1
|
Zhang X, Li Y, Pei Y, Yu C, Zhang X, Cao F. Association between maternal stress patterns and neonatal meconium microbiota: A prospective cohort study. J Affect Disord 2025; 383:59-68. [PMID: 40286937 DOI: 10.1016/j.jad.2025.04.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/01/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND This study aimed to identify maternal stress patterns and investigate their associations with neonatal meconium microbiota. METHODS A total of 465 pregnant women reported their stress conditions, including depression, anxiety, pregnancy-related anxiety, perceived stress, sleep, fear of birth, life events, and adverse childhood experiences. Meconium samples were collected from 348 newborns. Latent class analysis was used to identify the patterns of maternal stress. RESULTS Three group profiles were identified: "high negative emotion," "high ACEs-low negative emotion," and "low stress." the high ACEs-low negative emotion group and low stress group had higher levels of Chao1 diversity than the high negative emotion group (B = 0.25, P < 0.001; B = 0.18, P < 0.001, respectively). The high ACEs-low negative emotion group had higher levels of Chao1 diversity than the low stress group (B = 0.08, P = 0.001). The variations were observed in the abundance of Bacteroidetes, unidentified_Muribaculaceae, unclassified_Lachnospiraceae, unclassified_Clostridiales, unidentified_Bacteroidales, Oscillospira, and Ruminococcus among different maternal stress patterns. LIMITATIONS We did not analyze maternal microbiome samples and assessed the gut microbiota at only one time point. CONCLUSIONS These findings emphasized the need for a comprehensive approach to prenatal care that extends beyond traditional medical interventions. Addressing maternal stress through targeted support and interventions may help newborns benefit from a more favorable gut microbiota landscape.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Yang Li
- School of Nursing, The University of Texas at Austin, Austin, USA
| | - Yifei Pei
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Cheng Yu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Fenglin Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Philip V, Kraimi N, Zhang H, Lu J, Palma GD, Shimbori C, McCoy KD, Hapfelmeier S, Schären OP, Macpherson AJ, Chirdo F, Surette MG, Verdu EF, Liu F, Collins SM, Bercik P. Innate immune system signaling and intestinal dendritic cells migration to the brain underlie behavioral changes after microbial colonization in adult mice. Brain Behav Immun 2025; 127:238-250. [PMID: 40068794 DOI: 10.1016/j.bbi.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND AIMS Accumulating evidence suggests the microbiota is a key factor in Disorders of Gut-Brain Interaction (DGBI), by affecting host immune and neural systems. However, the underlying mechanisms remain elusive due to their complexity and clinical heterogeneity of patients with DGBIs. We aimed to identify neuroimmune pathways that are critical in microbiota-gut-brain communication during de novo gut colonization. METHODS We employed a combination of gnotobiotic and state-of-the-art microbial tools, behavioral analysis, immune and pharmacological approaches. Germ-free wild type, TLR signaling-deficient MyD88-/- Ticam1-/- and lymphocyte-deficient SCID mice were studied before and after colonization with specific pathogen-free microbiota, Altered Schaedler Flora, E. coli or S. typhimurium (permanent or transient colonizers). TLR agonists and antagonists, CCR7 antagonist or immunomodulators were used to study immune pathways. We assessed brain c-Fos, brain-derived neurotrophic factor, and dendritic and glial cells by immunofluorescence, expression of neuroimmune genes by NanoString and performed brain proteomics. RESULTS Bacterial monocolonization, conventionalization or administration of microbial products to germ-free mice altered mouse behavior similarly, acting through Toll-like receptor or nucleotide-binding oligomerization domain signaling. The process required CD11b+CD11c+CD103+ dendritic cell activation and migration into the brain. The change in behavior did not require the continued presence of bacteria and was associated with activation of multiple neuro-immune networks in the gut and the brain. CONCLUSIONS Changes in neural plasticity occur rapidly upon initial gut microbial colonization and involve innate immune signaling to the brain, mediated by CD11b+CD11c+CD103+ dendritic cell migration. The results identify a new target with therapeutic potential for DGBIs developing in context of increased gut and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Vivek Philip
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Kathy D McCoy
- Department of Biomedical Research, University Hospital, Bern, Switzerland; Dept. of Physiology and Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Olivier P Schären
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | | | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), La Plata, Argentina
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
3
|
Ismeurt-Walmsley C, Giannoni P, Servant F, Mekki LN, Baranger K, Rivera S, Marin P, Lelouvier B, Claeysen S. The same but different: impact of animal facility sanitary status on a transgenic mouse model of Alzheimer's disease. mBio 2025; 16:e0400124. [PMID: 40243365 PMCID: PMC12077201 DOI: 10.1128/mbio.04001-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The gut-brain axis has emerged as a key player in the regulation of brain function and cognitive health. Gut microbiota dysbiosis has been observed in preclinical models of Alzheimer's disease and patients. Manipulating the composition of the gut microbiota enhances or delays neuropathology and cognitive deficits in mouse models. Accordingly, the health status of the animal facility may strongly influence these outcomes. In the present study, we longitudinally analyzed the fecal microbiota composition and amyloid pathology of 5XFAD mice housed in a specific opportunistic pathogen-free (SOPF) and a conventional facility. The composition of the microbiota of 5XFAD mice after aging in conventional facility showed marked differences compared to WT littermates that were not observed when the mice were bred in SOPF facility. The development of amyloid pathology was also enhanced by conventional housing. We then transplanted fecal microbiota (FMT) from both sources into wild-type (WT) mice and measured memory performance, assessed in the novel object recognition test, in transplanted animals. Mice transplanted with microbiota from conventionally bred 5XFAD mice showed impaired memory performance, whereas FMT from mice housed in SOPF facility did not induce memory deficits in transplanted mice. Finally, 18 weeks of housing SOPF-born animals in a conventional facility resulted in the reappearance of specific microbiota compositions in 5XFAD vs WT mice. In conclusion, these results show a strong impact of housing conditions on microbiota-associated phenotypes and question the relevance of breeding preclinical models in specific pathogen-free (SPF) facilities. IMPORTANCE Housing conditions affect the composition of the gut microbiota. Gut microbiota of 6-month-old conventionally bred Alzheimer's mice is dysbiotic. Gut dysbiosis is absent in Alzheimer's mice housed in highly sanitized facilities. Transfer of fecal microbiota from conventionally bred mice affects cognition. Microbiota of mice housed in highly sanitized facilities has no effect on cognition.
Collapse
Affiliation(s)
| | - Patrizia Giannoni
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | | | - Linda-Nora Mekki
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Philippe Marin
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | | | - Sylvie Claeysen
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| |
Collapse
|
4
|
Nohesara S, Mostafavi Abdolmaleky H, Dickerson F, Pinto-Tomas AA, Jeste DV, Thiagalingam S. Associations of microbiome pathophysiology with social activity and behavior are mediated by epigenetic modulations: Avenues for designing innovative therapeutic strategies. Neurosci Biobehav Rev 2025; 174:106208. [PMID: 40350003 DOI: 10.1016/j.neubiorev.2025.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
A number of investigations have shown that gut microbiome influences humans' ability to communicate with others, and impairments in social interactions are linked to alterations in gut microbiome composition and diversity, via epigenetic mechanisms. This article reviews the links among gut microbiome, social behavior, and epigenetic shifts relevant to gut microbiome-derived metabolites. First, we discuss how different social determinants of health, such as socioeconomic status, diet, environmental chemicals, migration, ecological conditions, and seasonal changes may influence gut microbiome composition, diversity, and functionality, along with epigenetic alterations and thereby affect social behavior. Next, we consider how gut microbiome-derived metabolites, diet, probiotics, and fecal microbiome transplantation may reduce impairments in social interactions through the adjustment of epigenetic aberrations (e.g., DNA methylation, histone modifications, and microRNAs expression) which may suppress or increase gene expression patterns. Finally, we present the potential benefits and unresolved challenges with the use of gut microbiome-targeted therapeutics in reducing social deficits.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Adrian A Pinto-Tomas
- University of Costa Rica, Center for Research in Microscopic Structures and Biochemistry Department, School of Medicine, San Jose, Costa Rica
| | - Dilip V Jeste
- Global Research Network on Social Determinants of Mental Health and Exposomics, La Jolla, CA 92037, USA.
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
5
|
Holdsworth EA, Williams JE, Pace RM, Caffé B, Gartstein M, McGuire MA, McGuire MK, Meehan CL. Postpartum Maternal Stress is Unrelated to the Infant Fecal Microbiome, but is Associated With the Human Milk Microbiome in Exclusively Breastfeeding Mother-Infant Dyads: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES). Am J Hum Biol 2025; 37:e70061. [PMID: 40387412 PMCID: PMC12087434 DOI: 10.1002/ajhb.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/30/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVES This study aimed to evaluate whether postpartum maternal stress is associated with infant gastrointestinal microbiome composition and diversity, and whether this relationship may be mediated by maternal caregiving and breastfeeding behaviors and human milk microbiome (HMM) composition. METHODS Infant fecal and human milk samples were collected from 51 exclusively breastfeeding mother-infant dyads in the Pacific Northwest between 1 and 6 months postpartum. Infant fecal samples with sequencing read counts > 773 (n = 48) and milk samples with read counts > 200 (n = 46) were analyzed for bacterial alpha diversity (richness, Shannon diversity), beta diversity (Bray-Curtis dissimilarity), and genera differential abundances. Infant fecal microbiome (IFM) measures were tested for associations with mothers' self-reported Parenting Stress Index total and subscale scores in regression (richness, Shannon diversity), envfit (beta diversity), and MaAsLin2 (genera abundance) models. Potential mediators of the relationship between maternal stress and IFM were explored (observed total time breastfeeding; maternal-infant physical contact frequency; and HMM alpha diversity, beta diversity, and genera abundance). RESULTS Maternal stress was not associated with IFM alpha or beta diversities. Two maternal stress subscales were associated with differential abundances of Erysipelotrichaceae UCG-003 (positively) and Eggerthella (negatively) in infant feces. Maternal total stress and two stress subscales (Role Restriction, Attachment) were associated positively with HMM beta diversity (qattachment = 0.07) and negatively with HMM richness (qtotal = 0.08, qrole = 0.03). CONCLUSIONS Postpartum stress is not consistently associated with IFM composition during exclusive breastfeeding. However, postpartum maternal stress is associated with HMM diversity, suggesting that maternal stress might influence other developmental pathways in the breastfeeding infant.
