1
|
Ren J, Wang Y, Wang Y, Zhang Y, Xing M, Deng S, Tong S, Wang L, Zheng C, Yang J, Ni G, Ming D. Dynamic changes of hippocampal dendritic spines in Alzheimer's disease mice among the different stages. Exp Neurol 2025; 390:115266. [PMID: 40246009 DOI: 10.1016/j.expneurol.2025.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptides and a progressive decline in cognitive function. Hippocampus as a crucial brain area for learning and memory, is also adversely affected by AD's pathology. The accumulation of Aβ is often associated with the loss of dendritic spines of the hippocampus. However, the dynamic alterations in dendritic spines throughout AD progression are not fully understood. To investigate it, we conducted in-vivo imaging in two mouse models representing the early and late stages of AD pathology: young mice injected with Aβ1-42 oligomers and APP/PS1 transgenic mice. In the early-stage AD model, imaging was conducted at third- and fifth- weeks post-injection. In the late-stage AD model, a four-month imaging began at 14 months old. The imaging results showed spine elimination in both models. Notably, acute Aβ exposure was linked to heightened spine loss on secondary dendrites, while in the late stage the primary effect was on tertiary dendrites. Concurrently, with the metabolism of Aβ, cognition recovered to some extent by five weeks post Aβ1-42 exposure. These findings suggested that dendritic spine plasticity was impaired during the development of AD, as evidenced by increasing spine loss at different levels. However, the cognitive recovery observed in early-stage AD model mice may indicate a compensatory structural reorganization, highlighting the potential of early intervention to mitigate disease progression. Our results provide novel insights into the neurotoxic effects of Aβ1-42 and may contribute to the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jing Ren
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yimeng Wang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yinuo Wang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yiping Zhang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Mu Xing
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Shouzhe Deng
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Siyi Tong
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China
| | - Chenguang Zheng
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China
| | - Jiajia Yang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China.
| | - Guangjian Ni
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Forloni G. Doxycycline: An essential tool for Alzheimer's disease. Biomed Pharmacother 2025; 188:118159. [PMID: 40367557 PMCID: PMC12165865 DOI: 10.1016/j.biopha.2025.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
The identification of active interventions in neurodegenerative disorders is a major challenge in neurology; the use of repurposed drugs may represent a valuable strategy. Tetracyclines, a second generation of antibiotic molecules, offer various potential applications. Following an anecdotal observation of the potential anti-amyloidogenic activity of iododoxorubicin, the search for chemical analogs with a better safety profile led to tetracyclines. Their heterocyclic structures with a planar conformation interfere with b-sheet amyloid formation. Thus, doxycycline, a derivative with favorable blood-brain barrier penetration, emerged as a strong candidate to combat peripheral and central amyloidosis. In particular, we tested the anti-prion activity of doxycycline in vitro and in vivo experiments, confirming its capacity to disrupt or inhibit the formation of prion protein aggregates associated with pathological events. Treatment with doxycycline in human subjects with prion - related encephalopathies yielded contradictory results, suggesting that a preventive approach is a more favorable condition to verify efficacy; a clinical trial involving subjects at genetic risk of developing fatal familial insomnia, exposed to doxycycline for ten years, is currently ongoing. The anti-amyloidogenic capacity of doxycycline, combined with its safety profile in long-term treatment, has suggested its use in peripheral amyloidosis, which was tested with positive results. A specific interaction with β-amyloid or α-synuclein oligomers, as well as tau aggregation has also been demonstrated. More recently, the action of doxycycline has been extended to its anti-inflammatory and antioxidant capacities. In particular, the anti-inflammatory activity of doxycycline may explain the drug 's efficacy in numerous experimental models where protein misfolding has been associated with neuroinflammation, including Huntington's and Parkinson' s diseases. Thus, the pleiotropic action of doxycycline appears to be an interesting tool for addressing progressive neuronal dysfunction in multifactorial neurodegenerative diseases. The application of precision medicine principles to doxycycline treatment represents the best strategy to determine its efficacy. These aspects are illustrated here concerning another pleiotropic tetracycline, minocycline.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| |
