1
|
Cheuk DKL, Lee PPW, Chan WYK, Chan GCF, So CC, Leung WH. Novel CD62L depleted donor lymphocyte infusion with T-cell receptor alpha-beta depleted haploidentical hematopoietic stem cell transplantation in children. Transpl Immunol 2025; 89:102176. [PMID: 39892768 DOI: 10.1016/j.trim.2025.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Ex-vivo depletion of donor CD45RA+ naïve T-cells can reduce graft-versus-host-disease (GVHD) in haploidentical hematopoietic stem cell transplantation (HSCT) while providing memory T-cells to reduce infections. CD62L is another marker of naïve T-cells. Depletion of CD62L+ cells may offer advantages of removing central memory T-cells which may also cause mild GVHD, and retain CD45RA+ effector memory T-cells (TEMRA). We aimed to evaluate the depletion efficiency, safety and immunoreconstitution after novel CD62L depleted donor lymphocyte infusion (DLI) with T-cell receptor (TCR)-αβ depleted haploidentical HSCT. Children with malignant or non-malignant diseases who underwent the first TCRαβ depleted haploidentical HSCT were recruited to receive CD62L depleted DLI on day 0 at a dose of 1 × 106/kg or 5 × 106/kg CD3+CD62L- cells using the CliniMACS device. Six children aged 0.3-15 years received 4.6-10 × 106/kg CD34+ cells. CD62L depletion resulted in undetectable CD3+CD62L+ cells in 4 patients and 3.39-3.52 log reduction in 2 patients. Infusion was well-tolerated. All patients had neutrophil and platelet engrafted early (medians 10 and 9.5 days respectively) with 100 % donor chimerism. Only one patient had grade 1 acute GVHD. None had chronic GVHD. Post-transplant recovery of CD3+ cells reached a median of 117/uL at 1 month and as high as 352/uL at 3 months. TEMRA cells were present at 1 month (median 2 cells/uL) and increased 3 months post-transplant (median 21 cells/uL). In conclusion, CD62L depletion is highly efficient and appears safe and does not affect engraftment. It provides TEMRA and effector memory T-cells to protect the recipient against infections. Risk of GVHD is low.
Collapse
Affiliation(s)
- Daniel Ka Leung Cheuk
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children 's Hospital, Hong Kong.
| | - Pamela Pui Wah Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Wilson Yau Ki Chan
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children 's Hospital, Hong Kong
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children 's Hospital, Hong Kong
| | - Chi Chiu So
- Department of Pathology, Hong Kong Children 's Hospital, Hong Kong
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Sisinni L, Monserrate GXA, Hurtado JMP, Panesso M, Molina B, Fuentes C, Fuster JL, Verdu-Amoros J, Regueiro A, Palomo P, Beléndez C, Pascual A, Badell I, Mozo Y, Bueno D, Pérez-Martínez A, Fernández JM, Vicent MG, de Heredia CD. Haploidentical versus Cord Blood Transplantation in Pediatric AML. A Retrospective Outcome Analysis on Behalf of the Pediatric Subcommittee of GETH (Grupo Español de Trasplante Hematopoyético). Transplant Cell Ther 2024; 30:1015.e1-1015.e13. [PMID: 39067788 DOI: 10.1016/j.jtct.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Haploidentical stem cell transplantation (Haplo-SCT) and cord blood transplantation (CBT) are both effective alternative treatments in patients suffering from acute myeloid leukemia (AML) and lacking a matched HLA donor. In the last years, many centers have abandoned CBT procedures mostly due to concern about poorer immune recovery compared with Haplo-SCT. We conducted a retrospective multicenter study comparing the outcomes using both alternative approaches in AML. A total of 122 transplants (86 Haplo-SCTs and 36 CBTs) from 12 Spanish centers were collected from 2007 to 2021. Median age at hematopoietic stem cell transplantation (HSCT) was 7 years (0.4-20). Thirty-nine patients (31.9%) showed positive minimal residual disease (MRD) at HSCT and a previous HSCT was performed in 37 patients (30.3%). The median infused cellularity was 14.4 × 106/kg CD34+ cells (6.0-22.07) for Haplo-SCT and 4.74 × 105/kg CD34+ cells (0.8-9.4) for CBT. Median time to neutrophil engraftment was 14 days (7-44) for Haplo-SCT and 17 days (8-29) for CBT (P = .03). The median time to platelet engraftment was 14 days (6-70) for Haplo-SCT and 43 days (10-151) for CBT (P < .001). Graft rejection was observed in 13 Haplo-SCTs (15%) and in 6 CBTs (16%). The cumulative incidence of acute graft versus host disease (GvHD) grades II-IV was 54% and 51% for Haplo-SCT and CBT, respectively (P = .50). The cumulative incidence of severe acute GvHD (grades III-IV) was 22% for Haplo-SCT and 25% for CBT (P = .90). There was a tendency to a higher risk of chronic GvHD in the Haplo-SCT group being the cumulative incidence of 30% for Haplo-SCT and 12% for CBT (P = .09). The cumulative incidence of relapse was 28% and 20% for Haplo-SCT and CBT, respectively (P = .60). We did not observe statistically significant differences in outcome measures between Haplo-SCT and CBT procedures: 5-year overall survival (OS) was 64% versus 57% (P = .50), 5-year disease-free survival (DFS) 58% versus 57% (P = .80), GvHD-free and relapse-free survival (GFRFS) 41% versus 54% (P = .30), and cumulative incidence of transplant-related mortality (TRM) 14% versus 15% (P = .80), respectively. In the multivariate analysis, MRD positivity and a disease status >CR1 at the time of HSCT were significantly associated with poorer outcomes (P < .05). In conclusion, our study supports that both haploidentical and cord blood transplantation show comparable outcomes in pediatric AML patients. We obtained comparable survival rates, although CBT showed a trend to lower rates of chronic GvHD and higher GFRFS, demonstrating that it should still be considered a valuable option, particularly for pediatric patients.