Collapse
Affiliation(s)
| | - Janet E. Williams
- Department of Animal, Veterinary and Food SciencesUniversity of IdahoMoscowIdahoUSA
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer SciencesUniversity of IdahoMoscowIdahoUSA
- College of NursingUniversity of South FloridaTampaFloridaUSA
- Microbiomes InstituteUniversity of South FloridaTampaFloridaUSA
| | - Beatrice Caffé
- Department of AnthropologyWashington State UniversityPullmanWAUSA
| | - Maria Gartstein
- Department of PsychologyWashington State UniversityPullmanWAUSA
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food SciencesUniversity of IdahoMoscowIdahoUSA
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer SciencesUniversity of IdahoMoscowIdahoUSA
| | | |
Collapse
|
6
|
Tamayo M, Agusti A, Molina-Mendoza GV, Rossini V, Frances-Cuesta C, Tolosa-Enguís V, Sanz Y. Bifidobacterium longum CECT 30763 improves depressive- and anxiety-like behavior in a social defeat mouse model through the immune and dopaminergic systems. Brain Behav Immun 2025; 125:35-57. [PMID: 39694341 DOI: 10.1016/j.bbi.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Adolescence is a crucial period marked by profound changes in the brain. Exposure to psychological stressors such as bullying, abuse or maltreatment during this developmental period may increase the risk of developing depression, anxiety and comorbid cardiometabolic conditions. Chronic psychological stress is associated with behavioral changes and disruption of the hypothalamic-pituitary-adrenal axis, leading to corticosterone overproduction in rodents and changes in both the immune system and the gut microbiome. Here, we demonstrate the ability of Bifidobacterium longum CECT 30763 (B. longum) to ameliorate adolescent depressive and anxiety-like behaviors in a chronic social defeat (CSD) mouse model. The mechanisms underlying this beneficial effect are related to the ability of B. longum to attenuate the inflammation and immune cell changes induced by CSD after the initial stress exposure through the induction of T regulatory cells with enduring effects that may prevent and mitigate the adverse consequences of repeated stress exposure on mental and cardiometabolic health. B. longum administration also normalized dopamine release, metabolism and signaling at the end of the intervention, which may secondarily contribute to the reversal of behavioral changes. The anti-inflammatory effects of B. longum could also explain its cardioprotective effects, which were reflected in an amelioration of the oxidative stress-induced damage in the heart and improved lipid metabolism in the liver. Overall, our findings suggest that B. longum regulates the links between the immune and dopaminergic systems from the gut to the brain, potentially underpinning its beneficial psychobiotic and physiological effects in CSD.
Collapse
Affiliation(s)
- M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Tolosa-Enguís
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
7
|
Ryan N, O’Mahony S, Leahy-Warren P, Philpott L, Mulcahy H. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review. PLoS One 2025; 20:e0318237. [PMID: 40019912 PMCID: PMC11870360 DOI: 10.1371/journal.pone.0318237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Perinatal maternal stress, which includes both psychological and physiological stress experienced by healthy women during pregnancy and the postpartum period, is becoming increasingly prevalent. Infant early exposure to adverse environments such as perinatal stress has been shown to increase the long-term risk to metabolic, immunologic and neurobehavioral disorders. Evidence suggests that the human microbiome facilitates the transmission of maternal factors to infants via the vaginal, gut, and human milk microbiomes. The colonization of aberrant microorganisms in the mother's microbiome, influenced by the microbiome-brain-gut axis, may be transferred to infants during a critical early developmental period. This transfer may predispose infants to a more inflammatory-prone microbiome which is associated with dysregulated metabolic process leading to adverse health outcomes. Given the prevalence and potential impact of perinatal stress on maternal and infant health, with no systematic mapping or review of the data to date, the aim of this scoping review is to gather evidence on the relationship between perinatal maternal stress, and the human milk, maternal, and infant gut microbiomes. METHODS This is an exploratory mapping scoping review, guided by the Joanna Briggs Institute's methodology along with use of the Prisma Scr reporting guideline. A comprehensive search was conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus with a protocol registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV. RESULTS After screening 1145 papers there were 7 paper that met the inclusion criteria. Statistically significant associations were found in five of the studies which identify higher abundance of potentially pathogenic bacteria such as Erwinia, Serratia, T mayombie, Bacteroides with higher maternal stress, and lower levels of stress linked to potentially beneficial bacteria such Lactococcus, Lactobacillus, Akkermansia. However, one study presents conflicting results where it was reported that higher maternal stress was linked to the prevalence of more beneficial bacteria. CONCLUSION This review suggests that maternal stress does have an impact on the alteration of abundance and diversity of influential bacteria in the gut microbiome, however, it can affect colonisation in different ways. These bacterial changes have the capacity to influence long term health and disease. The review analyses data collection tools and methods, offers potential reasons for these findings as well as suggestions for future research.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Juncker HG, Jakobsen RR, Naninck EFG, Davids M, Herrema H, van Goudoever JB, de Rooij SR, Korosi A. Maternal stress in the early postpartum period is associated with alterations in human milk microbiome composition. Brain Behav Immun 2025; 124:74-84. [PMID: 39580056 DOI: 10.1016/j.bbi.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Maternal stress is associated with negative early-life development and (mental)health outcomes. There is recent evidence that maternal stress in the postpartum period impacts the nutrient composition of human milk (HM). However, it is currently not known whether maternal stress is associated with changes in the HM microbiome during the critical early postpartum period. METHODS In this prospective observational cohort study, lactating women were recruited into a high-stress (HS, n = 23) and control (CTL, n = 69) group. The HS group included mothers with infants hospitalized for at least two days. Maternal stress was assessed using validated questionnaires and cortisol concentrations in hair, saliva and HM. HM was collected at days 10 and 24 and its microbiome was analyzed using 16 s rRNA sequencing. HM bacterial composition was compared between study groups and their correlation with maternal stress levels, maternal characteristics and infant outcomes was determined. RESULTS HM microbiome β-diversity differed significantly between study groups, with HS mothers displaying decreased abundance of Streptococcus, Gemella, and Veillonella, and increased levels of Staphylococcus, Corynebacterium and Acinetobacter compared to the control group. While the strongest correlation of β-diversity was with stress, HM microbiome β-diversity also correlated significantly with maternal education level and infant sex. No correlation between HM microbiome composition and HM cortisol concentrations was found. CONCLUSIONS This study demonstrates stress-associated alterations in the early HM microbiome that could potentially contribute to early gut colonization and subsequent (mental)health outcomes. Future research is needed to elucidate the physiological significance of these changes for infant development and health.
Collapse
Affiliation(s)
- Hannah G Juncker
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1012 WX Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, 1105 AZ Amsterdam, the Netherlands; Amsterdam Reproduction and Development, 1105 AZ Amsterdam, the Netherlands
| | - Rasmus R Jakobsen
- Food Microbiology, Gut Health, and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, DK-1958 Copenhagen, Denmark
| | - Eva F G Naninck
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1012 WX Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, 1105 AZ Amsterdam, the Netherlands
| | - Mark Davids
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Johannes B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, 1105 AZ Amsterdam, the Netherlands; Amsterdam Reproduction and Development, 1105 AZ Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Epidemiology and Data Science, 1105 AZ Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Aging and Later Life, Health Behaviors and Chronic Diseases, 1105 AZ Amsterdam, the Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1012 WX Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Graf MD, Murgueitio N, Vogel SC, Hicks L, Carlson AL, Propper CB, Kimmel M. Maternal Prenatal Stress and the Offspring Gut Microbiome: A Cross-Species Systematic Review. Dev Psychobiol 2025; 67:e70005. [PMID: 39636074 PMCID: PMC12010507 DOI: 10.1002/dev.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The prenatal period is a critical developmental juncture with enduring effects on offspring health trajectories. An individual's gut microbiome is associated with health and developmental outcomes across the lifespan. Prenatal stress can disrupt an infant's microbiome, thereby increasing susceptibility to adverse outcomes. This cross-species systematic review investigates whether maternal prenatal stress affects the offspring's gut microbiome. The study analyzes 19 empirical, peer-reviewed research articles, including humans, rodents, and non-human primates, that included prenatal stress as a primary independent variable and offspring gut microbiome characteristics as an outcome variable. Prenatal stress appeared to correlate with differences in beta diversity and specific microbial taxa, but not alpha diversity. Prenatal stress is positively correlated with Proteobacteria, Bacteroidaceae, Lachnospiraceae, Prevotellaceae, Bacteroides, and Serratia. Negative correlations were observed for Actinobacteria, Enterobacteriaceae, Streptococcaceae, Bifidobacteria, Eggerthella, Parabacteroides, and Streptococcus. Evidence for the direction of association between prenatal stress and Lactobacillus was mixed. The synthesis of findings was limited by differences in study design, operationalization and timing of prenatal stress, timing of infant microbiome sampling, and microbiome analysis methods.
Collapse
Affiliation(s)
- Michelle D. Graf
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C. Vogel
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Lauren Hicks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander L. Carlson
- Pediatric Physician Scientist Training Program, Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, California, USA
| | - Cathi B. Propper
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary Kimmel
- Department of Psychiatry, Washington University in St. Louis., St. Louis, Missouri, USA
| |
Collapse
|
10
|
Scheible K, Beblavy R, Sohn MB, Qui X, Gill AL, Narvaez-Miranda J, Brunner J, Miller RK, Barrett ES, O'Connor TG, Gill SR. Affective symptoms in pregnancy are associated with the vaginal microbiome. J Affect Disord 2025; 368:410-419. [PMID: 39293607 PMCID: PMC11560476 DOI: 10.1016/j.jad.2024.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Composition of the vaginal microbiome in pregnancy is associated with adverse maternal, obstetric, and child health outcomes. Therefore, identifying sources of individual differences in the vaginal microbiome is of considerable clinical and public health interest. The current study tested the hypothesis that vaginal microbiome composition during pregnancy is associated with an individual's experience of affective symptoms and stress exposure. METHODS Data were based on a prospective longitudinal study of a medically healthy community sample of 275 mother-infant pairs. Affective symptoms and stress exposure and select measures of associated biomarkers (diurnal salivary cortisol, serum measures of sex hormones) were collected at each trimester; self-report, clinical, and medical records were used to collect detailed data on socio-demographic factors and health behavior, including diet and sleep. Vaginal microbiome samples were collected in the third trimester (34-40 weeks) and characterized by 16S rRNA sequencing. Identified taxa were clustered into three community clusters (CC1-3) based on dissimilarity of vaginal microbiota composition. RESULTS Results indicate that depressive symptoms during pregnancy were reliably associated with individual taxa and CC3 in the third trimester. Prediction of functional potential from 16S taxonomy revealed a differential abundance of metabolic pathways in CC1-3 and individual taxa, including biosynthetic pathways for serotonin and dopamine. We did not find robust evidence linking symptom- and stress-related biomarkers and CCs. CONCLUSIONS Our results provide further evidence of how prenatal psychological distress during pregnancy alters the maternal-fetal microbiome ecosystem that may be important for understanding maternal and child health outcomes.
Collapse
Affiliation(s)
- Kristin Scheible
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert Beblavy
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael B Sohn
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xing Qui
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janiret Narvaez-Miranda
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily S Barrett
- Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wynne Center for Family Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
11
|
Carroll A, Bell MJ, Bleach ECL, Turner D, Williams LK. Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning. J Med Microbiol 2025; 74. [PMID: 39879083 DOI: 10.1099/jmm.0.001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.