Collapse
|
3
|
Latina V, De Introna M, Malerba F, Florio R, Balzamino BO, Di Natale G, Sciacca MFM, Pappalardo G, Micera A, Pignataro A, Calissano P, Amadoro G. Acute targeting of N-terminal tau protein has long-lasting beneficial effects in Tg2576 APP/Aβ mouse model by reducing cognitive impairment, cerebral Aβ-amyloidosis, synaptic remodeling and microgliosis later in life. Acta Neuropathol Commun 2025; 13:121. [PMID: 40442822 PMCID: PMC12123992 DOI: 10.1186/s40478-025-02022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Even though the number of patients suffering from Alzheimer's Disease (AD) is rapidly growing worldwide, only a few symptomatic treatments have been approved for clinical use, pointing out the urgent need for more effective disease-modifying therapies that actually alter the progression of this neurodegenerative disorder which is characterized by co-occurence of both Amyloid beta (Aβ) and tau neuropathologies. Preclinical and clinical evidence suggests that a link between Aβ and tau drives the entire continuum of AD pathobiology. 12A12 is a monoclonal antibody (mAb) which offers neuroprotection into two transgenic lines of AD, including Tg2576 that overexpresses Swedish mutation (KM670/671NL) of Amyloid Precursor Protein (APP, isoform 695) and 3xTg (APP Swedish, MAPT P301L, and PSEN1 M146V), by targeting the 20-22kDa N-terminal tau fragments (NH2htau). In particular, acute (over 14 days with 4 doses), intravenous injection of 12A12mAb leads to significant improvement of cognitive, biochemical and histopathological AD signs in symptomatic 6-month-old Tg2576, a well-established transgenic mouse model that mimics the human amyloidosis with an age-dependent Aβ accumulation/aggregation and plaque deposition. Here, we report that Tg2576 mice, immunized with 12A12mAb at 6 months of age and returned to their home cage for additional 3 months, exhibit preserved spatial memory despite the anticipated interruption of antibody administration (discontinuous treatment). This enduring beneficial effect on memory deficit (up to 90 days after the last injection) is accompanied by normalization in the synaptic imbalance and microgliosis along with decrease of the most toxic A11-positive prefibrillar oligomers and inverse increase in 4kDa monomeric form(s) of Aβ 1-42. These findings reveal that: (i) soluble, pathogenetic tau specie(s) located at the N-terminal domain of protein early synergizes with Aβ in driving the progression of AD neuropathology; (ii) transient immunoneutralization of the NH2htau following short-term treatment with 12A12mAb exerts preventive, long-lasting neuroprotective effects, at least in part by interfering at "pre-plaque" stage with the progressive deposition of insoluble, fibrillar Aβ via a shift of its aggregation pathway into its less harmful, unaggregated monomeric forms. Taken together, these findings represent a strong rationale for the advancement of 12A12mAb to clinical stage aiming at preventing the Aβ-dependent neurodegeneration by lowering the cerebral levels of NH2htau in humans suffering from chronic, slow-progressing AD.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Margherita De Introna
- Centro Di Ricerca Europeo Sul Cervello (CERC), IRCCS Santa Lucia Foundation (FSL), Via Fosso del Fiorano 43-44, 00143, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
- Institute of Nanotechnology Campus Ecotekne- National Research Council (CNR), Via Monteroni, 73100, Lecce, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184, Rome, Italy
| | - Giuseppe Di Natale
- Institute of Crystallography (IC)-National Research Council (CNR), Via Paolo Gaifami 18, 95126, Catania, Italy
| | | | - Giuseppe Pappalardo
- Institute of Crystallography (IC)-National Research Council (CNR), Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184, Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
- Centro Di Ricerca Europeo Sul Cervello (CERC), IRCCS Santa Lucia Foundation (FSL), Via Fosso del Fiorano 43-44, 00143, Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy.