Collapse
Affiliation(s)
- Luisa Sisinni
- Hematología y Oncología Pediátrica, Hospital Universitario La Paz, Madrid.
| | | | | | - Melissa Panesso
- Servicio de Oncología y Hematología Pediátrica, Unidad HSCT. Hospital Universitari Vall d'Hebron, Barcelona
| | - Blanca Molina
- Hematología-Oncología Pediátrica, Hospital Niño Jesús, Madrid
| | | | - José Luís Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia
| | - Jaime Verdu-Amoros
- Hematología Pediátrica, Hospital Clínico Universitario; INCLIVA-Biomedical Research Institute, Valencia
| | | | - Pilar Palomo
- Hematología Pediátrica, Hospital Universitario Central de Asturia, Oviedo
| | | | | | - Isabel Badell
- Hematología-Oncología Pediátrica, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Yasmina Mozo
- Hematología y Oncología Pediátrica, Hospital Universitario La Paz, Madrid
| | - David Bueno
- Hematología y Oncología Pediátrica, Hospital Universitario La Paz, Madrid
| | | | | | | | - Cristina Díaz de Heredia
- Servicio de Oncología y Hematología Pediátrica, Unidad HSCT. Hospital Universitari Vall d'Hebron, Barcelona
| |
Collapse
|
3
|
Yu Y, Chen W, Fu H, Shi J, Luo Y, Yu J, Lai X, Liu L, Ye Y, Zhang C, Huang H, Zhao Y. Risk factors and long-term outcomes for human herpesvirus 6 encephalitis in the early period after allogeneic stem cell transplantation. Bone Marrow Transplant 2024; 59:1387-1393. [PMID: 38937612 DOI: 10.1038/s41409-024-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Human herpesvirus 6 (HHV6) encephalitis is a rare but life-threatening complication for patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, reports on susceptibility factors and clinical outcomes are limited. We enrolled HHV6 encephalitis patients following allo-HSCT between 2018 and 2022, then conducted a 1:4 nested case-control cohort study to evaluate risk factors and long-term outcomes. Among 1350 patients, 20 (1.48%) developed HHV6 encephalitis, with a median onset time of 25.5 days after HSCT. Patient age<30 (odds ratio [OR], 3.24, P = 0.016) and NK cell count<115/ul at 21 days (OR, 6.07, P = 0.018) were identified as independent risk factors in multivariate analysis. Moreover, the HHV6 encephalitis group was significantly associated with higher incidence of grade II-IV graft-versus-host disease (aGVHD) (hazard ratio [HR], 5.52, P < 0.001) and transplant-associated microangiopathy (HR,9.86, P < 0.001), and demonstrated a significantly higher non-relapse mortality (NRM) (HR, 5.28, P = 0.004) and a lower overall survival (HR, 4.34, P = 0.001) or progression-free survival (HR, 3.94, P = 0.001) compared to control group. In conclusion, patients <30 years old or with delayed NK cell recovery are more susceptible to HHV6 encephalitis after allo-HSCT, and patients with HHV6 encephalitis after transplantation have poorer clinical outcomes.
Collapse
Affiliation(s)
- Yi Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Weihao Chen
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Huarui Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Jimin Shi
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Yi Luo
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Lizhen Liu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Yishan Ye
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - Congxiao Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
4
|
Kampouri E, Little JS, Crocchiolo R, Hill JA. Human herpesvirus-6, HHV-8 and parvovirus B19 after allogeneic hematopoietic cell transplant: the lesser-known viral complications. Curr Opin Infect Dis 2024; 37:245-253. [PMID: 38726832 PMCID: PMC11932445 DOI: 10.1097/qco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Viral infections continue to burden allogeneic hematopoietic cell transplant (HCT) recipients. We review the epidemiology, diagnosis, and management of human herpesvirus (HHV)-6, HHV-8 and parvovirus B19 following HCT. RECENT FINDINGS Advances in HCT practices significantly improved outcomes but impact viral epidemiology: post-transplant cyclophosphamide for graft-versus-host disease prevention increases HHV-6 reactivation risk while the impact of letermovir for CMV prophylaxis - and resulting decrease in broad-spectrum antivirals - is more complex. Beyond the well established HHV-6 encephalitis, recent evidence implicates HHV-6 in pneumonitis. Novel less toxic therapeutic approaches (brincidofovir, virus-specific T-cells) may enable preventive strategies in the future. HHV-8 is the causal agent of Kaposi's sarcoma, which is only sporadically reported after HCT, but other manifestations are possible and not well elucidated. Parvovirus B19 can cause severe disease post-HCT, frequently manifesting with anemia, but can also be easily overlooked due to lack of routine screening and ambiguity of manifestations. SUMMARY Studies should establish the contemporary epidemiology of HHV-6, and other more insidious viruses, such as HHV-8 and parvovirus B19 following HCT and should encompass novel cellular therapies. Standardized and readily available diagnostic methods are key to elucidate epidemiology and optimize preventive and therapeutic strategies to mitigate the burden of infection.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jessica S. Little
- Dana-Farber Cancer Institute
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Zhang M, Luo C, Wang J, Zhu H, Luo C, Qin X, Huang X, Lin Y, Chen J. TCRαβ-depleted hematopoietic stem cell transplant and third-party CD45RA + depleted adoptive cell therapy for treatment of post-transplant parvovirus B19 aplastic crisis. Int J Infect Dis 2024; 144:107043. [PMID: 38583826 DOI: 10.1016/j.ijid.2024.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
This is a case report of a 6-year-old girl with relapsed B cell acute lymphoblastic leukemia in which adoptive cell therapy was applied successfully to treat refractory human parvovirus (HPV) B19 infection. Allogenic chimeric antigen receptor (CAR) T-cell therapy (bispecific CD19/CD22) was bridged to hematopoietic stem cell transplantation (HSCT) using a haploidentical paternal donor. However, HPV B19 DNAemia progressed and transfusion-related graft versus host disease occurred. After finding a third-party related donor with a better HLA match, haploidentical HPV B19-seropositive CD45RA+ depleted cells (16.5 × 106/kg) were administered and paternal TCRαβ+ depleted stem cell were retransplanted. The HPV B19 DNAemia became negative within 1 week and the reticulocyte, neutrophil, hemoglobin, and platelet counts gradually normalized. The patient remained stable during the 1-year outpatient follow-up period. Thus, our case report highlights that persistent B19 infection can lead to pancytopenia, aplastic crisis, and graft rejection and TCRαβ+ depleted haplo-HSCT is an effective means of hematopoiesis recovery. CD45RO memory T-cell therapy is the key to treating and preventing the development of refractory severe HPV B19 infection.