Collapse
Affiliation(s)
- Aisling Carroll
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Matt J Bell
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Emma C L Bleach
- Animal Science Research Centre, Harper Adams University, Edgmond, Newport, TF10 8NB, Shropshire, UK
| | - Dann Turner
- University of the West of England, Bristol, Coldharbour Lane, BS16 1QY, UK
| | - Lisa K Williams
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| |
Collapse
|
12
|
Li R, Wang H, Wang Q, Zhang Z, Wang L. Acid-assisted polysaccharides extracted from Asparagus cochinchinensis protect against Alzheimer's disease by regulating the microbiota-gut-brain axis. Front Nutr 2024; 11:1496306. [PMID: 39758321 PMCID: PMC11696728 DOI: 10.3389/fnut.2024.1496306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025] Open
Abstract
In this study, an acid-assisted extraction strategy was used to extract a novel polysaccharide (ACP) from Asparagus cochinchinensis, after which this polysaccharide was purified and subjected to extensive characterization. ACP was determined to have an average molecular weight of 15,580 Da in structural characterization studies, and it was found to primarily consist of glucose, galactose, L-fucose, and fructose at an 82.14:12.23:2.61:2.49 ratio. Trace amounts of xylose, arabinose, and rhamnose were also detected in ACP preparations at a 0.48:0.04:0.02 ratio. GC-MS analyses identified eight different sugar linkages within ACP, including Glcp-(1→, →2)-Glcp-(1→, →6)-Glcp-(1→, →4)-Glcp-(1→, →3, 4)-Glcp-(1→, →2,4) -Galp-(1→, →4,6)-Galp-(1→, and →3,4,6)-Galp-(1 → linkages present at 23.70:1.30:3.55:50.77:6.91:1.10:11.50:1.18 molar percent ratios. One-dimensional NMR, two-dimensional NMR, and methylation analyses ultimately revealed that the polysaccharide is mainly composed of →4)-β-D-Glcp-(1 → and a small amount→4,6)-α-D-Galp-(1 → and →3,4)-α-D-Glcp-(1 → and so on. Branched chain is mainly composed of α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → connected to the sugar residues α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → O-4 position or sugar residues of α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → O-3 position. ACP treatment in SAMP8 mice was associated with reductions in oxidative stress and brain pathology together with enhanced cognitive function. ACP treated SAMP8 mice also presented with increases in Bacteroidota abundance and reduced Firmicutes, Patescibacteria, Actinobacteriota, and Campilobacterota abundance. Thus, ACP can prevent Alzheimer's disease by modulating the microbe-gut-brain axis.
Collapse
Affiliation(s)
- Ruixue Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qinjian Wang
- Henan Provincial Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhiqiang Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Jia X, Wang J, Ren D, Zhang K, Zhang H, Jin T, Wu S. Impact of the gut microbiota-Th17 cell axis on inflammatory depression. Front Psychiatry 2024; 15:1509191. [PMID: 39655201 PMCID: PMC11625820 DOI: 10.3389/fpsyt.2024.1509191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Depression is a serious cognitive disorder that results in significant and pervasive deficits in social behavior. These deficits can be traced back to the intricate interplay between social, psychological, and biological factors. Inflammatory depression, a treatment-resistant or non-responsive subtype of depression, may be related to the interaction between the gut microbiota and interleukin-17-producing CD4+ T cells (Th17 cells). The heterogeneity, plasticity, and effector role of Th17 cells in depression may be influenced by microbiota factors. Commensals-elicited homeostatic Th17 cells preserve the morphological and functional integrity of the intestinal barrier. In addition to pathogen-elicited inflammatory Th17 cells, commensal-elicited homeostatic Th17 cells can become conditionally pathogenic and contribute to the development of inflammatory depression. This review delves into the possible involvement of Th17 cells in inflammatory depression and examines the interplay between gut microbiota and either homeostatic or inflammatory Th17 cells.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Jiayi Wang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Kaibo Zhang
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Division of Life Sciences and Medicine, Laboratory of Structural Immunology, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Songquan Wu
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
14
|
Yang R, Shi Z, Li Y, Huang X, Li Y, Li X, Chen Q, Hu Y, Li X. Research focus and emerging trends of the gut microbiome and infant: a bibliometric analysis from 2004 to 2024. Front Microbiol 2024; 15:1459867. [PMID: 39633813 PMCID: PMC11615055 DOI: 10.3389/fmicb.2024.1459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Over the past two decades, gut microbiota has demonstrated unprecedented potential in human diseases and health. The gut microbiota in early life is crucial for later health outcomes. This study aims to reveal the knowledge collaboration network, research hotspots, and explore the emerging trends in the fields of infant and gut microbiome using bibliometric analysis. Method We searched the literature on infant and gut microbiome in the Web of Science Core Collection (WOSCC) database from 2004 to 2024. CiteSpace V (version: 6.3.R1) and VOSview (version: 1.6.20) were used to display the top authors, journals, institutions, countries, authors, keywords, co-cited articles, and potential trends. Results A total of 9,899 documents were retrieved from the Web of Science Core Collection. The United States, China, and Italy were the three most productive countries with 3,163, 1,510, and 660 publications. The University of California System was the most prolific institution (524 publications). Van Sinderen, Douwe from University College Cork of Ireland was the most impactful author. Many studies have focused on atopic dermatitis (AD), necrotizing enterocolitis (NEC), as well as the immune mechanisms and microbial treatments for these diseases, such as probiotic strains mixtures and human milk oligosaccharides (HMOs). The mother-to-infant microbiome transmission, chain fatty acids, and butyrate maybe the emerging trends. Conclusion This study provided an overview of the knowledge structure of infant and gut microbiome, as well as a reference for future research.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zeyao Shi
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Huang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingxin Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Chen
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanling Hu
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaowen Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
15
|
Otto-Dobos LD, Strehle LD, Loman BR, Seng MM, Sardesai SD, Williams NO, Gatti-Mays ME, Stover DG, Sudheendra PK, Wesolowski R, Andridge RR, Bailey MT, Pyter LM. Baseline gut microbiome alpha diversity predicts chemotherapy-induced gastrointestinal symptoms in patients with breast cancer. NPJ Breast Cancer 2024; 10:99. [PMID: 39548124 PMCID: PMC11568184 DOI: 10.1038/s41523-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Chemotherapy frequently causes debilitating gastrointestinal symptoms, which are inadequately managed by current treatments. Recent research indicates the gut microbiome plays a role in the pathogenesis of these symptoms. The current study aimed to identify pre-chemotherapy microbiome markers that predict gastrointestinal symptom severity after breast cancer chemotherapy. Fecal samples, blood, and gastrointestinal symptom scores were collected from 59 breast cancer patients before, during, and after chemotherapy. Lower pre-chemotherapy microbiome alpha diversity and abundance of specific microbes (e.g., Faecalibacterium) predicted greater chemotherapy-induced gastrointestinal symptoms. Notably, tumor and diet characteristics were associated with lower pre-chemotherapy alpha diversity. Lower baseline alpha diversity also predicted higher chemotherapy-induced microbiome disruption, which was positively associated with diarrhea symptoms. The results indicate certain cancer patients have lower microbiome diversity before chemotherapy, which is predictive of greater chemotherapy-induced gastrointestinal symptoms and a less resilient microbiome. These patients may be strong candidates for pre-chemotherapy microbiome-directed preventative interventions (e.g., diet change).
Collapse
Affiliation(s)
- Lauren D Otto-Dobos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Lindsay D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Brett R Loman
- Center for Microbial Pathogenesis and Oral and Gastrointestinal Microbiology Research Affinity Group, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Melina M Seng
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sagar D Sardesai
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicole O Williams
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Margaret E Gatti-Mays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniel G Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Preeti K Sudheendra
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Michael T Bailey
- Center for Microbial Pathogenesis and Oral and Gastrointestinal Microbiology Research Affinity Group, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
16
|
Rajasekera TA, Galley JD, Mashburn-Warren L, Lauber CL, Bailey MT, Worly BL, Gur TL. Pregnancy during COVID 19 pandemic associated with differential gut microbiome composition as compared to pre-pandemic. Sci Rep 2024; 14:26880. [PMID: 39505949 PMCID: PMC11541556 DOI: 10.1038/s41598-024-77560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
The first two years of the COVID-19 pandemic and subsequent health mandates resulted in significant disruptions to daily life, creating a period of heightened psychosocial stress in myriad aspects. Understanding the impact of this period on pregnant individuals' bacteriomes is crucial as pregnancy is a period of heightened vulnerability to stress and its sequelae, anxiety and mood disorders, which have been demonstrated to alter gut microbiome composition. In a prospective cohort study (N = 12-26) conducted from February 2019 to August 2021, we examined psychometric responses and rectal microbiome swabs from pregnant individuals. Full-length 16 S rRNA sequencing followed by calculation of diversity metrics and relative abundance values were used to interrogate fecal microbiome community composition across pandemic groups. Distinct shifts in bacterial diversity and composition were observed during early to late pregnancy in the pandemic group, including lower relative abundance of pathogenic and lesser-known taxa. However, distribution of stress and depressive symptoms did not significantly differ from the pre-pandemic period while the correlation between stress and depressive symptoms dissipated during the pandemic. Our findings suggest that living through the COVID-19 pandemic altered the gut microbiome of pregnant individuals, independent of perceived stress.
