)
- Jennifer Soung
- Southern California Dermatology, Inc, Santa Ana, CA, USA
| | - Sonja Ständer
- University Hospital Westphalian Wilhems University, Munster, Germany
| | - Jan Gutermuth
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | | | - Zach Dawson
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Luna Sun
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Linda Stein-Gold
- Clinic for Dermatology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
5
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
6
|
Wiegmann H, Renkhold L, Zeidler C, Agelopoulos K, Ständer S. Interleukin Profiling in Atopic Dermatitis and Chronic Nodular Prurigo. Int J Mol Sci 2024; 25:8445. [PMID: 39126011 PMCID: PMC11313010 DOI: 10.3390/ijms25158445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The clinical manifestations of atopic dermatitis (AD) and chronic nodular prurigo (CNPG) include pruritus and eczema/lesions, posing significant challenges for patients. Th2 cells and ILC2, marked by cytokine production-particularly IL-4/13-are crucial therapeutic targets. Despite displaying a dose-dependent lack of pruritus induction post-injection, IL-13 acts through the IL-13Rα1 and IL-13Rα2 receptor system. Our study focused on investigating ex vivo skin biopsies in AD (n = 17), CNPG (n = 14) and healthy controls (HC; n = 10), examining the gene expression landscape of interleukins linked with pruritus (IL-13, IL-4, IL-31) and their corresponding receptors. Compared to HC, results revealed a significant upregulation of IL-4, IL-13, and IL-13RA1 in AD, whereas CNPG did not show increased IL13 expression. Notably, the decoy receptor IL-13RA2 displayed intriguing patterns, with AD showing a marked increase compared to both HC and CNPG. Positive correlations between receptor expression and itch intensity and hyperkinesis sensation underscore clinical relevance, potentially serving as biomarkers. The findings suggest a pivotal role of IL-4 and IL-13, along with IL-13RA1, in pruritus pathogenesis in both entities, while IL-13 upregulation in AD is countered by IL-13RA2. The comparable expression of IL-13RA2 to HC in CNPG suggests the absence of this regulatory mechanism, potentially worsening the disease and leading to prolonged scratching behavior. These insights illuminate the intricate interplay of interleukins and receptors in different pruritus phenotypes, laying the groundwork for understanding underlying mechanisms and offering avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Henning Wiegmann
- Section Pruritus Medicine and Center for Chronic Pruritus, Department of Dermatology, University of Muenster, 48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
7
|
Wang R, Dai X, Chen W, Wang J, Wang H, Yan X, Zhang W, Fan Q, Li L, Wang J, Meng J. Matrix Metalloproteinase 9 Plays a Crucial Role in Inflammation and Itch in Allergic Contact Dermatitis by Regulating Toll-Like Receptor 2/1 Signaling. J Invest Dermatol 2024; 144:1893-1897.e6. [PMID: 38296022 DOI: 10.1016/j.jid.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Ruizhen Wang
- School of Life Sciences, Henan University, Henan, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jinhai Wang
- School of Life Sciences, Henan University, Henan, China
| | - Haoran Wang
- School of Life Sciences, Henan University, Henan, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, Henan, China
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Henan, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, Henan, China
| | - Lianlian Li
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
8
|
Zhang W, Chen W, Shan C, Wang R, Li L, Wang J, Meng J. IL-13 Activates Cutaneous Schwann Cells to Promote CCL7-Dependent Pruritic Signaling in Atopic Dermatitis. J Invest Dermatol 2023; 143:2322-2327.e9. [PMID: 37187410 DOI: 10.1016/j.jid.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Wenhao Zhang
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Chunxu Shan
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Ruizhen Wang
- School of Life Sciences, Henan University, Henan, China
| | - Lianlian Li
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Life Sciences, Henan University, Henan, China; School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
9
|
Li DJ, Zhong ZJ, Wang XL, Wei N, Zhao SJ, Shan TT, Liu YP, Yu YQ. Chemokine receptor CXCR2 in primary sensory neurons of trigeminal ganglion mediates orofacial itch. Front Mol Neurosci 2023; 16:1279237. [PMID: 37953876 PMCID: PMC10637378 DOI: 10.3389/fnmol.2023.1279237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The CXCR2 chemokine receptor is known to have a significant impact on the initiation and control of inflammatory processes. However, its specific involvement in the sensation of itch is not yet fully understood. In this study, we aimed to elucidate the function of CXCR2 in the trigeminal ganglion (TG) by utilizing orofacial itch models induced by incision, chloroquine (CQ), and histamine. Our results revealed a significant up-regulation of CXCR2 mRNA and protein expressions in the primary sensory neurons of TG in response to itch stimuli. The CXCR2 inhibitor SB225002 resulted in notable decrease in CXCR2 protein expression and reduction in scratch behaviors. Distal infraorbital nerve (DION) microinjection of a specific shRNA virus inhibited CXCR2 expression in TG neurons and reversed itch behaviors. Additionally, the administration of the PI3K inhibitor LY294002 resulted in a decrease in the expressions of p-Akt, Akt, and CXCR2 in TG neurons, thereby mitigating pruritic behaviors. Collectively, we report that CXCR2 in the primary sensory neurons of trigeminal ganglion contributes to orofacial itch through the PI3K/Akt signaling pathway. These observations highlight the potential of molecules involved in the regulation of CXCR2 as viable therapeutic targets for the treatment of itch.
