1
|
Hou C, Chen Y, Zhang W, Yu J, Ji M, Cai S, Guo W, Ji X, Sun L, Liu X, Wang Y. An insight into the full aspects of bound polyphenols in dietary fiber: Interaction, composition, function and foundation as well as alteration in food processing. Food Chem 2025; 485:144553. [PMID: 40318329 DOI: 10.1016/j.foodchem.2025.144553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Dietary fiber (DF) and polyphenols are both bioactive compounds with various health-promoting effects while close relationship between them aroused wide concern in recent years. Abundant polyphenols combine with DF and contribute greatly to its beneficial effects. Although efforts made to uncover such bound polyphenols (BPs) from different angles before, systematic overview of full aspects is deficient. Here, more details about polyphenols conjugated in DF reported recently were summarized systematically. Meanwhile, the disposition of BPs in gastrointestinal tract and their interaction with microbiome were introduced to clarify the foundation of their functions. Moreover, considering the great impacts of food processing on polyphenols, different technics used in food handling were introduced with their effects on BPs emphatically discussed to provide guideline for reasonable application of specific technics for given materials. Our work is supposed to promote the understanding of BPs in DF and facilitate their future exploitation and application as a whole.
Collapse
Affiliation(s)
- Chunyan Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youkang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wanting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jingjing Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Muhua Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenhao Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Li J, Dong D, Sun Y, Wang Q, Li Y, Tao X, Wang K, Zhao L. Astaxanthin alleviates spinal nerve ligation-induced neuropathic pain by modulating propionic acid levels. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156448. [PMID: 39951970 DOI: 10.1016/j.phymed.2025.156448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The treatment for neuropathic pain (NP) remains challenging. Propionic acid (PA), derived from gut microbiota, is a promising therapeutic target for NP. However, the precise role of PA in NP is nebulous; further, whether Astaxanthin (AST), which exhibits analgesic properties, is involved in regulating PA in NP remains unknown. OBJECTIVE We explored the role of PA in NP development and whether AST relieves NP by modulating PA levels; further, we identified novel therapeutic strategies for NP. METHODS The L4 spinal nerve was ligated (SNL) to establish a mouse model of NP. The composition of the gut microbiota was analysed through 16S rRNA sequencing. PA in faeces, blood, and spinal cord were quantitatively measured using gas chromatography-tandem mass spectrometry (GC-MS). Network pharmacology was used to identify therapeutic targets of PA for NP. The interactions between PA and its targets were analysed using molecular docking, molecular dynamics simulations, quantitative real-time polymerase chain reaction, and western blot. RESULTS Analysis of faecal samples from SNL mice showed dysregulation in the gut microbiota and alterations in PA metabolism-related enzymes. GC-MS analysis revealed reduced PA levels in faeces, serum, and spinal cord tissue. Network pharmacology and molecular docking identified therapeutic targets shared between PA and NP, primarily related to inflammation regulation. Treatment with exogenous PA supplementation alleviated pain and inhibited inflammation in the intestine and spinal cord, including NLRP3 inflammasome and NF-κB activation. CONCLUSION AST treatment modulated the gut microbiota, elevated PA levels, reduced inflammation, and strengthened the intestinal barrier, exerting an analgesic effect. Enhancing the levels of PA is a potentially novel mechanism underlying the analgesic effects of AST.
Collapse
Affiliation(s)
- Jingwu Li
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yu Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Kunpeng Wang
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| | - Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
3
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
4
|
Kamath S, Hunter A, Collins K, Wignall A, Joyce P. The atypical antipsychotics lurasidone and olanzapine exert contrasting effects on the gut microbiome and metabolic function of rats. Br J Pharmacol 2024; 181:4531-4545. [PMID: 39075330 DOI: 10.1111/bph.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Antipsychotics such as olanzapine are associated with significant metabolic dysfunction, attributed to gut microbiome dysbiosis. A recent notion that most psychotropics are detrimental to the gut microbiome has arisen from consistent findings of metabolic adverse effects. However, unlike olanzapine, the metabolic effects of lurasidone are conflicting. Thus, this study investigates the contrasting effects of olanzapine and lurasidone on the gut microbiome to explore the hypothesis of 'gut neutrality' for lurasidone exposure. EXPERIMENTAL APPROACH Using Sprague-Dawley rats, the effects of olanzapine and lurasidone on the gut microbiome were explored. Faecal and blood samples were collected weekly over a 21-day period to analyse changes to the gut microbiome and related metabolic markers. KEY RESULTS Lurasidone triggered no significant weight gain or metabolic alterations, instead positively modulating the gut microbiome through increases in mean operational taxonomical units (OTUs) and alpha diversity. This novel finding suggests an underlying mechanism for lurasidone's metabolic inertia. In contrast, olanzapine triggered a statistically significant decrease in mean OTUs, substantial compositional variation and a depletion in short-chain fatty acid abundance. Microbiome depletion correlated with metabolic dysfunction, producing a 30% increase in weight gain, increased pro-inflammatory cytokine expression, and increased blood glycaemic and triglyceride levels. CONCLUSION AND IMPLICATIONS Our results challenge the notion that all antipsychotics disrupt the gut microbiome similarly and highlights the potential benefits of gut-neutral antipsychotics, such as lurasidone, in managing metabolic side effects. Further research is warranted to validate these findings in humans to guide personalised pharmacological treatment regimens for schizophrenia.