Collapse
Affiliation(s)
- Manpin Zhang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengjuan Luo
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Zhu
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changying Luo
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Qin
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohang Huang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Lin
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Kampouri E, Handley G, Hill JA. Human Herpes Virus-6 (HHV-6) Reactivation after Hematopoietic Cell Transplant and Chimeric Antigen Receptor (CAR)- T Cell Therapy: A Shifting Landscape. Viruses 2024; 16:498. [PMID: 38675841 PMCID: PMC11054085 DOI: 10.3390/v16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
HHV-6B reactivation affects approximately half of all allogeneic hematopoietic cell transplant (HCT) recipients. HHV-6B is the most frequent infectious cause of encephalitis following HCT and is associated with pleiotropic manifestations in this setting, including graft-versus-host disease, myelosuppression, pneumonitis, and CMV reactivation, although the causal link is not always clear. When the virus inserts its genome in chromosomes of germ cells, the chromosomally integrated form (ciHHV6) is inherited by offspring. The condition of ciHHV6 is characterized by the persistent detection of HHV-6 DNA, often confounding diagnosis of reactivation and disease-this has also been associated with adverse outcomes. Recent changes in clinical practice in the field of cellular therapies, including a wider use of post-HCT cyclophosphamide, the advent of letermovir for CMV prophylaxis, and the rapid expansion of novel cellular therapies require contemporary epidemiological studies to determine the pathogenic role and spectrum of disease of HHV-6B in the current era. Research into the epidemiology and clinical significance of HHV-6B in chimeric antigen receptor T cell (CAR-T cell) therapy recipients is in its infancy. No controlled trials have determined the optimal treatment for HHV-6B. Treatment is reserved for end-organ disease, and the choice of antiviral agent is influenced by expected toxicities. Virus-specific T cells may provide a novel, less toxic therapeutic modality but is more logistically challenging. Preventive strategies are hindered by the high toxicity of current antivirals. Ongoing study is needed to keep up with the evolving epidemiology and impact of HHV-6 in diverse and expanding immunocompromised patient populations.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Guy Handley
- Department of Medicine, Division of Infectious Disease and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Di Ianni M, Liberatore C, Santoro N, Ranalli P, Guardalupi F, Corradi G, Villanova I, Di Francesco B, Lattanzio S, Passeri C, Lanuti P, Accorsi P. Cellular Strategies for Separating GvHD from GvL in Haploidentical Transplantation. Cells 2024; 13:134. [PMID: 38247827 PMCID: PMC10814899 DOI: 10.3390/cells13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
GvHD still remains, despite the continuous improvement of transplantation platforms, a fearful complication of transplantation from allogeneic donors. Being able to separate GvHD from GvL represents the greatest challenge in the allogeneic transplant setting. This may be possible through continuous improvement of cell therapy techniques. In this review, current cell therapies are taken into consideration, which are based on the use of TCR alpha/beta depletion, CD45RA depletion, T regulatory cell enrichment, NK-cell-based immunotherapies, and suicide gene therapies in order to prevent GvHD and maximally amplify the GvL effect in the setting of haploidentical transplantation.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmine Liberatore
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Nicole Santoro
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Paola Ranalli
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Corradi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ida Villanova
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Barbara Di Francesco
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Stefano Lattanzio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Passeri
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Accorsi
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| |
Collapse
|
8
|
Kampouri E, Zamora D, Kiem ES, Liu W, Ibrahimi S, Blazevic RL, Lovas EA, Kimball LE, Huang ML, Jerome KR, Ueda Oshima M, Mielcarek M, Zerr DM, Boeckh MJ, Krantz EM, Hill JA. Human herpesvirus-6 reactivation and disease after allogeneic haematopoietic cell transplantation in the era of letermovir for cytomegalovirus prophylaxis. Clin Microbiol Infect 2023; 29:1450.e1-1450.e7. [PMID: 37532126 PMCID: PMC10828110 DOI: 10.1016/j.cmi.2023.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Letermovir for cytomegalovirus (CMV) prophylaxis in allogeneic haematopoietic cell transplant (HCT) recipients has decreased anti-CMV therapy use. Contrary to letermovir, anti-CMV antivirals are also active against human herpesvirus-6 (HHV-6). We assessed changes in HHV-6 epidemiology in the post-letermovir era. METHODS We conducted a retrospective cohort study of CMV-seropositive allogeneic HCT recipients comparing time periods before and after routine use of prophylactic letermovir. HHV-6 testing was at the discretion of clinicians. We computed the cumulative incidence of broad-spectrum antiviral initiation (foscarnet, (val)ganciclovir, and/or cidofovir), HHV-6 testing, and HHV-6 detection in blood and cerebrospinal fluid within 100 days after HCT. We used Cox proportional-hazards models with stabilized inverse probability of treatment weights to compare outcomes between cohorts balanced for baseline factors. RESULTS We analysed 738 patients, 376 in the pre-letermovir and 362 in the post-letermovir cohort. Broad-spectrum antiviral initiation incidence decreased from 65% (95% CI, 60-70%) pre-letermovir to 21% (95% CI, 17-25%) post-letermovir. The cumulative incidence of HHV-6 testing (17% [95% CI, 13-21%] pre-letermovir versus 13% [95% CI, 10-16%] post-letermovir), detection (3% [95% CI, 1-5%] in both cohorts), and HHV-6 encephalitis (0.5% [95% CI, 0.1-1.8%] pre-letermovir and 0.6% [95% CI, 0.1-1.9%] post-letermovir) were similar between cohorts. First HHV-6 detection occurred at a median of 37 days (interquartile range, 18-58) in the pre-letermovir cohort and 27 (interquartile range, 25-34) in the post-letermovir cohort. In a weighted model, there was no association between the pre-versus post-letermovir cohort and HHV-6 detection (adjusted hazard ratio, 1.08; 95% CI, 0.44-2.62). DISCUSSION Despite a large decrease in broad-spectrum antivirals after the introduction of letermovir prophylaxis in CMV-seropositive allogeneic HCT recipients, there was no evidence for increased clinically detected HHV-6 reactivation and disease.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Danniel Zamora
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Erika S Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Winnie Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah Ibrahimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachel L Blazevic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erika A Lovas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Louise E Kimball
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Masumi Ueda Oshima
- Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marco Mielcarek
- Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Danielle M Zerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elizabeth M Krantz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
9
|
Wormser VR, Agudelo Higuita NI, Ramaswami R, Melendez DP. Hematopoietic stem cell transplantation and the noncytomegalovirus herpesviruses. Transpl Infect Dis 2023; 25 Suppl 1:e14201. [PMID: 38041493 DOI: 10.1111/tid.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Although hematopoietic stem cell transplantation (HSCT) and other cellular therapies have significantly improved outcomes in the management of multiple hematological and nonhematological malignancies, the resulting impairment in humoral and cellular response increases the risk for opportunistic infection as an undesirable side effect. With their ability to establish latent infection and reactivate when the host immune system is at its weakest point, the Herpesviridae family constitutes a significant proportion of these opportunistic pathogens. Despite recent advancements in preventing and managing herpesvirus infections, they continue to be a common cause of significant morbidity and mortality in transplanted patients. Herein, we aim to provide and update on herpesvirus other than cytomegalovirus (CMV) affecting recipients of HSCT and other cellular therapies.