| |
Collapse
|
4
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
5
|
Wu L, Sun Y, Zhao L, Xing S, Liu R, Wong NL, Lin Y, Song C, Lu C, Zhang H. Lancao decoction alleviates Alzheimer's disease: Depending on activating CaMKII to protect neuronal refunction by reducing β-amyloid in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119619. [PMID: 40074096 DOI: 10.1016/j.jep.2025.119619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCY Lancao decoction (LC) is a traditional Chinese medicine (TCM) formulation mentioned in the "Huangdineijing", known for its ability to dispel turbidity and eliminate heat. TCM believes that the etiology of Alzheimer's disease (AD) is phlegm turbidity, and the fiery internal obstruction of the gods, which suggests that LC has the possibility of treating. AIM OF THE STUDY This investigation will examine the possibilities of LC to improve AD and uncover the underlying mechanisms. MATERIALS AND METHODS Gas chromatography (GC) and HPLC-MS were used to identify the content of the primary elements in LC and test the stability of its extraction. The function of LC in ameliorating AD was characterized by utilizing behavioral assessments such as the Morris water maze (MWM) and the Y-maze in AD modeling mice. Levels of molecular signaling and neurogenesis within the hippocampus was assessed using Western blot and immunostaining. Pharmacological interventions were used to explore the association of specific targets with neurogenesis and synaptic proteins and their contributions in LC improvement of AD. RESULTS The main components of LC include p-Cymene, 3-Methoxy-p-cymene, neryl acetate, gallic acid, protocatechuic acid and euparin. APP/PS1 mice displayed behavioral characteristics indicative of memory and learning deficits, such as a notably longer time taken to reach the platform and reduced time spent in the area without the platform in the Morris Water Maze (MWM), as well as a longer delay in exploring the new arm and less time spent in the new arm in the Y-maze, when compared to C57BL6/J mice. However, these impairments were alleviated by chronic treatment with either LC or donepezil (DON) over a period of 14 days. Additionally, the phosphorylated levels of CaMKII and the amounts of synaptic proteins (synapsin1 and PSD95) were greatly diminished within the hippocampal region of APP/PS1 mice, which were also reversed by LC or DON. In addition, Aβ area was obviously increased in the hippocampus of the APP/PS1 murine model, which was also reversed by LC or DON. Inhibition of CaMKII activities not only blunted LC's therapeutic actions of AD, but also blocked the enhancements of LC on synaptic proteins in the hippocampus, the quantity of cells that are co-stained with BrdU and DCX, and Ki67-positive cells located in the dentate gyrus (DG) of the hippocampus. CONCLUSION The results indicated that LC activated CaMKII to relieve Aβ formation, thereby enhancing neuronal functions in the hippocampus, and thus alleviated AD, which provided a theoretical basis for a deeper understanding of the mechanism, clinical application, and subsequent research of LC in alleviating AD.
Collapse
Affiliation(s)
- Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingang Zhao
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 211599, China
| | - Shan Xing
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, School of Chinese Medicine, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, School of Chinese Medicine, Guangzhou, 510632, China
| | - Nga Lee Wong
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, School of Chinese Medicine, Guangzhou, 510632, China
| | - Yuesong Lin
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 211599, China
| | - Chenghao Song
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, School of Chinese Medicine, Guangzhou, 510632, China
| | - Chao Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China.
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, School of Chinese Medicine, Guangzhou, 510632, China; f GHM Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, School of Chinese Medicine, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
6
|
Lucassen PJ, Korosi A, de Rooij SR, Smit AB, Van Dam AM, Daskalakis NP, Van Kesteren RE, Verheijen MHG, Lesuis SL, Kessels HW, Krugers HJ. How Can Early Stress Influence Later Alzheimer's Disease Risk? Possible Mediators and Underlying Mechanisms. Biol Psychiatry 2025; 97:372-381. [PMID: 39577793 DOI: 10.1016/j.biopsych.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder to which genetic mutations and risk factors contribute. Evidence is increasing that environmental and lifestyle-related factors, such as exercise, nutrition, education, and exposure to (early-life) stress modify the onset, incidence, and progression of AD. Here, we discuss recent preclinical findings on putative substrates that can explain or contribute to the effects of stress early in life on the risk of developing AD. We focus in particular on stress hormones, neural networks, synapses, mitochondria, nutrient and lipid metabolism, adult neurogenesis, engram cell ensembles, and neuroinflammation. We discuss the idea that stress exposure early in life can alter these processes, either combined or in isolation, thereby reducing the capacity of the brain to resist deleterious consequences of, for example, amyloid-β accumulation, thereby accelerating cognitive decline and progression of Alzheimer-related changes in model systems of the disease. A better understanding of whether experiences early in life also modify trajectories of cognitive decline and pathology in AD and how the substrates discussed translate to humans may help develop novel preventive and/or therapeutic strategies to mitigate the consequences of stressors early in life and increase resilience to developing dementia.