Collapse
Affiliation(s)
- Dong-Jin Li
- College of Life Sciences, Northwest University, Xi’an, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Zhen-Juan Zhong
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Si-Jia Zhao
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Ting-Ting Shan
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Ya-Ping Liu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yao-Qing Yu
- College of Life Sciences, Northwest University, Xi’an, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| |
Collapse
|
10
|
Kaczmarska A, Kwiatkowska D, Skrzypek KK, Kowalewski ZT, Jaworecka K, Reich A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int J Mol Sci 2023; 24:14734. [PMID: 37834183 PMCID: PMC10573181 DOI: 10.3390/ijms241914734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Dominika Kwiatkowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | | | | | - Kamila Jaworecka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| |
Collapse
|
11
|
Napolitano M, di Vico F, Ruggiero A, Fabbrocini G, Patruno C. The hidden sentinel of the skin: An overview on the role of interleukin-13 in atopic dermatitis. Front Med (Lausanne) 2023; 10:1165098. [PMID: 37144036 PMCID: PMC10151557 DOI: 10.3389/fmed.2023.1165098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Recent evidence suggests that interleukin (IL)-13 is a crucial cytokine involved in the pathogenesis of atopic dermatitis (AD). It is a central driver of type-2 T-helper inflammation and is overexpressed in lesional skin of AD patients. Upon release in peripheral skin, IL-13 activates its receptors, recruits inflammatory cells, and modifies the skin microbiome. IL-13 also reduces the expression of epidermal barrier proteins and activates sensory nerve mediating the itch transmission signal. Novel therapeutics that target IL-13 seem to be efficacious and safe for the treatment of patients with moderate-to-severe AD. The aim of our manuscript is to review the role that IL-13 plays in AD immunopathogenesis.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Francesca di Vico
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Angelo Ruggiero
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
12
|
Intervening GSK3 Signaling Attenuates Cutaneous Inflammation and Itch in Mice: Implication for Future Therapeutic Development. J Invest Dermatol 2023; 143:335-339.e8. [PMID: 36063886 DOI: 10.1016/j.jid.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
|
13
|
Xue S, Zhu R, Chen W, Yang H, Wang J, Meng J. Inhibiting Keratinocyte-Derived Signal Transducer and Activator of Transcription 6 Improved Atopic Dermatitis in Mice. J Invest Dermatol 2022; 142:3341-3345.e14. [PMID: 35690142 DOI: 10.1016/j.jid.2022.05.1087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Shanghai Xue
- School of Life Sciences, Henan University, Kaifeng, China
| | - Renkai Zhu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Hua Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
14
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
15
|
Chen W, Li Y, Steinhoff M, Zhang W, Buddenkotte J, Buhl T, Zhu R, Yan X, Lu Z, Xiao S, Wang J, Meng J. The PLAUR signaling promotes chronic pruritus. FASEB J 2022; 36:e22368. [PMID: 35596683 PMCID: PMC9323474 DOI: 10.1096/fj.202200079r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022]
Abstract