Collapse
Affiliation(s)
- Vanessa R Wormser
- Division of Infectious Diseases, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Nelson Iván Agudelo Higuita
- Section of Infectious Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Dante P Melendez
- Division of Infectious Diseases, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Xu B, Jia Y, Lv L, Chen L, Cheng P, Ren S, Liu H, Zhang M, Zhang H. HHV-6B infection after umbilical cord blood stem cell transplantation with pruritus as the first symptom. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1693-1696. [PMID: 37559456 PMCID: PMC10577449 DOI: 10.3724/abbs.2023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Bin Xu
- Department of Clinical MedicineJining Medical UniversityJining272000China
| | - Yan Jia
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Linlin Lv
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Lulu Chen
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Panpan Cheng
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Saisai Ren
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Haihui Liu
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Min Zhang
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| | - Hao Zhang
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJining272000China
| |
Collapse
|
11
|
Toomey D, Phan TL, Phan T, Hill JA, Zerr DM. Viral Encephalitis after Hematopoietic Cell Transplantation: A Systematic Review. Transplant Cell Ther 2023; 29:636.e1-636.e9. [PMID: 37422195 DOI: 10.1016/j.jtct.2023.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Viral encephalitis is a rare but serious complication after hematopoietic cell transplantation (HCT). The nonspecific early signs and symptoms and rapid progression can make it difficult to diagnose and treat in a timely fashion. To better inform clinical decision making in post-HCT viral encephalitis, a systematic review of prior studies of viral encephalitis was performed, with the goal of characterizing the frequency of various infectious etiologies and their clinical course, including treatments and outcomes. A systematic review of studies of viral encephalitis was performed. Studies were included if they described a cohort of HCT recipients who were tested for at least 1 pathogen. Of 1613 unique articles initially identified, 68 met the inclusion criteria, with a total of 72,423 patients studied. A total of 778 cases of encephalitis were reported (1.1%). Human herpesvirus 6 (HHV-6) (n = 596), Epstein-Barr virus (n = 76), and cytomegalovirus (n = 33) were the most commonly reported causes of encephalitis, and HHV-6 encephalitis tended to occur the earliest, accounting for most cases prior to day +100 post-transplantation. Of 29,671 patients with available transplantation data, encephalitis was diagnosed in 282 of 4707 (6.0%) cord blood transplantation (CBT) recipients, in 372 of 24,664 (1.5%) non-CBT allogeneic HCT recipients, and in 5 of 300 (1.7%) autologous HCT recipients. Of the 282 CBT encephalitis cases, 270 (95.7%) were caused by HHV-6. Overall, 288 (37.0%) of the 778 patients with encephalitis died, and 75 deaths were attributable to encephalitis, with the time between diagnosis and death ranging from 3 to 192 days. Viral encephalitis occurs in approximately 1% of HCT recipients, and HHV-6 is the most common cause. Mortality following encephalitis in HCT recipients is high, indicating an urgent need for advancement in preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Danny Toomey
- 1Day Sooner Research Team, Delaware; HHV-6 Foundation, Santa Barbara, California.
| | - Tuan L Phan
- HHV-6 Foundation, Santa Barbara, California; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Thommas Phan
- Department of Statistics, University of California, Davis, California
| | - Joshua A Hill
- Department of Medicine, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center Seattle, Washington
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
12
|
HLA-haploidentical hematopoietic stem cells transplantation with regulatory and conventional T-cell adoptive immunotherapy in pediatric patients with very high-risk acute leukemia. Bone Marrow Transplant 2023; 58:526-533. [PMID: 36774432 PMCID: PMC9919737 DOI: 10.1038/s41409-023-01911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/13/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is still needed for many children with very high-risk acute leukemia. An HLA-haploidentical family donor is a suitable option for those without an HLA-matched donor. Here we present outcomes of a novel HLA-haploidentical HSCT (haplo-HSCT) strategy with adoptive immunotherapy with thymic-derived CD4+CD25+ FoxP3+ regulatory T cells (Tregs) and conventional T cells (Tcons) performed between January 2017 and July 2021 in 20 children with high-risk leukemia. Median age was 14.5 years (range, 4-21), 15 had acute lymphoblastic leukemia, 5 acute myeloid leukemia. The conditioning regimen included total body irradiation (TBI), thiotepa, fludarabine, cyclophosphamide. Grafts contained a megadose of CD34+ cells (mean 12.4 × 106/Kg), Tregs (2 × 106/Kg) and Tcons (0.5-1 × 106/Kg). All patients achieved primary, sustained full-donor engraftment. Only one patient relapsed (5%). The incidence of non-relapse mortality was 15% (3/20 patients). Five/20 patients developed ≥ grade 2 acute Graft versus Host Disease (aGvHD). It resolved in 4 who are alive and disease-free; 1 patient developed chronic GvHD (cGvHD). The probability of GRFS was 60 ± 0.5% (95% CI: 2.1-4.2) (Fig. 6), CRFS was 79 ± 0.9% (95% CI: 3.2-4.9) as 16/20 patients are alive and leukemia-free. The median follow-up was 2.1 years (range 0.5 months-5.1 years). This innovative approach was associated with very promising outcomes of HSCT strategy in pediatric patients.