Collapse
Affiliation(s)
- Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nikolaos P Daskalakis
- Neurogenomics and Translational Bioinformatics Laboratory, McLean Hospital, Harvard University, Boston, Massachusetts
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Helmut W Kessels
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Maisto N, Mango D. Nose to brain strategy coupled to nano vesicular system for natural products delivery: Focus on synaptic plasticity in Alzheimer's disease. J Pharm Anal 2024; 14:101057. [PMID: 39802402 PMCID: PMC11718335 DOI: 10.1016/j.jpha.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 01/16/2025] Open
Abstract
A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β (Aβ) in ex vivo and in vivo Alzheimer's disease (AD) models, suggesting a possible use in the treatment of this neurodegenerative disorder. However, several compounds, administered parenterally and orally, are unable to reach the brain due to the presence of the blood-brain barrier (BBB) which prevents the passage of external substances, such as proteins, peptides, or phytocompounds, representing a limit to the development of treatment for neurodegenerative diseases, such as AD. The combination of nano vesicular systems, as colloidal systems, and nose to brain (NtB) delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases, including the use of natural molecules in combination therapy for AD. Herein, we will provide an updated overview, examining the literature of the last 20 years and using specific keywords that provide evidence on natural products with the ability to restore synaptic plasticity alterations in AD models, and the possible application using safe and non-invasive strategies focusing on nano vesicular systems for NtB delivery.
Collapse
Affiliation(s)
- Nunzia Maisto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, 00185, Italy
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
| | - Dalila Mango
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
- School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
8
|
Zong T, Li N, Han F, Liu J, Deng M, Li V, Zhang M, Zhou Y, Yu M. Microglial depletion rescues spatial memory impairment caused by LPS administration in adult mice. PeerJ 2024; 12:e18552. [PMID: 39559328 PMCID: PMC11572354 DOI: 10.7717/peerj.18552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Recent studies have highlighted the importance of microglia, the resident macrophages in the brain, in regulating cognitive functions such as learning and memory in both healthy and diseased states. However, there are conflicting results and the underlying mechanisms are not fully understood. In this study, we examined the effect of depleting adult microglia on spatial learning and memory under both physiological conditions and lipopolysaccharide (LPS)-induced neuroinflammation. Our results revealed that microglial depletion by PLX5622 caused mild spatial memory impairment in mice under physiological conditions; however, it prevented memory deficits induced by systemic LPS insult. Inactivating microglia through minocycline administration replicated the protective effect of microglial depletion on LPS-induced memory impairment. Furthermore, our study showed that PLX5622 treatment suppressed LPS-induced neuroinflammation, microglial activation, and synaptic dysfunction. These results strengthen the evidence for the involvement of microglial immunoactivation in LPS-induced synaptic and cognitive malfunctions. They also suggest that targeting microglia may be a potential approach to treating neuroinflammation-associated cognitive dysfunction seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tao Zong
- Affiliated Qingdao Third People’s Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
| | - Na Li
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Qingdao Binhai University, Qingdao, Shandong, China
| | - Fubing Han
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China, China
| | - Junru Liu
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China, China
| | - Mingru Deng
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China, China
| | - Vincent Li
- Beverly Hills High School, Unaffiliated, Beverly Hills, California, United States
| | - Meng Zhang
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
| | - Yu Zhou
- Affiliated Qingdao Third People’s Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ming Yu
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
9
|
Kaur S, K M, Sharma A, Giridharan VV, Dandekar MP. Brain resident microglia in Alzheimer's disease: foe or friends. Inflammopharmacology 2024:10.1007/s10787-024-01550-8. [PMID: 39167311 DOI: 10.1007/s10787-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
The neurobiology of Alzheimer's disease (AD) is unclear due to its multifactorial nature. Although a wide range of studies revealed several pathomechanisms of AD, dementia is yet unmanageable with current pharmacotherapies. The recent growing literature illustrates the role of microglia-mediated neuroinflammation in the pathogenesis of AD. Indeed, microglia serve as predominant sentinels of the brain, which diligently monitor the neuroimmune axis by phagocytosis and releasing soluble factors. In the case of AD, microglial cells are involved in synaptic pruning and remodeling by producing inflammatory mediators. The conditional inter-transformation of classical activation (proinflammatory) or alternative activation (anti-inflammatory) microglia is responsible for most brain disorders. In this review, we discussed the role of microglia in neuroinflammatory processes in AD following the accumulation of amyloid-β and tau proteins. We also described the prominent phenotypes of microglia, such as disease-associated microglia (DAM), dark microglia, interferon-responsive microglia (IRMs), human AD microglia (HAMs), and microglial neurodegenerative phenotype (MGnD), which are closely associated with AD incidence. Considering the key role of microglia in AD progression, microglial-based therapeutics may hold promise in mitigating cognitive deficits by addressing the neuroinflammatory responses.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Malleshwari K
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Anamika Sharma
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
10
|
Rombaut B, Schepers M, Tiane A, Mussen F, Koole L, Kessels S, Trippaers C, Jacobs R, Wouters K, Willems E, van Veggel L, Koulousakis P, Deluyker D, Bito V, Prickaerts J, Wens I, Brône B, van den Hove DLA, Vanmierlo T. Early Inhibition of Phosphodiesterase 4B (PDE4B) Instills Cognitive Resilience in APPswe/PS1dE9 Mice. Cells 2024; 13:1000. [PMID: 38920631 PMCID: PMC11201979 DOI: 10.3390/cells13121000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer's disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter. The effects on cognitive function of prolonged A33 treatment from 20 days to 4 months of age, was assessed at 7-8 months. PDE4B inhibition significantly improved both the working and spatial memory of APPswe/PSdE9 mice after treatment ended. At the cellular level, in vitro inhibition of PDE4B induced microglial filopodia formation, suggesting that regulation of PDE4B activity can counteract microglia activation. Further research is needed to investigate if this could prevent microglia from adopting their 'disease-associated microglia (DAM)' phenotype in vivo. These findings support the possibility that PDE4B is a potential target in combating AD pathology and that early intervention using A33 may be a promising treatment strategy for AD.