Chronic itch is a complex sensation of the skin frequently associated with skin diseases, such as atopic dermatitis (AD) and psoriasis. Although Serpin E1 is implicated in chronic itch, its receptor and signaling pathways involved in itch are not known. In this study, the clinical relevance of a putative Serpin E1 receptor PLAUR to chronic itch, and the neuro‐cutaneous Serpin E1‐PLAUR signaling are explored. We found that PLAUR is overexpressed in skin specimens of human lesional AD and lesional psoriasis, and sensory neurons innervating MC903‐induced AD‐like murine skin. Murine PLAUR+ sensory neurons responded to Serpin E1, resulting in enrichment of numerous itch‐ and inflammation‐related genes and their protein release. PLAUR resides in TLR2+ neurons and Serpin E1 stimulus led to transcriptional upregulation of TLR2 and its co‐signaling proteins. Agonists of TLR2 propagated itch‐related gene transcription including BNP, OSM, and PAR2. OSM induced acute itch in mice and promoted G‐CSF and IL‐8 release from human keratinocytes. Serpin E1 inhibitor reduced MC903‐induced itch, epidermal hyperplasia, immunocyte infiltration, and resulted in lower transcription/expression levels of Serpin E1 and OSM. Taken together, the PLAUR‐TLR2‐OSM signaling promotes skin‐nerve communication, cutaneous inflammation, and itch, all feeding into an aggravation of AD and exaggerated itch circuits.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yanqing Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Renkai Zhu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhiping Lu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Song Xiao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jiafu Wang
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jianghui Meng
- Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
16
|
Kwatra SG, Misery L, Clibborn C, Steinhoff M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin Transl Immunology 2022; 11:e1390. [PMID: 35582626 PMCID: PMC9082890 DOI: 10.1002/cti2.1390] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease. Patients with atopic dermatitis experience inflammatory lesions associated with intense itch and pain, which lead to sleep disturbance and poor mental health and quality of life. We review the molecular mechanisms underlying itch and pain symptoms in atopic dermatitis and discuss the current clinical development of treatments for moderate-to-severe atopic dermatitis. The molecular pathology of atopic dermatitis includes aberrant immune activation involving significant cross-talk among the skin and immune and neuronal cells. Exogenous and endogenous triggers modulate stimulation of mediators including cytokine/chemokine expression/release by the skin and immune cells, which causes inflammation, skin barrier disruption, activation and growth of sensory neurons, itch and pain. These complex interactions among cell types are mediated primarily by cytokines, but also involve chemokines, neurotransmitters, lipids, proteases, antimicrobial peptides, agonists of ion channels or various G protein-coupled receptors. Patients with atopic dermatitis have a cytokine profile characterised by abnormal levels of interleukins 4, 12, 13, 18, 22, 31 and 33; thymic stromal lymphopoietin; and interferon gamma. Cytokine receptors mainly signal through the Janus kinase/signal transducer and activator of transcription pathway. Among emerging novel therapeutics, several Janus kinase inhibitors are being developed for topical or systemic treatment of moderate-to-severe atopic dermatitis because of their potential to modulate cytokine expression and release. Janus kinase inhibitors lead to changes in gene expression that have favourable effects on local and systemic cytokine release, and probably other mediators, thus successfully modulating molecular mechanisms responsible for itch and pain in atopic dermatitis.