Collapse
|
13
|
Naik S, Triplett BM. Selective depletion of naïve T cells by targeting CD45RA. Front Oncol 2023; 12:1009143. [PMID: 36776371 PMCID: PMC9911795 DOI: 10.3389/fonc.2022.1009143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Swati Naik
- *Correspondence: Swati Naik, ; Brandon M. Triplett,
| | | |
Collapse
|
14
|
Zong Y, Kamoi K, Kurozumi-Karube H, Zhang J, Yang M, Ohno-Matsui K. Safety of intraocular anti-VEGF antibody treatment under in vitro HTLV-1 infection. Front Immunol 2023; 13:1089286. [PMID: 36761168 PMCID: PMC9905742 DOI: 10.3389/fimmu.2022.1089286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction HTLV-1 (human T-cell lymphotropic virus type 1) is a retrovirus that infects approximately 20 million people worldwide. Many diseases are caused by this virus, including HTLV-1-associated myelopathy, adult T-cell leukemia, and HTLV-1 uveitis. Intraocular anti-vascular endothelial growth factor (VEGF) antibody injection has been widely used in ophthalmology, and it is reportedly effective against age-related macular degeneration, complications of diabetic retinopathy, and retinal vein occlusions. HTLV-1 mimics VEGF165, the predominant isoform of VEGF, to recruit neuropilin-1 and heparan sulfate proteoglycans. VEGF165 is also a selective competitor of HTLV-1 entry. Here, we investigated the effects of an anti-VEGF antibody on ocular status under conditions of HTLV-1 infection in vitro. Methods We used MT2 and TL-Om1 cells as HTLV-1-infected cells and Jurkat cells as controls. Primary human retinal pigment epithelial cells (HRPEpiCs) and ARPE19 HRPEpiCs were used as ocular cells; MT2/TL-Om1/Jurkat cells and HRPEpiCs/ARPE19 cells were co-cultured to simulate the intraocular environment of HTLV-1-infected patients. Aflibercept was administered as an anti-VEGF antibody. To avoid possible T-cell adhesion, we lethally irradiated MT2/TL-Om1/Jurkat cells prior to the experiments. Results Anti-VEGF antibody treatment had no effect on activated NF-κB production, inflammatory cytokines, chemokines, HTLV-1 proviral load (PVL), or cell counts in the retinal pigment epithelium (RPE) under MT2 co-culture conditions. Under TL-Om1 co-culture conditions, anti-VEGF antibody treatment did not affect the production of activated NF-κB, chemokines, PVL, or cell counts, but production of the inflammatory cytokine IL-6 was increased. In addition, anti-VEGF treatment did not affect PVL in HTLV-1-infected T cells. Conclusion This preliminary in vitro assessment indicates that intraocular anti-VEGF antibody treatment for HTLV-1 infection does not exacerbate HTLV-1-related inflammation and thus may be safe for use.
Collapse
|
15
|
Gonzalez-Vicent M, Molina B, Lopez I, Zubicaray J, Ruiz J, Vicario JL, Sebastián E, Iriondo J, Castillo A, Abad L, Ramirez M, Sevilla J, Diaz MA. T-Cell Depleted Haploidentical Transplantation in Children With Hematological Malignancies: A Comparison Between CD3+/CD19+ and TCRαβ+/CD19+ Depletion Platforms. Front Oncol 2022; 12:884397. [PMID: 35795036 PMCID: PMC9251308 DOI: 10.3389/fonc.2022.884397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundT-cell depleted (TCD) haploidentical transplantation using CD3+/CD19+ and TCRαβ+/CD19+ depletion techniques has been increasingly used in children with hematological malignancies. We present a retrospective study aimed to compare transplant outcomes in children with leukemia receiving a TCD haploidentical transplant using either CD3+/CD19+ or TCRαβ+/CD19+ platforms.MethodsA total of 159 children with leukemia (ALL=80) (AML=79) that received a TCD haploidentical transplantation using either CD3+/CD19+ (n=79) or TCRαβ+/CD19+ (n=80) platforms between 2005 and 2020 were included. Median age was 9 years in both groups. There were no differences in patient, donor, and transplant characteristics between groups except for donor KIR B genotype more frequent in the TCRαβ+/CD19+ group (91%) than in the CD3+/CD19+ group (76%) (p=0.009) and a high number of NK+ cells and lower CD19+ cells infused in the TCRαβ+/CD19+ group (35.32x106/kg and 0.06 x106/Kg) than in the CD3+/CD19 group (24.6x106/Kg and 0.25 x106/Kg) (p=0.04 and p=0.0001), respectively. Conditioning was based on TBF. Median follow-up for survivors was 11 years (range; 8-16 y) in CD3+/CD19+ group and 5 years (range; 2-9 y) in the TCRαβ+/CD19+ group.ResultsEngraftment kinetics were similar in both groups (13 days for neutrophils and 10 days for platelets). There was no difference in the incidence of acute GvHD II-IV (29 ± 5% in the CD3+/CD19+ group vs 38 ± 5% in the TCRαβ+/CD19+ group) and chronic GvHD (32 ± 5% vs 23 ± 4%, respectively). NRM was 23 ± 5% in the CD3+/CD19+group vs 21 ± 4% in the TCRαβ+/CD19+group. Relapse incidence was also similar, 32 ± 5% vs 34 ± 6%, respectively. DFS and OS were not different (45 ± 5% vs 45 ± 6% and 53 ± 6% vs 58 ± 6% respectively). As there were no differences on transplant outcomes between groups, we further analyzed all patients together for risk factors associated with transplant outcomes. On multivariate analysis, we identified that early disease status at transplant (HR: 0.16; 95%CI (0.07-0.35) (p=0.0001), presence of cGvHD (HR: 0.38; 95%CI (0.20-0.70) (p= 0.002), and donor KIR-B genotype (HR: 0.50; 95%CI (0.32-0.90) (p=0.04) were associated with better DFS.ConclusionsOur data suggest that there are no advantages in transplant outcomes between TCD platforms. Risk factors for survival are dependent on disease characteristic, donor KIR genotype, and chronic GvHD rather than the TCD platform used.