Collapse
Affiliation(s)
- Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Collins
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Scott JS, Li A, Wardill HR. Role of mucositis in predicting gut microbiota composition in people with cancer. Curr Opin Support Palliat Care 2024; 18:73-77. [PMID: 38652454 DOI: 10.1097/spc.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Disruption of the precious ecosystem of micro-organisms that reside in the gut - the gut microbiota - is rapidly emerging as a key driver of the adverse side effects/toxicities caused by numerous anti-cancer agents. Although the contribution of the gut microbiota to these toxicities is understood with ever increasing precision, the cause of microbial disruption (dysbiosis) remains poorly understood. Here, we discuss current evidence on the cause(s) of dysbiosis after cancer therapy, positioning breakdown of the intestinal mucosa (mucositis) as a central cause. RECENT FINDINGS Dysbiosis in people with cancer has historically been attributed to extensive antibiotic use. However, evidence now suggests that certain antibiotics have minimal impacts on the microbiota. Indeed, recent evidence shows that the type of cancer therapy predicts microbiota composition independently of antibiotics. Given most anti-cancer drugs have modest effects on microbes directly, this suggests that their impact on the gut microenvironment, in particular the mucosa, which is highly vulnerable to cytotoxicity, is a likely cause of dysbiosis. Here, we outline evidence that support this hypothesis, and discuss the associated clinical implications/opportunities. SUMMARY The concept that mucositis dictates microbiota compositions provides two important implications for clinical practice. Firstly, it reiterates the importance of prioritising the development of novel mucoprotectants that preserve mucosal integrity, and indirectly support microbial stability. Secondly, it provides an opportunity to identify dysbiotic events and associated consequences using readily accessible, minimally invasive biomarkers of mucositis such as plasma citrulline.
Collapse
Affiliation(s)
- Jacqui S Scott
- Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Anna Li
- Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R Wardill
- Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
6
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
7
|
Subramaniam S, Elz A, Wignall A, Kamath S, Ariaee A, Hunter A, Newblack T, Wardill HR, Prestidge CA, Joyce P. Self-emulsifying drug delivery systems (SEDDS) disrupt the gut microbiota and trigger an intestinal inflammatory response in rats. Int J Pharm 2023; 648:123614. [PMID: 37979632 DOI: 10.1016/j.ijpharm.2023.123614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Self-emulsifying drug delivery systems (i.e. SEDDS, SMEDDS and SNEDDS) are widely employed as solubility and bioavailability enhancing formulation strategies for poorly water-soluble drugs. Despite the capacity for SEDDS to effectively facilitate oral drug absorption, tolerability concerns exist due to the capacity for high concentrations of surfactants (typically present within SEDDS) to induce gastrointestinal toxicity and mucosal irritation. With new knowledge surrounding the role of the gut microbiota in modulating intestinal inflammation and mucosal injury, there is a clear need to determine the impact of SEDDS on the gut microbiota. The current study is the first of its kind to demonstrate the detrimental impact of SEDDS on the gut microbiota of Sprague-Dawley rats, following daily oral administration (100 mg/kg) for 21 days. SEDDS comprising a lipid phase (i.e. Type I, II and III formulations according to the Lipid Formulation Classification Scheme) induced significant changes to the composition and diversity of the gut microbiota, evidenced through a reduction in operational taxonomic units (OTUs) and alpha diversity (Shannon's index), along with statistically significant shifts in beta diversity (according to PERMANOVA of multi-dimensional Bray-Curtis plots). Key signatures of gut microbiota dysbiosis correlated with the increased expression of pro-inflammatory cytokines within the jejunum, while mucosal injury was characterised by significant reductions in plasma citrulline levels, a validated biomarker of enterocyte mass and mucosal barrier integrity. These findings have potential clinical ramifications for chronically administered drugs that are formulated with SEDDS and stresses the need for further studies that investigate dose-dependent effects of SEDDS on the gastrointestinal microenvironment in a clinical setting.
Collapse
Affiliation(s)
- Santhni Subramaniam
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Aurelia Elz
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Amin Ariaee
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Tahlia Newblack
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia.
| |
Collapse
|