Collapse
Affiliation(s)
- Therese A Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | | | - Christian L Lauber
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brett L Worly
- Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- College of Medicine, The Ohio State University, Columbus, OH, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Galley JD, King MK, Rajasekera TA, Batabyal A, Woodke ST, Gur TL. Gestational administration of Bifidobacterium dentium results in intergenerational modulation of inflammatory, metabolic, and social behavior. Brain Behav Immun 2024; 122:44-57. [PMID: 39128569 DOI: 10.1016/j.bbi.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Prenatal stress (PNS) profoundly impacts maternal and offspring health, with enduring effects including microbiome alterations, neuroinflammation, and behavioral disturbances such as reductions in social behavior. Converging lines of evidence from preclinical and clinical studies suggest that PNS disrupts tryptophan (Trp) metabolic pathways and reduces gut Bifidobacteria, a known beneficial bacterial genus that metabolizes Trp. Specifically, previous work from our lab demonstrated that human prenatal mood disorders in mothers are associated with reduced Bifidobacterium dentium in infants at 13 months. Given that Bifidobacterium has been positively associated with neurodevelopmental and other health benefits and is depleted by PNS, we hypothesized that supplementing PNS-exposed pregnant dams with B. dentium would ameliorate PNS-induced health deficits. We measured inflammatory outputs, Trp metabolite levels and enzymatic gene expression in dams and fetal offspring, and social behavior in adult offspring. We determined that B. dentium reduced maternal systemic inflammation and fetal offspring neuroinflammation, while modulating tryptophan metabolism and increasing kynurenic acid and indole-3-propionic acid intergenerationally. Additional health benefits were demonstrated by the abrogation of PNS-induced reductions in litter weight. Finally, offspring of the B. dentium cohort demonstrated increased sociability in males primarily and increased social novelty primarily in females. Together these data illustrate that B. dentium can orchestrate interrelated host immune, metabolic and behavioral outcomes during and after gestation for both dam and offspring and may be a candidate for prevention of the negative sequelae of stress.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mackenzie K King
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Therese A Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anandi Batabyal
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Dai DLY, Petersen C, Turvey SE. Reduce, reinforce, and replenish: safeguarding the early-life microbiota to reduce intergenerational health disparities. Front Public Health 2024; 12:1455503. [PMID: 39507672 PMCID: PMC11537995 DOI: 10.3389/fpubh.2024.1455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Socioeconomic (SE) disparity and health inequity are closely intertwined and associated with cross-generational increases in the rates of multiple chronic non-communicable diseases (NCDs) in North America and beyond. Coinciding with this social trend is an observed loss of biodiversity within the community of colonizing microbes that live in and on our bodies. Researchers have rightfully pointed to the microbiota as a key modifiable factor with the potential to ease existing health inequities. Although a number of studies have connected the adult microbiome to socioeconomic determinants and health outcomes, few studies have investigated the role of the infant microbiome in perpetuating these outcomes across generations. It is an essential and important question as the infant microbiota is highly sensitive to external forces, and observed shifts during this critical window often portend long-term outcomes of health and disease. While this is often studied in the context of direct modulators, such as delivery mode, family size, antibiotic exposure, and breastfeeding, many of these factors are tied to underlying socioeconomic and/or cross-generational factors. Exploring cross-generational socioeconomic and health inequities through the lens of the infant microbiome may provide valuable avenues to break these intergenerational cycles. In this review, we will focus on the impact of social inequality in infant microbiome development and discuss the benefits of prioritizing and restoring early-life microbiota maturation for reducing intergenerational health disparities.
Collapse
Affiliation(s)
| | | | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
20
|
van Dijk MT, Talati A, Barrios PG, Crandall AJ, Lugo-Candelas C. Prenatal depression outcomes in the next generation: A critical review of recent DOHaD studies and recommendations for future research. Semin Perinatol 2024; 48:151948. [PMID: 39043475 DOI: 10.1016/j.semperi.2024.151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Prenatal depression, a common pregnancy-related risk with a prevalence of 10-20 %, may affect in utero development and socioemotional and neurodevelopmental outcomes in the next generation. Although there is a growing body of work that suggests prenatal depression has an independent and long-lasting effect on offspring outcomes, important questions remain, and findings often do not converge. The present review examines work carried out in the last decade, with an emphasis on studies focusing on mechanisms and leveraging innovative technologies and study designs to fill in gaps in research. Overall, the past decade of research continues to suggest that prenatal depression increases risk for offspring socioemotional problems and may alter early brain development by affecting maternal-fetal physiology during pregnancy. However, important limitations remain; lack of diversity in study samples, inconsistent consideration of potential confounders (e.g., genetics, postnatal depression, parenting), and restriction of examination to narrow time windows and single exposures. On the other hand, exciting work has begun uncovering potential mechanisms underlying transmission, including alterations in mitochondria functioning, epigenetics, and the prenatal microbiome. We review the evidence to date, identify limitations, and suggest strategies for the next decade of research to detect mechanisms as well as sources of plasticity and resilience to ensure this work translates into meaningful, actionable science that improves the lives of families.
Collapse
Affiliation(s)
- M T van Dijk
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - A Talati
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | | | - A J Crandall
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - C Lugo-Candelas
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States.
| |
Collapse
|
21
|
Fan X, Zang T, Wu N, Liu J, Sun Y, Slack J, Bai J, Liu Y. The mediating effect of maternal gut microbiota between prenatal psychological distress and neurodevelopment of infants. J Affect Disord 2024; 362:893-902. [PMID: 39013520 DOI: 10.1016/j.jad.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Prenatal psychological distress and maternal inflammation can increase the risk of neurodevelopmental delay in offspring; recently, the gut microbiota has been shown to may be a potential mechanism behind this association and not fully elucidated in population study. METHODS Seventy-two maternal-infant pairs who completed the assessments of prenatal psychological distress during the third trimester and neurodevelopment of infants at age 6-8 months of age were included in this study. The gut microbiota and its short-chain fatty acids (SCFAs) of maternal-infant were determined by 16S rRNA sequencing and liquid chromatography-mass spectrometry analysis. Inflammatory cytokines in the blood of pregnant women during the third trimester were detected by luminex liquid suspension microarrays. RESULTS This study found that infants in the prenatal psychological distress group had poorer fine motor skills (β = -4.396, 95 % confidence interval (CI) = -8.546, -0.246, p = 0.038), problem-solving skills (β = -5.198, 95 % CI = -10.358, -0.038, p = 0.048) and total development (β = -22.303, 95%CI = -41.453, -3.153, p = 0.022) compared to the control group. The study also indicated that the higher level of interleukin-1β (IL-1β) (β = -1.951, 95%CI = -3.321, -0.581, p = 0.005) and interferon-inducible protein-10 (IP-10) (β = -0.019, 95%CI = -0.034, -0.004, p = 0.015) during the third trimester, the poorer fine motor skills in infants. Also, the higher level of IL-10 (β = -0.498, 95%CI = -0.862, -0.133, p = 0.007), IL-12p70 (β = -0.113, 95%CI = -0.178, -0.048, p = 0.001), IL-17 A (β = -0.817, 95%CI = -1.517, -0.118, p = 0.022), interferon-γ (β = -0.863, 95%CI = -1.304, -0.422, p < 0.001), IP-10 (β = -0.020, 95%CI = -0.038, -0.001, p = 0.035), and regulated upon activation normal T cell expressed and secreted (β = -0.002, 95%CI = -0.003, -0.001, p = 0.005) during the third trimester, the poorer problem-solving skills in infants. After controlling for relevant covariates, this study found that maternal gut microbiota Roseburia mediates the relationship between prenatal psychological distress and total neurodevelopment of infants (a = 0.433, 95%CI = 0.079, 0.787, p = 0.017; b = -19.835, 95%CI = -33.877, -5.792, p = 0.006; c = 22.407, 95%CI = -43.207,-1.608, p = 0.035; indirect effect = -8.584, 95%CI = -21.227, -0.587). CONCLUSIONS This is the first study to emphasize the role of the maternal-infant gut microbiota in prenatal psychological distress and infant neurodevelopment. Further studies are needed to explore the biological mechanisms underlying the relationship between prenatal psychological distress, maternal-infant gut microbiota, and infant neurodevelopment.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Jun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Yu Sun
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Julia Slack
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
22
|
Cao Y, Zhang X, Zhang Q, Fan X, Zang T, Bai J, Wu Y, Zhou W, Liu Y. Prenatal Gut Microbiota Predicts Temperament in Offspring at 1-2 Years. Biol Res Nurs 2024; 26:569-583. [PMID: 38865156 DOI: 10.1177/10998004241260894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The purpose of this study was to explore whether prenatal gut microbiota (GM) and its functions predict the development of offspring temperament. A total of 53 mothers with a 1-year-old child and 41 mothers with a 2-year-old child were included in this study using a mother-infant cohort from central China. Maternal fecal samples collected during the third trimester were analyzed using 16S rRNA V3-V4 gene sequences. Temperament of the child was measured by self-reported data according to the primary caregiver. The effects of GM in mothers on offspring's temperament were evaluated using multiple linear regression models. The results demonstrated that the alpha diversity index Simpson of prenatal GM was positively associated with the activity level of offspring at 1 year (adj. P = .036). Bifidobacterium was positively associated with high-intensity pleasure characteristics of offspring at 1 year (adj. P = .031). Comparatively, the presence of Bifidobacterium found in the prenatal microbiome was associated with low-intensity pleasure characteristics in offspring at 2 years (adj. P = .031). There were many significant associations noted among the functional pathways of prenatal GM and temperament of offspring at 2 years. Our findings support the maternal-fetal GM axis in the setting of fetal-placental development with subsequent postnatal neurocognitive developmental outcomes, and suggest that early childhood temperament is in part associated with specific GM in the prenatal setting.