Collapse
Affiliation(s)
- Marta Gonzalez-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
- *Correspondence: Marta Gonzalez-Vicent,
| | - Blanca Molina
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Ivan Lopez
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Josune Zubicaray
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Julia Ruiz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Jose Luis Vicario
- Histocompatibility Lab, Community Transfusion Center of Madrid, Madrid, Spain
| | - Elena Sebastián
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - June Iriondo
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Ana Castillo
- Oncology/Hematology Lab, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Lorea Abad
- Oncology/Hematology Lab, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Manuel Ramirez
- Oncology/Hematology Lab, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Julian Sevilla
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Miguel A. Diaz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| |
Collapse
|
16
|
Lee JW. Haploidentical Family Donor Transplantation for Pediatric Hematologic Malignancies. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2021. [DOI: 10.15264/cpho.2021.28.2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jae Wook Lee
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Diaz MA, Gasior M, Molina B, Pérez-Martínez A, González-Vicent M. "Ex-vivo" T-cell depletion in allogeneic hematopoietic stem cell transplantation: New clinical approaches for old challenges. Eur J Haematol 2021; 107:38-47. [PMID: 33899960 DOI: 10.1111/ejh.13636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Allogeneic transplantation still remains as standard of care for patients with high-risk hematological malignancies at diagnosis or after relapse. However, GvHD remains yet as the most relevant clinical complication in the early post-transplant period. TCD allogeneic transplant is now considered a valid option to reduce severe GvHD and to provide a platform for cellular therapy to prevent relapse disease or to treat opportunistic infections.
Collapse
Affiliation(s)
- Miguel A Diaz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Mercedes Gasior
- Department of Hematology, Hospital Universitario La Paz, Madrid, Spain
| | - Blanca Molina
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hemato-Oncology and Stem cell Transplantation Department, Hospital Universitario La Paz, Madrid, Spain
| | - Marta González-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| |
Collapse
|
18
|
Gasior M, Ferreras C, de Paz R, Bueno D, Mozo Y, Sisinni L, Canizales JT, González B, Olivas-Mazón R, Marcos A, Romero AB, Constanzo A, Mirones I, Fernández-Arroyo A, Balas A, Vicario JL, Escudero A, Yuste VJ, Pérez-Martínez A. The role of early natural killer cell adoptive infusion before engraftment in protecting against human herpesvirus-6B encephalitis after naïve T-cell-depleted allogeneic stem cell transplantation. Transfusion 2021; 61:1505-1517. [PMID: 33713461 DOI: 10.1111/trf.16354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Naïve T-cell-depleted grafts have been employed as an ex vivo T-cell depletion (TCD) platform to prevent graft-versus-host disease (GvHD) and improve immune reconstitution by providing rapid donor memory T-cell reconstitution after allogenic hematopoietic stem cell transplantation (allo-HSCT). CD45RA- memory T cells confer protection against viruses such as cytomegalovirus, Epstein-Barr virus, and adenovirus; however, reports have shown an unexpectedly high incidence of human herpesvirus (HHV)-6B encephalitis among pediatric allo-HSCT patients. METHODS We report the first 18 consecutive allo-HSCT, 16 haplo-HSCT, and two human leukocyte antigen-matched related donors implanted with naïve TCD grafts. All donors were administered three cell products: first, a CD34+ stem cell product; second, a CD45RA+ TCD graft, followed by an adoptive natural killer (NK) cell infusion within 10 days after HSCT. The study's primary endpoint was the incidence of HHV-6B encephalitis. RESULTS Engraftment was achieved in 94.5% of cases; 2-year overall survival, event-free survival, and GvHD/relapse-free survival were 87.2% (95% CI 78.6-95.8), 67.3% (95% CI 53.1-81.5), and 64% (95% CI 50.5-78.1), respectively. HHV-6B reactivation occurred in 7 of the haplo-HSCT patients, six of who received a cell infusion with an NK/CD4 ratio <2. None of the patients developed encephalitis. CONCLUSIONS In this clinical study, we show that early adoptive NK cell infusion after a 45RA+ TCD allo-HSCT graft is safe and can prevent HHV-6B encephalitis. We recommend infusing adoptive NK cells after allo-HSCT using CD45RA+ TCD grafts.
Collapse
Affiliation(s)
- Mercedes Gasior
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Cristina Ferreras
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Raquel de Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - David Bueno
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Yasmina Mozo
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | | | - Berta González
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Raquel Olivas-Mazón
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Marcos
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Ana Belén Romero
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Aída Constanzo
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Isabel Mirones
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | | | - Antonio Balas
- Histocompatibility and HLA Typing Lab. Transfusion Center of Madrid, Madrid, Spain
| | - Jose Luis Vicario
- Histocompatibility and HLA Typing Lab. Transfusion Center of Madrid, Madrid, Spain
| | - Adela Escudero
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Antonio Pérez-Martínez
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Han TT, Zhang YN, Sun YQ, Kong J, Wang FR, Wang ZD, Cheng YF, Yan CH, Wang Y, Xu LP, Zhang XH, Liu KY, Huang XJ, Zhao XS. Human herpesvirus 6 reactivation in unmanipulated haploidentical hematopoietic stem cell transplantation predicts the occurrence of grade II to IV acute graft-versus-host disease. Transpl Infect Dis 2021; 23:e13544. [PMID: 33326670 DOI: 10.1111/tid.13544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human herpesvirus 6 (HHV-6) reactivation is relatively common after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the incidence of HHV-6 reactivation and the clinical outcomes following unmanipulated haploidentical HSCT (haplo-HSCT) remain unknown. METHOD We prospectively monitored blood HHV-6 DNA using real-time quantitative polymerase chain reaction weekly until day 100 post unmanipulated haplo-HSCT in patients with hematological malignancies. RESULTS From November 2016 to March 2017, 102 patients (58 male and 44 female, median age 25(2-58) years old) were enrolled. Within 100 days post-transplantation, 27 patients (27/136, 19.9%) developed HHV-6 viremia with a median onset time of 14 (7-98) days. The cumulative incidence of HHV-6 reactivation on day 100 post-HSCT was 25.5 ± 4.3% in haplo-HSCT. The median HHV-6 copy number was 1.45 × 103 (5.48 × 102 -2.00 × 104 ) copies/ml. The HHV-6 viremia duration time was 7 days in 23 patients, 14 days in one patient and 21 days in one patient. In multivariate analysis, prior HHV-6 reactivation was an independent risk factor for grade 2-4 graft-versus-host disease (GVHD). But it did not influence the overall survival (OS)(HR 1.624, 95%CI 0.768-3.432, P = .204), disease-free survival (DFS) (HR 1.640, 95%CI 0.799-3.367, P = .177) and non-relapse mortality (NRM) (HR 1.644, 95%CI 0.670-4.038, P = .278). CONCLUSION The reactivation of HHV-6 after unmanipulated haploidentical transplantation predicts the occurrence of grade 2-4 a-GVHD, but it may not influence the overall survival (OS), disease-free survival (DFS) and non-relapse mortality (NRM).