Collapse
Affiliation(s)
- Shawn G Kwatra
- Department of DermatologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurent Misery
- Department of DermatologyUniversity Hospital of BrestBrestFrance
| | | | - Martin Steinhoff
- Department of Dermatology and VenereologyHamad Medical CorporationDohaQatar
- Translational Research InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Dermatology InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Department of DermatologyWeill Cornell Medicine‐QatarDohaQatar
- Qatar University, College of MedicineDohaQatar
- Department of DermatologyWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
17
|
Lu Z, Xiao S, Chen W, Zhu R, Yang H, Steinhoff M, Li Y, Cheng W, Yan X, Li L, Xue S, Larkin C, Zhang W, Fan Q, Wang R, Wang J, Meng J. IL-20 promotes cutaneous inflammation and peripheral itch sensation in atopic dermatitis. FASEB J 2022; 36:e22334. [PMID: 35486004 PMCID: PMC9321592 DOI: 10.1096/fj.202101800r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/11/2022]
Abstract
Atopic dermatitis (AD) is a chronic skin disease, which is associated with intense itch, skin barrier dysfunction and eczematous lesions. Aberrant IL‐20 expression has been implicated in numerous inflammatory diseases, including psoriasis. However, the role of IL‐20 in AD remains unknown. Here, RNA‐seq, Q‐PCR, and immunocytochemistry were utilized to examine disease‐driven changes of IL‐20 and its cognate receptor subunits in skin from healthy human subjects, AD patients and murine AD‐models. Calcium imaging, knockdown and cytokine array were used to investigate IL‐20‐evoked responses in keratinocytes and sensory neurons. The murine cheek model and behavioral scoring were employed to evaluate IL‐20‐elicited sensations in vivo. We found that transcripts and protein of IL‐20 were upregulated in skin from human AD and murine AD‐like models. Topical MC903 treatment in mice ear enhanced IL‐20R1 expression in the trigeminal sensory ganglia, suggesting a lesion‐associated and epidermal‐driven mechanism for sensitization of sensory IL‐20 signaling. IL‐20 triggered calcium influx in both keratinocytes and sensory neurons, and promoted their AD‐related molecule release and transcription of itch‐related genes. In sensory neurons, IL‐20 application increased TLR2 transcripts, implicating a link between innate immune response and IL‐20. In a murine cheek model of acute itch, intradermal injection IL‐20 and IL‐13 elicited significant itch‐like behavior, though only when co‐injected. Our findings provide novel insights into IL‐20 function in peripheral (skin‐derived) itch and clinically relevant intercellular neuron‐epidermal communication, highlighting a role of IL‐20 signaling in the pathophysiology of AD, thus forming a new basis for the development of a novel antipruritic strategy via interrupting IL‐20 epidermal pathways.
Collapse
Affiliation(s)
- Zhiping Lu
- School of Life Sciences, Henan University, China
| | - Song Xiao
- School of Life Sciences, Henan University, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, China
| | - Renkai Zhu
- School of Life Sciences, Henan University, China
| | - Hua Yang
- School of Life Sciences, Henan University, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Yanqing Li
- School of Life Sciences, Henan University, China
| | - Wenke Cheng
- School of Life Sciences, Henan University, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, China
| | - Lianlian Li
- School of Life Sciences, Henan University, China
| | - Shanghai Xue
- School of Life Sciences, Henan University, China
| | - Ciara Larkin
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Wenhao Zhang
- School of Life Sciences, Henan University, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, China
| | - Ruizhen Wang
- School of Life Sciences, Henan University, China
| | - Jiafu Wang
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jianghui Meng
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
18
|
Chiricozzi A, Gori N, Maurelli M, Gisondi P, Caldarola G, De Simone C, Peris K, Girolomoni G. Biological agents targeting interleukin-13 for atopic dermatitis. Expert Opin Biol Ther 2022; 22:651-659. [PMID: 35081849 DOI: 10.1080/14712598.2022.2035356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disease that is pathogenically driven by type-2 inflammation. Interleukin-13 (IL-13) plays a central role in AD pathogenesis, as confirmed by the clinical efficacy of agents that selectively block IL-13, although their therapeutic value and place-in-therapy are incompletely defined. AREAS COVERED The aim of this review article is to describe preclinical and clinical data regarding selective IL-13 inhibitors investigated in AD. In particular, we discuss the clinical outcomes obtained with lebrikizumab and tralokinumab, which are in a more advanced phase of development. EXPERT OPINION Biological agents that neutralize IL-13 have demonstrated clinical benefits in treating AD with excellent safety profiles. Robust clinical evidence exists in support of tralokinumab, which underwent phase III trials, met the predefined primary endpoints, and is approaching the market. In contrast, clinical trial testing for lebrikizumab needs to be completed to fully assess its therapeutic potential. PLAIN LANGUAGE SUMMARY Atopic dermatitis (AD) is a chronic pathological inflammatory skin disease that results from type-2 inflammation. Selective interleukin-13 (IL-13) inhibitors have shown clinical efficacy against AD, suggesting that IL-13 plays a central in AD pathogenesis. However, the therapeutic value and place-in-therapy of IL-13 inhibitors are incompletely defined. The aim of this review article is to describe preclinical and clinical data for selective IL-13 inhibitors against AD, including lebrikizumab and tralokinumab, which are in a more advanced phase of development. The up-to-date overview of the strengths and limitations of different agents used to treat AD discussed in this article might be useful in driving treatment decision.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Niccolò Gori
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giacomo Caldarola
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara De Simone
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|