Collapse
Affiliation(s)
- Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- University MS Center (UMSC) Hasselt, 3900 Pelt, Belgium
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- University MS Center (UMSC) Hasselt, 3900 Pelt, Belgium
| | - Femke Mussen
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Lisa Koole
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
| | - Sofie Kessels
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
| | - Chloë Trippaers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ruben Jacobs
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Center+ (MUMC+), 6229 ER Maastricht, The Netherlands;
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Emily Willems
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
| | - Lieve van Veggel
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- University MS Center (UMSC) Hasselt, 3900 Pelt, Belgium
| | - Philippos Koulousakis
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), BIOMED, Agoralaan, 3590 Diepenbeek, Belgium; (D.D.); (V.B.)
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), BIOMED, Agoralaan, 3590 Diepenbeek, Belgium; (D.D.); (V.B.)
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
| | - Inez Wens
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- University MS Center (UMSC) Hasselt, 3900 Pelt, Belgium
| | - Bert Brône
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
| | - Daniel L. A. van den Hove
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (B.R.); (M.S.); (A.T.); (F.M.); (L.K.); (S.K.); (C.T.); (R.J.); (E.W.); (L.v.V.); (P.K.); (I.W.); (B.B.)
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNs), Division Translational Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.P.); (D.L.A.v.d.H.)
- University MS Center (UMSC) Hasselt, 3900 Pelt, Belgium
| |
Collapse
|
11
|
Kusui Y, Izuo N, Tokuhara R, Asano T, Nitta A. Neuronal activation of nucleus accumbens by local methamphetamine administration induces cognitive impairment through microglial inflammation in mice. J Pharmacol Sci 2024; 154:127-138. [PMID: 38395513 DOI: 10.1016/j.jphs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/25/2024] Open
Abstract
More than half of methamphetamine (METH) users present with cognitive impairment, making it difficult for them to reintegrate into society. However, the mechanisms of METH-induced cognitive impairment remain unclear. METH causes neuronal hyperactivation in the nucleus accumbens (NAc) by aberrantly releasing dopamine, which triggers dependence. In this study, to clarify the involvement of hyperactivation of NAc in METH-induced cognitive impairment, mice were locally microinjected with METH into NAc (mice with METH (NAc)) and investigated their cognitive phenotype. Mice with METH (NAc) exhibited cognitive dysfunction in behavioral analyses and decreased long-term potentiation in the hippocampus, with NAc activation confirmed by expression of FosB, a neuronal activity marker. In the hippocampus of mice with METH (NAc), activated microglia, but not astroglia, and upregulated microglia-related genes, Il1b and C1qa were observed. Finally, administration of minocycline, a tetracycline antibiotic with suppressive effect on microglial activation, to mice with METH (NAc) ameliorated cognitive impairment and synaptic dysfunction by suppressing the increased expression of Il1b and C1qa in the hippocampus. In conclusion, activation of NAc by injection of METH into NAc elicited cognitive impairment by facilitating immune activation in mice. This study suggests that immunological intervention could be a therapeutic strategy for addiction-related cognitive disturbances.