Collapse
Affiliation(s)
- Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Ning Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
20
|
Blagov S, Zvyagin IV, Shelikhova L, Khismatullina R, Balashov D, Komech E, Fomchenkova V, Shugay M, Starichkova J, Kurnikova E, Pershin D, Fadeeva M, Glushkova S, Muzalevskii Y, Kazachenok A, Efimenko M, Osipova E, Novichkova G, Chudakov D, Maschan A, Maschan M. T-cell tracking, safety, and effect of low-dose donor memory T-cell infusions after αβ T cell-depleted hematopoietic stem cell transplantation. Bone Marrow Transplant 2020; 56:900-908. [PMID: 33203952 DOI: 10.1038/s41409-020-01128-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
The delayed recovery of adaptive immunity underlies transplant-related mortality (TRM) after αβ T cell-depleted hematopoietic stem cell transplantation (HSCT). We tested the use of low-dose memory donor lymphocyte infusions (mDLIs) after engraftment of αβ T cell-depleted grafts.A cohort of 131 pediatric patients (median age 9 years) were grafted with αβ T cell-depleted products from either haplo (n = 79) or unrelated donors (n = 52). After engraftment, patients received mDLIs prepared by CD45RA depletion. Cell dose was escalated monthly from 25 × 103 to 100 × 103/kg (haplo) and from 100 × 103 to 300 × 103 /kg (MUD). In a subcohort of 16 patients, T-cell receptor (TCR) repertoire profiling with deep sequencing was used to track T-cell clones and to evaluate the contribution of mDLI to the immune repertoire.In total, 343 mDLIs were administered. The cumulative incidence (CI) of grades II and III de novo acute graft-versus-host disease (aGVHD) was 5% and 2%, respectively, and the CI of chronic graft-versus-host disease was 7%. Half of the patients with undetectable CMV-specific T cells before mDLI recovered CMV-specific T cells. TCR repertoire profiling confirmed that mDLI-derived T cells significantly contribute to the TCR repertoire up to 1 year after HSCT and include persistent, CMV-specific T-cell clones.
Collapse
Affiliation(s)
- Sergey Blagov
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ivan V Zvyagin
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Larisa Shelikhova
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Rimma Khismatullina
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Balashov
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Komech
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Viktoria Fomchenkova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Julia Starichkova
- Department of Statistics, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Kurnikova
- Transfusion Medicine Service, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Pershin
- Transplantation Immunology and Immunotherapy Laboratory, Dmitriy Rogachev National Center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Fadeeva
- Transplantation Immunology and Immunotherapy Laboratory, Dmitriy Rogachev National Center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Glushkova
- Transplantation Immunology and Immunotherapy Laboratory, Dmitriy Rogachev National Center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yakov Muzalevskii
- Transfusion Medicine Service, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexei Kazachenok
- Transfusion Medicine Service, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Efimenko
- Stem Cell Physiology Laboratory, Dmitriy Rogachev National center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Osipova
- Stem Cell Physiology Laboratory, Dmitriy Rogachev National center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Chudakov
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexei Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| |
Collapse
|
21
|
Basso S, Compagno F, Zelini P, Giorgiani G, Boghen S, Bergami E, Bagnarino J, Siciliano M, Del Fante C, Luppi M, Zecca M, Comoli P. Harnessing T Cells to Control Infections After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:567531. [PMID: 33178192 PMCID: PMC7593558 DOI: 10.3389/fimmu.2020.567531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Dramatic progress in the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) from alternative sources in pediatric patients has been registered over the past decade, providing a chance to cure children and adolescents in need of a transplant. Despite these advances, transplant-related mortality due to infectious complications remains a major problem, principally reflecting the inability of the depressed host immune system to limit infection replication and dissemination. In addition, development of multiple infections, a common occurrence after high-risk allo-HSCT, has important implications for overall survival. Prophylactic and preemptive pharmacotherapy is limited by toxicity and, to some extent, by lack of efficacy in breakthrough infections. T-cell reconstitution is a key requirement for effective infection control after HSCT. Consequently, T-cell immunotherapeutic strategies to boost pathogen-specific immunity may complement or represent an alternative to drug treatments. Pioneering proof of principle studies demonstrated that the administration of donor-derived T cells directed to human herpesviruses, on the basis of viral DNA monitoring, could effectively restore specific immunity and confer protection against viral infections. Since then, the field has evolved with implementation of techniques able to hasten production, allow for selection of specific cell subsets, and target multiple pathogens. This review provides a brief overview of current cellular therapeutic strategies to prevent or treat pathogen-related complications after HSCT, research carried out to increase efficacy and safety, including T-cell production for treatment of infections in patients with virus-naïve donors, results from clinical trials, and future developments to widen adoptive T-cell therapy access in the HSCT setting.