Collapse
Affiliation(s)
- Yanan Cao
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Xu Zhang
- Wuhan University School of Nursing, Wuhan, China
| | - Qianping Zhang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Yuanyuan Wu
- Department of Nursing, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Wenjie Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| |
Collapse
|
23
|
Camarini R, Marianno P, Hanampa-Maquera M, Oliveira SDS, Câmara NOS. Prenatal Stress and Ethanol Exposure: Microbiota-Induced Immune Dysregulation and Psychiatric Risks. Int J Mol Sci 2024; 25:9776. [PMID: 39337263 PMCID: PMC11431796 DOI: 10.3390/ijms25189776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Changes in maternal gut microbiota due to stress and/or ethanol exposure can have lasting effects on offspring's health, particularly regarding immunity, inflammation response, and susceptibility to psychiatric disorders. The literature search for this review was conducted using PubMed and Scopus, employing keywords and phrases related to maternal stress, ethanol exposure, gut microbiota, microbiome, gut-brain axis, diet, dysbiosis, progesterone, placenta, prenatal development, immunity, inflammation, and depression to identify relevant studies in both preclinical and human research. Only a limited number of reviews were included to support the arguments. The search encompassed studies from the 1990s to the present. This review begins by exploring the role of microbiota in modulating host health and disease. It then examines how disturbances in maternal microbiota can affect the offspring's immune system. The analysis continues by investigating the interplay between stress and dysbiosis, focusing on how prenatal maternal stress influences both maternal and offspring microbiota and its implications for susceptibility to depression. The review also considers the impact of ethanol consumption on gut dysbiosis, with an emphasis on the effects of prenatal ethanol exposure on both maternal and offspring microbiota. Finally, it is suggested that maternal gut microbiota dysbiosis may be significantly exacerbated by the combined effects of stress and ethanol exposure, leading to immune system dysfunction and chronic inflammation, which could increase the risk of depression in the offspring. These interactions underscore the potential for novel mental health interventions that address the gut-brain axis, especially in relation to maternal and offspring health.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Maylin Hanampa-Maquera
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Samuel Dos Santos Oliveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
24
|
Chen J, Zeng R, Chen H, Cao M, Peng Y, Tong J, Huang J. Microbial reconstitution reverses prenatal stress-induced cognitive impairment and synaptic deficits in rat offspring. Brain Behav Immun 2024; 120:231-247. [PMID: 38851306 DOI: 10.1016/j.bbi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Stress during pregnancy is often linked with increased incidents of neurodevelopmental disorders, including cognitive impairment. Here, we report that stress during pregnancy leads to alterations in the intestinal flora, which negatively affects the cognitive function of offspring. Cognitive impairment in stressed offspring can be reproduced by transplantation of cecal contents of stressed pregnant rats (ST) to normal pregnant rats. In addition, gut microbial dysbiosis results in an increase of β-guanidinopropionic acid in the blood, which leads to an activation of the adenosine monophosphate-activated protein kinase (AMPK) and signal transducer and activator of transcription 3 (STAT3) in the fetal brain. Moreover, β-guanidinopropionic acid supplementation in pregnant rats can reproduce pregnancy stress-induced enhanced glial differentiation of the fetal brain, resulting in impaired neural development. Using probiotics to reconstruct maternal microbiota can correct the cognitive impairment in the offspring of pregnant stressed rats. These findings suggest that microbial reconstitution reverses gestational stress-induced cognitive impairment and synaptic deficits in male rat offspring.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Huimin Chen
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, No.127, Jinbi Road, Xishan District, Kunming, Yunnan, China
| | - Mengya Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
25
|
Vasileva S, Yap CX, Whitehouse AJ, Gratten J, Eyles D. Absence of association between maternal adverse events and long-term gut microbiome outcomes in the Australian autism biobank. Brain Behav Immun Health 2024; 39:100814. [PMID: 39027090 PMCID: PMC11254947 DOI: 10.1016/j.bbih.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Maternal immune activation (MIA) and prenatal maternal stress (MatS) are well-studied risk factors for psychiatric conditions such as autism and schizophrenia. Animal studies have proposed the gut microbiome as a mechanism underlying this association and have found that risk factor-related gut microbiome alterations persist in the adult offspring. In this cross-sectional study, we assessed whether maternal immune activation and prenatal maternal stress were associated with long-term gut microbiome alterations in children using shotgun metagenomics. Methods This cross-sectional study included children diagnosed with autism (N = 92), siblings without a diagnosis (N = 42), and unrelated children (N = 40) without a diagnosis who were recruited into the Australian Autism Biobank and provided a faecal sample. MIA exposure was inferred from self-reported data and included asthma/allergies, complications during pregnancy triggering an immune response, auto-immune conditions, and acute inflammation. Maternal stress included any of up to 9 stressful life events during pregnancy, such as divorce, job loss, and money problems. Data were analysed for a total of 174 children, of whom 63 (36%) were born to mothers with MIA and 84 (48%) were born to mothers who experienced maternal stress during pregnancy (where 33 [19%] experienced both). Gut microbiome data was assessed using shotgun metagenomic sequencing of the children's faecal samples. Results In our cohort, MIA, but not MatS, was associated with ASD. Variance component analysis revealed no associations between any of the gut microbiome datasets and neither MIA nor MatS. After adjusting for age, sex, diet and autism diagnosis, there was no significant difference between groups for bacterial richness, α-diversity or β-diversity. We found no significant differences in species abundance in the main analyses. However, when stratifying the cohort by age, we found that Faecalibacterium prausnitzii E was significantly decreased in MIA children aged 11-17. Discussion Consistent with previous findings, we found that children who were born to mothers with MIA were more likely to be diagnosed with autism. Unlike within animal studies, we found negligible microbiome differences associated with MIA and maternal stress. Given the current interest in the microbiome-gut-brain axis, researchers should exercise caution in translating microbiome findings from animal models to human contexts and the clinical setting.
Collapse
Affiliation(s)
- Svetlina Vasileva
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Chloe X. Yap
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, Australia
| | | | - Jacob Gratten
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| |
Collapse
|
26
|
Garnacho-Garnacho VE, Rodríguez-López ES, Oliva-Pascual-Vaca Á, Goenaga-Echave L, Otero-Campos Á. Maternal Psychological Well-Being as a Protector in Infantile Colic. Nutrients 2024; 16:2342. [PMID: 39064784 PMCID: PMC11279735 DOI: 10.3390/nu16142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Infantile colic (IC) is a functional gastrointestinal disorder that affects around 20% of infants, and postpartum (PPD) depression is a common disorder that affects between 15 and 22% of mothers. In this study, our objective was to evaluate the relationship between the maternal psychological state in the first postpartum year and IC, with the aim of assessing the importance of feeding type in infants and maternal well-being. (2) Methods: A cross-sectional study was conducted in women in their first year postpartum. Demographic, medical, and obstetric data of the mothers and infants were collected, and the type of feeding was identified. The emotional status of the mother was evaluated using the Edinburgh Postnatal Depression Scale (EPDS), and the Infant Colic Severity Questionnaire (ICSQ) was used for IC diagnosis. (3) Results: A total of 528 women were analyzed, of which 170 (32%) were diagnosed with possible PPD. Two-thirds of the women without depression breastfed their babies on demand; therefore, we report that exclusive breastfeeding (EBF) appears to reduce the risk of possible PPD (p < 0.001; OR = 2.353). IC was present in 39% of babies, and around 70% of babies without colic were breastfed on demand. Infants who were not exclusively breastfed showed almost double the risk of developing colic (p = 0.016; OR = 1.577). There was a significant association between the EPDS and ICSQ scores (p < 0.001). More than half of the women with PPD had babies with colic. However, our results show that 75% of babies without colic had mothers who reported optimal postpartum emotional well-being (p < 0.001; OR = 2.105). (4) Conclusions: The results of this study suggest that postpartum maternal psychological well-being reduces the risk of IC. Therefore, we report that EBF on demand, together with a healthy emotional state in new mothers, may be a protective factor against colic in infants.
Collapse
Affiliation(s)
- Victoria Eugenia Garnacho-Garnacho
- Physiotherapy and Health Research Group (FYSA), Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain; (V.E.G.-G.); (Á.O.-C.)
- Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain;
| | - Elena Sonsoles Rodríguez-López
- Physiotherapy and Health Research Group (FYSA), Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain; (V.E.G.-G.); (Á.O.-C.)
- Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain;
| | - Ángel Oliva-Pascual-Vaca
- Instituto de Biomedicina de Sevilla (IBiS), Departmento de Fisioterapia, Universidad de Sevilla, 41013 Seville, Spain
| | - Leire Goenaga-Echave
- Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain;
| | - Álvaro Otero-Campos
- Physiotherapy and Health Research Group (FYSA), Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain; (V.E.G.-G.); (Á.O.-C.)
- Department of Physiotherapy, Faculty of Health Sciences—HM Hospitals, University Camilo José Cela, 28014 Madrid, Spain;
| |
Collapse
|
27
|
Mpakosi A, Sokou R, Theodoraki M, Kaliouli-Antonopoulou C. Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors. Life (Basel) 2024; 14:902. [PMID: 39063655 PMCID: PMC11278438 DOI: 10.3390/life14070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human gastrointestinal ecosystem, or microbiome (comprising the total bacterial genome in an environment), plays a crucial role in influencing host physiology, immune function, metabolism, and the gut-brain axis. While bacteria, fungi, viruses, and archaea are all present in the gastrointestinal ecosystem, research on the human microbiome has predominantly focused on the bacterial component. The colonization of the human intestine by microbes during the first two years of life significantly impacts subsequent composition and diversity, influencing immune system development and long-term health. Early-life exposure to pathogens is crucial for establishing immunological memory and acquired immunity. Factors such as maternal health habits, delivery mode, and breastfeeding duration contribute to gut dysbiosis. Despite fungi's critical role in health, particularly for vulnerable newborns, research on the gut mycobiome in infants and children remains limited. Understanding early-life factors shaping the gut mycobiome and its interactions with other microbial communities is a significant research challenge. This review explores potential factors influencing the gut mycobiome, microbial kingdom interactions, and their connections to health outcomes from childhood to adulthood. We identify gaps in current knowledge and propose future research directions in this complex field.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | | |
Collapse
|
28
|
Bai JJ, Ao M, Xing A, Yu LJ, Tong HY, Bao WY, Wang Y. Areca Thirteen Pill Improves Depression in Rat by Modulation of the Chemokine/Chemokine Receptor Axis. Mol Neurobiol 2024; 61:4633-4647. [PMID: 38110645 DOI: 10.1007/s12035-023-03855-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Depressive disorder is a severe and complex mental illness. There are a few anti-depressive medications that can reduce depressive symptoms, but with adverse or side effects. GaoYou-13 (GY-13), commonly known as Areca Thirteen Pill, is a traditional medicine for depression treatment with significant clinical impact. However, the molecular mechanism of GY-13 has not been fully elucidated. This study aimed to explore and explain the action and mechanism of GY-13 in treatment for depression. SD male rats were stimulated differently daily for 42 days to construct a depression rat model and divided into six groups: the control, CUMS model, GY-13L, GY-13 M, GY-13H, and FLUO. The body weight of was measured on day 7, 14, 21, 28, 35, and 42 or different days, and the behavioral tests (Open-field test, Sucrose preference test, Morris water maze) were made alongside. After the rats were decapitated, the rat brains were stained with Nissl or H&E dyes. The serums of TNF-α and IL-1β were tested. The protein of p-IKKα, p-IкBα, and p-NFкBp65 was traced. Then nano-LC-MS/MS analysis was made to detect the mechanism of GY-13. The active ingredients, drug targets, and key pathways of GY-13 in treating depression were analyzed through network pharmacology and molecular docking. With immunohistochemistry, quantitative RT-PCR, and western-blot techniques, the therapeutic mechanism of GY-13 was traced and analyzed. This study revealed that GY-13 significantly enhances autonomous and exploratory behavior, sucrose consumption, learning and memory ability, and hippocampal neuronal degeneration, which inhibits inflammation. In addition, omics analysis showed several proteins were altered in the hippocampus of rats following CUMS and GY-13 treatment. Bioinformatics analysis and network pharmacology revealed the antidepressant effects of GY-13 are related to the chemokine/chemokine receptor axis. Immunohistochemistry, western blotting and RT-PCR assay further support the findings of omics analysis. We highlighted the importance of the chemokine/chemokine receptor axis in the treatment of depression, as well as showed GY-13 can be used as a novel targeted therapy for depression treatment.