Collapse
Affiliation(s)
- Yuka Kusui
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Reika Tokuhara
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
12
|
Oshima T, Kater MSJ, Huffels CFM, Wesseling EM, Middeldorp J, Hol EM, Verheijen MHG, Smit AB, Boddeke EWGM, Eggen BJL. Early amyloid-induced changes in microglia gene expression in male APP/PS1 mice. J Neurosci Res 2024; 102:e25295. [PMID: 38515329 DOI: 10.1002/jnr.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 01/12/2024] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aβ) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aβ.
Collapse
Affiliation(s)
- Takuya Oshima
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mandy S J Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Evelyn M Wesseling
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Wang Q, Ruan Z, Jing L, Guo Z, Zhang X, Liu J, Tian L, Sun W, Song S, Hong JS, Shih YYI, Hou L, Wang Q. Complement receptor 3-mediated neurotoxic glial activation contributes to rotenone-induced cognitive decline in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115550. [PMID: 37832486 PMCID: PMC10807506 DOI: 10.1016/j.ecoenv.2023.115550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Microglia-mediated chronic neuroinflammation has been associated with cognitive decline induced by rotenone, a well-known neurotoxic pesticide used in agriculture. However, the mechanisms remain unclear. This work aimed to elucidate the role of complement receptor 3 (CR3), a highly expressed receptor in microglia, in cognitive deficits induced by rotenone. Rotenone up-regulated the expression of CR3 in the hippocampus and cortex area of mice. CR3 deficiency markedly ameliorated rotenone-induced cognitive impairments, neurodegeneration and phosphorylation (Ser129) of α-synuclein in mice. CR3 deficiency also attenuated rotenone-stimulated microglial M1 activation. In microglial cells, siRNA-mediated knockdown of CR3 impeded, while CR3 activation induced by LL-37 exacerbated, rotenone-induced microglial M1 activation. Mechanistically, CR3 deficiency blocked rotenone-induced activation of nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling pathways. Pharmacological inhibition of NF-κB or STAT3 but not STAT1 was confirmed to suppress microglial M1 activation elicited by rotenone. Further study revealed that CR3 deficiency or knockdown also reduced rotenone-induced expression of C3, an A1 astrocyte marker, and production of microglial C1q, TNFα and IL-1α, a cocktail for activated microglia to induce neurotoxic A1 astrocytes, via NF-κB and STAT3 pathways. Finally, a small molecule modulator of CR3 efficiently mitigated rotenone-elicited cognitive deficits in mice even administered after the establishment of cognitive dysfunction. Taken together, our findings demonstrated that CR3 is a key factor in mediating neurotoxic glial activation and subsequent cognitive impairments in rotenone-treated mice, giving novel insights into the immunopathogenesis of cognitive impairments in pesticide-related Parkinsonism.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Jing
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ziyang Guo
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaomeng Zhang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jianing Liu
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Tian
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Song
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
14
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
Kadlecova M, Freude K, Haukedal H. Complexity of Sex Differences and Their Impact on Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051261. [PMID: 37238932 DOI: 10.3390/biomedicines11051261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.
Collapse
Affiliation(s)
- Marion Kadlecova
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| |
Collapse
|
16
|
Kater MSJ, Badia-Soteras A, van Weering JRT, Smit AB, Verheijen MHG. Electron microscopy analysis of astrocyte-synapse interactions shows altered dynamics in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:1085690. [PMID: 36779013 PMCID: PMC9908992 DOI: 10.3389/fncel.2023.1085690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Astrocyte-synapse bi-directional communication is required for neuronal development and synaptic plasticity. Astrocytes structurally interact with synapses using their distal processes also known as leaflets or perisynaptic astrocytic processes (PAPs). We recently showed that these PAPs are retracted from hippocampal synapses, and involved in the consolidation of fear memory. However, whether astrocytic synaptic coverage is affected when memory is impaired is unknown. Methods Here, we describe in detail an electron microscopy method that makes use of a large number of 2D images to investigate structural astrocyte-synapse interaction in paraformaldehyde fixed brain tissue of mice. Results and discussion We show that fear memory-induced synaptic activation reduces the interaction between the PAPs and the presynapse, but not the postsynapse, accompanied by retraction of the PAP tip from the synaptic cleft. Interestingly, this retraction is absent in the APP/PS1 mouse model of Alzheimer's disease, supporting the concept that alterations in astrocyte-synapse coverage contribute to memory processing.
Collapse
Affiliation(s)
- Mandy S. J. Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aina Badia-Soteras
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan R. T. van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,*Correspondence: Mark H. G. Verheijen,
| |
Collapse
|