Collapse
Affiliation(s)
- Jing-Jing Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, People's Republic of China
- Tongliao Institute of agriculture and animal husbandry, Tongliao, Inner Mongolia, People's Republic of China
| | - Min Ao
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - An Xing
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - Li-Jun Yu
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - Hai-Ying Tong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - Wu-Ye Bao
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, People's Republic of China.
| |
Collapse
|
29
|
Khaiboullina S, Chen Z, Alva-Murillo N, Holban AM. Editorial: Women in infectious agents and disease: 2023. Front Microbiol 2024; 15:1436831. [PMID: 38946895 PMCID: PMC11212011 DOI: 10.3389/fmicb.2024.1436831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| | - Ze Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Nayeli Alva-Murillo
- Division of Natural and Exact Sciences (DCNE), Departament of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
30
|
Ryan N, Leahy-Warren P, Mulcahy H, O’Mahony S, Philpott L. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review protocol. PLoS One 2024; 19:e0304787. [PMID: 38837966 PMCID: PMC11152305 DOI: 10.1371/journal.pone.0304787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE The objective of this scoping review is to review the research evidence regarding the impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes. INTRODUCTION Perinatal stress which refers to psychological stress experienced by individuals during pregnancy and the postpartum period is emerging as a public health concern. Early exposure of infants to perinatal maternal stress can potentially lead to metabolic, immune, and neurobehavioral disorders that extend into adulthood. The role of the gut and human milk microbiome in the microbiome-gut-brain axis as a mechanism of stress transfer has been previously reported. A transfer of colonised aberrant microbiota from mother to infant is proposed to predispose the infant to a pro- inflammatory microbiome with dysregulated metabolic process thereby initiating early risk of chronic diseases. The interplay of perinatal maternal stress and its relationship to the maternal and infant gut and human milk microbiome requires further systematic examination in the literature. INCLUSION CRITERIA This scoping review is an exploratory mapping review which will focus on the population of mothers and infants with the exploration of the key concepts of maternal stress and its impact on the maternal and infant gut and human milk microbiome in the context of the perinatal period. It will focus on the pregnancy and the post-natal period up to 6 months with infants who are exclusively breastfed. METHODS This study will be guided by the Joanna Briggs Institute's (JBI) methodology for scoping reviews along with use of the Prisma Scr reporting guideline. A comprehensive search will be conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus. A search strategy with pre-defined inclusion and exclusion criteria will be used to retrieve peer reviewed data published in English from 2014 to present. Screening will involve a three-step process with screening tool checklists. Results will be presented in tabular and narrative summaries, covering thematic concepts and their relationships. This protocol is registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | | | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Ireland
| | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| |
Collapse
|
31
|
Pérez Urruchi AE, Ramírez Elizalde LE, Zapata Cornejo FDM, Matalinares Calvet ML, Baylon Cuba MV, Fabian Dominguez F. DNA metabarcoding technology for the identification of the fecal microbiome in patients with chronic stress. Health Psychol Res 2024; 12:117647. [PMID: 38846338 PMCID: PMC11152980 DOI: 10.52965/001c.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
In the latest research, the concept of stress is associated with the deregulation of several biological systems sensitive to stress, such as the immune system, the microbiome, the endocrine system and neuroanatomical substrates. The objective of the research was to identify the fecal microbiome in patients diagnosed with chronic stress and in healthy patients through a metabarcoding analysis. The methodology used fecal samples collected from 20 patients with stress and 20 healthy patients. For the diagnosis of stress, psychological tools previously validated by external researchers were used. For metabarcoding analysis, metagenomic DNA extraction was performed from the fecal samples. Next Generation Illumina genetic sequencing targeting the 16S rDNA gene was then performed, followed by bioinformatic analysis using QUIME II software. The results, at the psychological test level, 20 people with chronic stress were diagnosed, on the other hand, at the metabarcoding level, specifically at the Gender level, the Asteroleplasma bacteria present only in the 20 healthy patients was molecularly identified. On the other hand, the bacteria Alistipes and Bifidobacterium were identified with greater predominance in the 20 patients with stress. Concluding, the bacteria Alistipes and Bifidobacterium are candidates as possible markers of the intestinal microbiome in patients with chronic stress, and the bacteria Asteroleplasma are candidates as a bacterial marker of the intestinal microbiome in healthy people. Finally, the identification of the microbiome in patients with stress opens a new path to understanding stress and its relationship to dysregulation with the microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Fredy Fabian Dominguez
- Grupo de Investigación Biotecnología Molecular y Genómica Bacteriana Universidad Nacional de San Martín
| |
Collapse
|
32
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|
33
|
Zhou L, Tang L, Zhou C, Wen SW, Krewski D, Xie RH. Association of maternal postpartum depression symptoms with infant neurodevelopment and gut microbiota. Front Psychiatry 2024; 15:1385229. [PMID: 38835546 PMCID: PMC11148360 DOI: 10.3389/fpsyt.2024.1385229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Understanding the mechanisms underlying maternal postpartum depression (PPD) and its effects on offspring development is crucial. However, research on the association between maternal PPD, gut microbiota, and offspring neurodevelopment remains limited. This study aimed to examine the association of maternal PPD symptoms with early gut microbiome, gut metabolome, and neurodevelopment in infants at 6 months. Methods Maternal PPD symptoms were assessed using the Edinburgh Postpartum Depression Scale (EPDS) at 42 days postpartum. Infants stool samples collected at 42 days after birth were analyzed using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) detection. Infant neurodevelopment was measured at 6 months using the Ages and Stages Questionnaire, Third Edition (ASQ-3). Correlations between gut microbiota, metabolites and neurodevelopment were identified through co-occurrence network analysis. Finally, mediation analyses were conducted to determine potential causal pathways. Results A total of 101 mother-infant dyads were included in the final analysis. Infants born to mothers with PPD symptoms at 42 days postpartum had lower neurodevelopmental scores at 6 months. These infants also had increased alpha diversity of gut microbiota and were abundant in Veillonella and Finegoldia, while depleted abundance of Bifidobacterium, Dialister, Cronobacter and Megasphaera. Furthermore, alterations were observed in metabolite levels linked to the Alanine, aspartate, and glutamate metabolic pathway, primarily characterized by decreases in N-Acetyl-L-aspartic acid, L-Aspartic acid, and L-Asparagine. Co-occurrence network and mediation analyses revealed that N-Acetyl-L-aspartic acid and L-Aspartic acid levels mediated the relationship between maternal PPD symptoms and the development of infant problem-solving skills. Conclusions Maternal PPD symptoms are associated with alterations in the gut microbiota and neurodevelopment in infants. This study provides new insights into potential early intervention for infants whose mother experienced PPD. Further research is warranted to elucidate the biological mechanisms underlying these associations.
Collapse
Affiliation(s)
- Lepeng Zhou
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Linghong Tang
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuhui Zhou
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
- Women and Children Medical Research Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Shi Wu Wen
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Science International, Ottawa, ON, Canada
| | - Ri-Hua Xie
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
- Women and Children Medical Research Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
34
|
Hu JH, Sheng J, Guo HM, Liu H, Zhang X, Han B, Peng K, Ji FH. Association between labor epidural analgesia and gut microbiota: A prospective cohort study. Heliyon 2024; 10:e29883. [PMID: 38699036 PMCID: PMC11064136 DOI: 10.1016/j.heliyon.2024.e29883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Background Labor epidural analgesia (LEA) may influence gut microbiota. We explored the association between LEA and gut microbiota for both mothers and their newborns. Methods In this prospective cohort study, parturients aged 25-35 years with a gestational age of 37-42 weeks and planned vaginal delivery were recruited. Twenty-one parturients received LEA (the LEA group), and 24 did not (the control group). Maternal and neonatal fecal samples were collected, and the gut microbiota profiles were analyzed using the 16S rRNA gene sequencing. The impact of LEA on gut microbiota was assessed using the general liner models. Results We showcased the gut microbiota profile from the phyla to species levels based on data on 45 mother-newborn dyads. The results of α- and β-diversity suggested significant changes in gut microbiota between the LEA and control groups. After adjusting for baseline confounders, the administration of LEA had positive correlations with R. ilealis (β = 91.87, adjusted P = 0.007) in mothers; LEA also had negative correlations with A. pittii (β = -449.36, adjusted P = 0.015), P. aeruginosa (β = -192.55, adjusted P = 0.008), or S. maltophilia (β = -142.62, adjusted P = 0.001) in mothers, and with Muribaculaceae (β = -2702.77, adjusted P = 0.003) in neonates. Conclusion LEA was associated with changes in maternal and neonatal gut microbiota, and future studies are still required to assess their impact on clinical outcomes and explore the mechanisms.
Collapse
Affiliation(s)
- Jing-hui Hu
- Departments of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Jie Sheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-min Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Xinyue Zhang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Bing Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Departments of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Fu-hai Ji
- Departments of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Chi R, Li M, Zhang M, Zhang N, Zhang G, Cui L, Ma G. Exploring the Association between Anxiety, Depression, and Gut Microbiota during Pregnancy: Findings from a Pregnancy Cohort Study in Shijiazhuang, Hebei Province, China. Nutrients 2024; 16:1460. [PMID: 38794698 PMCID: PMC11123899 DOI: 10.3390/nu16101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Negative emotions and gut microbiota during pregnancy both bear significant public health implications. However, the relationship between them has not been fully elucidated. This study, utilizing data from a pregnancy cohort, employed metagenomic sequencing to elucidate the relationship between anxiety, depression, and gut microbiota's diversity, composition, species, and functional pathways. Data from 87 subjects, spanning 225 time points across early, mid, and late pregnancy, were analyzed. The results revealed that anxiety and depression significantly corresponded to lower alpha diversity (including the Shannon entropy and the Simpson index). Anxiety and depression scores, along with categorical distinctions of anxiety/non-anxiety and depression/non-depression, were found to account for 0.723%, 0.731%, 0.651%, and 0.810% of the variance in gut-microbiota composition (p = 0.001), respectively. Increased anxiety was significantly positively associated with the abundance of Oscillibacter sp. KLE 1745, Oscillibacter sp. PEA192, Oscillibacter sp. KLE 1728, Oscillospiraceae bacterium VE202 24, and Treponema socranskii. A similar association was significantly noted for Oscillibacter sp. KLE 1745 with elevated depression scores. While EC.3.5.3.1: arginase appeared to be higher in the anxious group than in the non-anxious group, vitamin B12-related enzymes appeared to be lower in the depression group than in the non-depression group. The changes were found to be not statistically significant after post-multiple comparison adjustment.
Collapse
Affiliation(s)
- Ruixin Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (R.C.); (N.Z.)
| | - Muxia Li
- Department of Scientific Research, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Man Zhang
- School of Nursing, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
| | - Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (R.C.); (N.Z.)
| | - Guohua Zhang
- The Third Department of Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China;
| | - Lijun Cui
- The Seventh Department of Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (R.C.); (N.Z.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
36
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Tzitiridou-Chatzopoulou M, Kountouras J, Zournatzidou G. The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:552. [PMID: 38790548 PMCID: PMC11119242 DOI: 10.3390/children11050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Over the past decade, microbiome research has significantly expanded in both scope and volume, leading to the development of new models and treatments targeting the gut-brain axis to mitigate the effects of various disorders. Related research suggests that interventions during the critical period from birth to three years old may yield the greatest benefits. Investigating the substantial link between the gut and brain during this crucial developmental phase raises fundamental issues about the role of microorganisms in human health and brain development. This underscores the importance of focusing on the prevention rather than the treatment of neurodevelopmental and neuropsychiatric disorders. The present review examines the gut microbiota from birth to age 3, with a particular focus on its potential relationship with neurodevelopment. This review emphasizes the immunological mechanisms underlying this relationship. Additionally, the study investigates the impact of the microbiome on cognitive development and neurobehavioral issues such as anxiety and autism. Importantly, it highlights the need to integrate mechanistic studies of animal models with epidemiological research across diverse cultures to better understand the role of a healthy microbiome in early life and the implications of dysbiosis. Furthermore, this review summarizes factors contributing to the transmission of gut microbiome-targeted therapies and their effects on neurodevelopment. Recent studies on environmental toxins known to impact neurodevelopment are also reviewed, exploring whether the microbiota may mitigate or modulate these effects.
Collapse
Affiliation(s)
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54 642 Thessaloniki, Greece;
| | - Georgia Zournatzidou
- Department of Business Administration, University of Western Macedonia, 50 100 Kozani, Greece
- Department of Accounting and Finance, Hellenic Mediterranean University, 71 410 Heraklion, Greece
| |
Collapse
|
38
|
Qiu T, Fang Q, Zeng X, Zhang X, Fan X, Zang T, Cao Y, Tu Y, Li Y, Bai J, Huang J, Liu Y. Short-term exposures to PM 2.5, PM 2.5 chemical components, and antenatal depression: Exploring the mediating roles of gut microbiota and fecal short-chain fatty acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116398. [PMID: 38677066 DOI: 10.1016/j.ecoenv.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND PM2.5 and its chemical components increase health risks and are associated with depression and gut microbiota. However, there is still limited evidence on whether gut microbiota and short-chain fatty acids (SCFAs) mediate the association between PM2.5, PM2.5 chemical components, and antenatal depression. The purpose of this study was to investigate the mediating role of maternal gut microbiota in correlations between short-term exposure to PM2.5, short-term exposure to PM2.5 chemical components, and antenatal depression. METHODS Demographic information and stool samples were collected from 75 pregnant women in their third trimester. Their exposure to PM2.5 and PM2.5 chemical components was measured. Participants were divided into the non-antenatal depression group or the antenatal depression group according to the cut-off of 10 points on the Edinburgh Postnatal Depression Scale (EPDS). The gut microbiota were analyzed using the 16 S rRNA-V3/V4 gene sequence, and the concentration of PM2.5 and its chemical components was calculated using the Tracking Air Pollution in China (TAP) database. Gas chromatography-mass spectrometry was used to analyze SCFAs in stool samples. In order to assess the mediating effects of gut microbiota and SCFAs, mediation models were utilized. RESULTS There were significant differences between gut microbial composition and SCFAs concentrations between the non-antenatal depression group and the antenatal depression group. PM2.5 and its chemical components were positively associated with EPDS scores and negatively associated with genera Enterococcus and Enterobacter. Genera Candidatus_Soleaferrea (β = -7.21, 95%CI -11.00 to -3.43, q = 0.01) and Enterococcus (β = -2.37, 95%CI -3.87 to -0.87, q = 0.02) were negatively associated with EPDS scores, indicating their potential protective effects against antenatal depression. There was no significant association between SCFAs and EPDS scores. The mediating role of Enterococcus between different lagged periods of PM2.5, PM2.5 chemical component exposure, and antenatal depression was revealed. For instance, Enterococcus explained 29.23% (95%CI 2.16-87.13%, p = 0.04) of associations between PM2.5 exposure level at the day of sampling (lag 0) and EPDS scores. CONCLUSION Our study highlights that Enterococcus may mediate the associations between PM2.5, PM2.5 chemical components, and antenatal depression. The mediating mechanism through which the gut microbiota influences PM2.5-induced depression in pregnant women still needs to be further studied.
Collapse
Affiliation(s)
- Tianlai Qiu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Qingbo Fang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xueer Zeng
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China; Zhongnan Hospital of Wuhan University, Wuhan 430062, China
| | - Xu Zhang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianzi Zang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yanan Cao
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yiming Tu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yanting Li
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China.
| | - Yanqun Liu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
39
|
Chang J, Jiang T, Shan X, Zhang M, Li Y, Qi X, Bian Y, Zhao L. Pro-inflammatory cytokines in stress-induced depression: Novel insights into mechanisms and promising therapeutic strategies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110931. [PMID: 38176531 DOI: 10.1016/j.pnpbp.2023.110931] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Stress-mediated depression is one of the common psychiatric disorders with a high prevalence and suicide rate, there is a lack of effective treatment. Accordingly, effective treatments with few adverse effects are urgently needed. Pro-inflammatory cytokines (PICs) may play a key role in stress-mediated depression. Thereupon, both preclinical and clinical studies have found higher levels of IL-1β, TNF-α and IL-6 in peripheral blood and brain tissue of patients with depression. Recent studies have found PICs cause depression by affecting neuroinflammation, monoamine neurotransmitters, hypothalamic pituitary adrenal axis and neuroplasticity. Moreover, they play an important role in the symptom, development and progression of depression, maybe a potential diagnostic and therapeutic marker of depression. In addition, well-established antidepressant therapies have some relief on high levels of PICs. Importantly, anti-inflammatory drugs relieve depressive symptoms by reducing levels of PICs. Collectively, reducing PICs may represent a promising therapeutic strategy for depression.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Tingcan Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mingxing Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, 300121, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
40
|
Scheible K, Beblavy R, Sohn MB, Qui X, Gill AL, Narvaez-Miranda J, Brunner J, Miller RK, Barrett ES, O’Connor TG, Gill SR. Affective Symptoms in Pregnancy are Associated with the Vaginal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589254. [PMID: 38645042 PMCID: PMC11030453 DOI: 10.1101/2024.04.12.589254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Composition of the vaginal microbiome in pregnancy is associated with adverse maternal, obstetric, and child health outcomes. Identifying the sources of individual differences in the vaginal microbiome is therefore of considerable clinical and public health interest. The current study tested the hypothesis that vaginal microbiome composition during pregnancy is associated with an individual's experience of affective symptoms and stress exposure. Data were based on a prospective longitudinal study of a diverse and medically healthy community sample of 275 mother-infant pairs. Affective symptoms and stress exposure and select measures of associated biomarkers (diurnal salivary cortisol, serum measures of sex hormones) were collected at each trimester; self-report, clinical, and medical records were used to collect detailed data on socio-demographic factors and health behavior, including diet and sleep. Vaginal microbiome samples were collected in the third trimester (34-40 weeks) and characterized by 16S rRNA sequencing. Identified taxa were clustered into three community state types (CST1-3) based on dissimilarity of vaginal microbiota composition. Results indicate that depressive symptoms during pregnancy were reliably associated with individual taxa and CST3 in the third trimester. Prediction of functional potential from 16S taxonomy revealed a differential abundance of metabolic pathways in CST1-3 and individual taxa, including biosynthetic pathways for the neuroactive metabolites, serotonin and dopamine. With the exception of bioavailable testosterone, no significant associations were found between symptoms- and stress-related biomarkers and CSTs. Our results provide further evidence of how prenatal psychological distress during pregnancy alters the maternal-fetal microbiome ecosystem that may be important for understanding maternal and child health outcomes.
Collapse
Affiliation(s)
- Kristin Scheible
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert Beblavy
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Michael B. Sohn
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xing Qui
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann L. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Janiret Narvaez-Miranda
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily S. Barrett
- Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Tom G. O’Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Wynne Center for Family Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
41
|
Yu J, Zhang Y, Wells JCK, Wei Z, Bajaj-Elliott M, Nielsen DS, Fewtrell MS. A Stress Reduction Intervention for Lactating Mothers Alters Maternal Gut, Breast Milk, and Infant Gut Microbiomes: Data from a Randomized Controlled Trial. Nutrients 2024; 16:1074. [PMID: 38613107 PMCID: PMC11013067 DOI: 10.3390/nu16071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND This secondary analysis of data from a randomized controlled trial (RCT) investigated how the maternal gut, breast milk, and infant gut microbiomes may contribute to the effects of a relaxation intervention, which reduced maternal stress and promoted infant weight gain. METHODS An RCT was undertaken in healthy Chinese primiparous mother-infant pairs (340/7-376/7gestation weeks). Mothers were randomly allocated to either the intervention group (IG, listening to relaxation meditation) or the control group (CG). Outcomes were the differences in microbiome composition and the diversity in the maternal gut, breast milk, and infant gut at 1 (baseline) and 8 weeks (post-intervention) between IG and CG, assessed using 16S rRNA gene amplicon sequencing of fecal and breastmilk samples. RESULTS In total, 38 mother-infant pairs were included in this analysis (IG = 19, CG = 19). The overall microbiome community structure in the maternal gut was significantly different between the IG and CG at 1 week, with the difference being more significant at 8 weeks (Bray-Curtis distance R2 = 0.04 vs. R2 = 0.13). Post-intervention, a significantly lower α-diversity was observed in IG breast milk (observed features: CG = 295 vs. IG = 255, p = 0.032); the Bifidobacterium genera presented a higher relative abundance. A significantly higher α-diversity was observed in IG infant gut (observed features: CG = 73 vs. IG = 113, p < 0.001). CONCLUSIONS The findings were consistent with the hypothesis that the microbiome might mediate observed relaxation intervention effects via gut-brain axis and entero-mammary pathways; but confirmation is required.
Collapse
Affiliation(s)
- Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| | - Yan Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Jonathan C. K. Wells
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| | - Zhuang Wei
- Department of Child Healthcare, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Mona Bajaj-Elliott
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | | | - Mary S. Fewtrell
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| |
Collapse
|
42
|
Gaus OV, Livzan MA, Gavrilenko DA. Risk factors for irritable bowel syndrome: A review. TERAPEVT ARKH 2024; 96:159-167. [DOI: 10.26442/00403660.2024.02.202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Irritable bowel syndrome (IBS) is one of the most common diseases of the digestive tract from the group of disorders of interaction in the gut-brain axis. IBS has a negative impact of on patients' quality of life and the significant social and economic burden of the disease due to the low effectiveness of available treatment strategies, which are only symptomatic, without impacting factors and mechanisms of intestinal dysfunction. From this perspective, it is critical to study the factors contributing to the onset and persistence of IBS symptoms to improve the early diagnosis of the disease and implement targeted prevention technology in at-risk groups. The objective of this paper is to systematize data on the main risk factors for IBS, including hereditary predisposition, stress and psycho-emotional state, diet and eating habits, and acute intestinal infections.
Collapse
|
43
|
Ai Y, Huang J, Zhu TT. Early exposure to maternal stress and risk for atopic dermatitis in children: A systematic review and meta-analysis. Clin Transl Allergy 2024; 14:e12346. [PMID: 38488856 PMCID: PMC10941798 DOI: 10.1002/clt2.12346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/27/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The incidence of atopic dermatitis (AD) in children is increasing. Early exposure to stress factors may be associated with the AD development. This study aimed to summarize studies that reported an association between stress exposure and AD development in later life. METHODS AND FINDINGS A comprehensive literature search was performed using online databases (PubMed, EMBASE, PsycINFO, and Web of Science) for articles published up to May 1, 2023. Eligible studies were screened and selected based on the inclusion criteria. We incorporated cohort or case-control studies published in English which explored the relationship between stress experienced by parents or children and AD. The pooled odds ratio (OR) was calculated according to the type of stress using a random-effects model. Twenty-two studies were included. AD was related to maternal distress (OR 1.29, 95% Confidence Interval [CI]: 1.13-1.47), maternal anxiety (OR 1.31, 95% CI: 1.18-1.46), and negative life events (OR 2.00, 95% CI: 1.46-2.76). Maternal depression during pregnancy was associated with AD (OR 1.21, 95% CI: 1.09-1.33), whereas no significant association was found for postpartum depression. Research on stress experienced by paternal or children is scare. CONCLUSIONS Early maternal stress may potentially elevate the risk of AD in their offspring. Importantly, rigorously designed studies are required to corroborate the link between maternal stress and AD in children. These studies should aim to gather insights about the impact of stress during specific trimesters of pregnancy, postnatal stress, and paternal stress, and to identify potential prevention strategies.
Collapse
Affiliation(s)
- Yuan Ai
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationSichuan UniversityChengduSichuanChina
| | - Jichong Huang
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationSichuan UniversityChengduSichuanChina
| | - Ting Ting Zhu
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationSichuan UniversityChengduSichuanChina
| |
Collapse
|
44
|
Jung M. Overcoming Maternal Worries: A Journey to Prevent Infants From Food Allergies by Enhancing Dietary Variety and Boosting Gut Health. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:126-129. [PMID: 38528380 DOI: 10.4168/aair.2024.16.2.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Minyoung Jung
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University School of Medicine, Busan, Korea.
| |
Collapse
|
45
|
Rajasekera TA, Galley JD, Mackos AR, Chen HJ, Mitchell JG, Kleinman JJ, Cappelucci P, Mashburn-Warren L, Lauber CL, Bailey MT, Worly BL, Gur TL. Stress and depression-associated shifts in gut microbiota: A pilot study of human pregnancy. Brain Behav Immun Health 2024; 36:100730. [PMID: 38323225 PMCID: PMC10844036 DOI: 10.1016/j.bbih.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Background Psychosocial stress and mood-related disorders, such as depression, are prevalent and vulnerability to these conditions is heightened during pregnancy. Psychosocial stress induces consequences via several mechanisms including the gut microbiota-brain axis and associated signaling pathways. Previous preclinical work indicates that prenatal stress alters maternal gut microbial composition and impairs offspring development. Importantly, although the fecal and vaginal microenvironments undergo alterations across pregnancy, we lack consensus regarding which shifts are adaptive or maladaptive in the presence of prenatal stress and depression. Clinical studies interrogating these relationships have identified unique taxa but have been limited in study design. Methods We conducted a prospective cohort study of pregnant individuals consisting of repeated administration of psychometrics (Perceived Stress Scale (PSS) and Center for Epidemiological Studies Depression Scale (CES-D)) and collection of fecal and vaginal microbiome samples. Fecal and vaginal microbial community composition across psychometric responses were interrogated using full-length 16S rRNA sequencing followed by α and β-diversity metrics and taxonomic abundance. Results Early pregnancy stress was associated with increased abundance of fecal taxa not previously identified in related studies, and stress from late pregnancy through postpartum was associated with increased abundance of typical vaginal taxa and opportunistic pathogens in the fecal microenvironment. Additionally, in late pregnancy, maternal stress and depression scores were associated with each other and with elevated maternal C-C motif chemokine ligand 2 (CCL2) concentrations. At delivery, concordant with previous literature, umbilical CCL2 concentration was negatively correlated with relative abundance of maternal fecal Lactobacilli. Lastly, participants with more severe depressive symptoms experienced steeper decreases in prenatal vaginal α-diversity. Conclusion These findings a) underscore previous preclinical and clinical research demonstrating the effects of prenatal stress on maternal microbiome composition, b) suggest distinct biological pathways for the consequences of stress versus depression and c) extend the literature by identifying several taxa which may serve critical roles in mediating this relationship. Thus, further interrogation of the role of specific maternal microbial taxa in relation to psychosocial stress and its sequelae is warranted.
Collapse
Affiliation(s)
- Therese A. Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D. Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Helen J. Chen
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | | | - Paige Cappelucci
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Christian L. Lauber
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Michael T. Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brett L. Worly
- Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tamar L. Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
Kimmel MC, Verosky B, Chen HJ, Davis O, Gur TL. The Maternal Microbiome as a Map to Understanding the Impact of Prenatal Stress on Offspring Psychiatric Health. Biol Psychiatry 2024; 95:300-309. [PMID: 38042328 PMCID: PMC10884954 DOI: 10.1016/j.biopsych.2023.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Stress and psychiatric disorders have been independently associated with disruption of the maternal and offspring microbiome and with increased risk of the offspring developing psychiatric disorders, both in clinical studies and in preclinical studies. However, the role of the microbiome in mediating the effect of prenatal stress on offspring behavior is unclear. While preclinical studies have identified several key mechanisms, clinical studies focusing on mechanisms are limited. In this review, we discuss 3 specific mechanisms by which the microbiome could mediate the effects of prenatal stress: 1) altered production of short-chain fatty acids; 2) disruptions in TH17 (T helper 17) cell differentiation, leading to maternal and fetal immune activation; and 3) perturbation of intestinal and microbial tryptophan metabolism and serotonergic signaling. Finally, we review the existing clinical literature focusing on these mechanisms and highlight the need for additional mechanistic clinical research to better understand the role of the microbiome in the context of prenatal stress.
Collapse
Affiliation(s)
- Mary C Kimmel
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Branden Verosky
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Helen J Chen
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Olivia Davis
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tamar L Gur
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
47
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
48
|
Biagioli V, Volpedo G, Riva A, Mainardi P, Striano P. From Birth to Weaning: A Window of Opportunity for Microbiota. Nutrients 2024; 16:272. [PMID: 38257165 PMCID: PMC10819289 DOI: 10.3390/nu16020272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: The first 1000 days of life constitute a critical window of opportunity for microbiota development. Nutrients play a crucial role in enriching and diversifying the microbiota, derived not only from solid food but also from maternal dietary patterns during gestation. (2) Methods: We conducted a comprehensive literature review using the PubMed database, covering eleven years (2013-2023). We included English-language reviews, original research papers, and meta-analyses, while excluding case reports and letters. (3) Results: Consensus in the literature emphasizes that our interaction with a multitude of microorganisms begins in the intrauterine environment and continues throughout our lives. The existing data suggest that early nutritional education programs, initiated during pregnancy and guiding infant diets during development, may influence the shaping of the gut microbiota, promoting long-term health. (4) Conclusions: Further research is necessary in the coming years to assess potential interventions and early nutritional models aimed at modulating the pediatric microbiota, especially in vulnerable populations such as premature newborns.
Collapse
Affiliation(s)
- Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Paolo Mainardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
49
|
Tao Y, Zhou H, Li Z, Wu H, Wu F, Miao Z, Shi H, Huang F, Wu X. TGR5 deficiency-induced anxiety and depression-like behaviors: The role of gut microbiota dysbiosis. J Affect Disord 2024; 344:219-232. [PMID: 37839469 DOI: 10.1016/j.jad.2023.10.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND PURPOSE Anxiety and depression have been associated with imbalances in the gut microbiota and bile acid metabolism. Takeda G protein-coupled receptor 5 (TGR5), a bile acid receptor involved in metabolism, is influenced by the gut microbiota. This study aimed to investigate the relationship between anxiety, depression, and microbiota using TGR5 knockout mice. METHODS We employed the following methods: (1) Assessment of behavioral changes, (2) Measurement of 5-HT levels and protein expression, (3) Analysis of stool samples, (4) Utilization of gene sequencing and statistical analysis to identify microbial signatures, (5) Examination of correlations between microbial signatures and 5-HT levels, and (6) Fecal microbiota transplantation experiments of TGR5-/- mice. RESULTS The deletion of TGR5 was found to result in increased anxiety- and depression-like behaviors in mice. TGR5 knockout mice exhibited significant reductions in 5-hydroxytryptamine (5-HT) levels in both serum and hippocampus, accompanied by a decrease in the expression of 5-HT1A receptor in the hippocampus. Moreover, TGR5 deficiency was associated with a decrease in the species richness of the gut microbiota. Specifically, the gut microbiota compositions of TGR5 knockout mice displayed distinct differences compared to their littermates, characterized by higher abundances of Anaeroplasma, Prevotella, Staphylococcus, Jeotgalicoccus, and Helicobacter, and a lower abundance of Bifidobacterium. Notably, a strong association between Jeotgalicoccus as well as Staphylococcus and serum 5-HT levels was observed in co-occurrence network. Furthermore, mice that received fecal microbiota transplants from TGR5-/- mice displayed anxiety and depression -like behaviors, accompanied by alterations in 5-HT levels in the hippocampus and serum. LIMITATIONS Study limitations for gut bacteria were analyzed at the genus level only. CONCLUSION TGR5 deletion in mice induces anxiety and depression-like behaviors, linked to reduced 5-HT levels in serum and the hippocampus. Gut microbiota changes play a direct role in these behaviors and serotonin alterations. This implicates TGR5 and gut bacteria in mood regulation, with potential therapeutic implications.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fanggeng Wu
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Zhiguo Miao
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
50
|
Desorcy-Scherer K, Fricke HP, Hernandez LL. Selective serotonin reuptake inhibitors during pregnancy and lactation: A scoping review of effects on the maternal and infant gut microbiome. Dev Psychobiol 2024; 66:e22441. [PMID: 38131241 PMCID: PMC11017378 DOI: 10.1002/dev.22441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Perinatal mood disorders are a tremendous burden to childbearing families and treatment with selective serotonin reuptake inhibitor (SSRI) antidepressants is increasingly common. Exposure to SSRIs may affect serotonin signaling and ultimately, microbes that live in the gut. Health of the gut microbiome during pregnancy, lactation, and early infancy is critical, yet there is limited evidence to describe the relationship between SSRI exposure and gut microbiome status in this population. The purpose of this Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)-compliant scoping review is to assess evidence and describe key concepts regarding whether SSRI exposure affects the maternal and infant gut microbiome. Sources were collected from PubMed, Web of Science, and Scopus databases, and an additional gray literature search was performed. Our search criteria returned only three sources, two rodent models and one human subjects research study. Results suggest that fluoxetine (SSRI) exposure may affect maternal gut microbiome dynamics during pregnancy and lactation. There were no available sources to describe the relationship between perinatal SSRI exposure and the infant gut microbiome. There is a significant gap in the literature regarding whether SSRI antidepressants affect the maternal and infant gut microbiome. Future studies are required to better understand how SSRI antidepressant exposure affects perinatal health.
Collapse
Affiliation(s)
| | - Hannah P. Fricke
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|