Collapse
Affiliation(s)
- Sabrina Basso
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Francesca Compagno
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Giovanna Giorgiani
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Stella Boghen
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Elena Bergami
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Jessica Bagnarino
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Mariangela Siciliano
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Claudia Del Fante
- Immunohematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
22
|
Chen J, Wang H, Zhou J, Feng S. Advances in the understanding of poor graft function following allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2020; 11:2040620720948743. [PMID: 32874483 PMCID: PMC7436797 DOI: 10.1177/2040620720948743] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Poor graft function (PGF) following allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a life-threatening complication and is characterized by bilineage or trilineage blood cell deficiency and hypoplastic marrow with full chimerism. With the rapid development of allo-HSCT, especially haploidentical-HSCT, PGF has become a growing concern. The most common risk factors illustrated by recent studies include low dose of infused CD34+ cells, donor-specific antibody, cytomegalovirus infection, graft versus host disease (GVHD), iron overload and splenomegaly, among others. Because of the poor prognosis of PGF, it is crucial to uncover the underlying mechanism, which remains elusive. Recent studies have suggested that the bone marrow microenvironment may play an important role in the pathogenesis of PGF. Deficiency and dysfunction of endothelial cells and mesenchymal stem cells, elevated reactive oxygen species (ROS) levels, and immune abnormalities are believed to contribute to PGF. In this review, we also discuss recent clinical trials that evaluate the safety and efficacy of new strategies in patients with PGF. CD34+-selected stem-cell boost (SCB) is effective with an acceptable incidence of GVHD, despite the need for a second donation. Alternative strategies including the applications of mesenchymal stem cells, N-acetyl-l-cysteine (NAC), and eltrombopag have shown favorable outcomes, but further large-scale studies are needed due to the small sample sizes of the recent clinical trials.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| |
Collapse
|
23
|
Human herpesvirus 6 in transplant recipients: an update on diagnostic and treatment strategies. Curr Opin Infect Dis 2020; 32:584-590. [PMID: 31567413 DOI: 10.1097/qco.0000000000000592] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The current review article focuses on recent advances in the approach to the diagnosis and treatment of human herpesvirus 6B (HHV-6B) in hematopoietic cell and solid organ transplant recipients. RECENT FINDINGS Over the past few years, key studies have broadened our understanding of best practices for the prevention and treatment of HHV-6B encephalitis after transplantation. Moreover, important data have been reported that support a potential role of HHV-6B reactivation in the development of acute graft-versus-host disease and lower respiratory tract disease in transplant recipients. Finally, increasing recognition of inherited chromosomally integrated HHV-6 (iciHHV-6) and an expanding array of diagnostic tools have increased our understanding of the potential for complications related to viral reactivation originating from iciHHV-6 in donors or recipients. SUMMARY Recent advances in diagnostic tools, disease associations, and potential treatments for HHV-6B present abundant opportunities for improving our understanding and management of this complex virus in transplant recipients.
Collapse
|
24
|
Ocanto A, Escribano A, Glaría L, Rodríguez I, Ferrer C, Huertas C, Pérez A, Morera R. TLI in pediatric patients. Clin Transl Oncol 2019; 22:884-891. [PMID: 31542864 DOI: 10.1007/s12094-019-02205-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Hematopoietic progenitor cell transplantation (HSCT) is a procedure used in different hematological diseases as part of the curative treatment, so the investigators propose a system of conditioning of reduced intensity based on total lymphoid irradiation (TLI) as an alternative to the classic total body irradiation (TBI) followed by haploidentical transplantation in patients compatible with a single HLA haplotype, as an alternative to patients who do not have an HLA compatible donor. MATERIALS AND METHODS A cohort of 25 patients with hematological disease underwent haploidentical HSCT from February 2015 to May 2018, conditioned with TLI from day - 10 (2-4 days of treatment) followed by thiotepa (5 mg/kg/12 h) and melphalan (70 mg/m2/day) prior to HSCT and prophylaxis with ciclosporin (1.5 mg/kg/12 h). 2 Gy/fraction was administered to complete 8 Gy with IMRT and VMAT technique. RESULTS 12% rejection of the transplant was obtained with acute GVHD < II (48%) and chronic GVHD 12%. No acute toxicity was recorded in irradiated patients and 56% survival of patients at the end of follow-up. CONCLUSION Conditioning the haploidentical transplant with TLI, IMRT, and VMAT techniques compared with TBI and RT3D-C techniques is a feasible technique that helps inducing the necessary immunosuppression in patients with a high risk of graft rejection, minimal adverse effects, low incidence of GVHD, and high survival rate.
Collapse
Affiliation(s)
- A Ocanto
- Radiation Oncology Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain.
| | - A Escribano
- Radiation Oncology Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain
| | - L Glaría
- Radiation Oncology Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain
| | - I Rodríguez
- Radiation Oncology Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain
| | - C Ferrer
- Radiophysics and Radioprotection Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain
| | - C Huertas
- Radiophysics and Radioprotection Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain
| | - A Pérez
- Pediatric Hematology-Oncology Department, Hospital Universitario La Paz, Pº de La Castellana, 261, 28046, Madrid, Spain
| | - R Morera
- Radiation Oncology Department, Hospital Universitario La Paz, Pº de La Castellana, 261, Madrid, 28046, Spain
| |
Collapse
|
25
|
Ward KN, Hill JA, Hubacek P, de la Camara R, Crocchiolo R, Einsele H, Navarro D, Robin C, Cordonnier C, Ljungman P. Guidelines from the 2017 European Conference on Infections in Leukaemia for management of HHV-6 infection in patients with hematologic malignancies and after hematopoietic stem cell transplantation. Haematologica 2019; 104:2155-2163. [PMID: 31467131 PMCID: PMC6821622 DOI: 10.3324/haematol.2019.223073] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
Of the two human herpesvirus 6 (HHV-6) species, human herpesvirus 6B (HHV-6B) encephalitis is an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplant. Guidelines for the management of HHV-6 infections in patients with hematologic malignancies or post-transplant were prepared a decade ago but there have been no other guidelines since then despite significant advances in the understanding of HHV-6 encephalitis, its therapy, and other aspects of HHV-6 disease in this patient population. Revised guidelines prepared at the 2017 European Conference on Infections in Leukaemia covering diagnosis, preventative strategies and management of HHV-6 disease are now presented.
Collapse
Affiliation(s)
- Katherine N Ward
- Division of Infection and Immunity, University College London, London, UK
| | - Joshua A Hill
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Petr Hubacek
- Department of Medical Microbiology and Department of Paediatric Haematology and Oncology 2 Medical Faculty of Charles University and Motol University Hospital, Prague, Czech Republic
| | | | | | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Julius Maximilians Universität, Würzburg, Germany
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA and Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Christine Robin
- Department of Haematology, Henri Mondor Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Catherine Cordonnier
- Department of Haematology, Henri Mondor Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | | | | |
Collapse
|
26
|
Tsoumakas K, Giamaiou K, Goussetis E, Graphakos S, Kossyvakis A, Horefti E, Mentis A, Elefsiniotis I, Pavlopoulou ID. Epidemiology of viral infections among children undergoing hematopoietic stem cell transplant: Α prospective single‐center study. Transpl Infect Dis 2019; 21:e13095. [DOI: 10.1111/tid.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/09/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Konstantinos Tsoumakas
- Faculty of Nursing Pediatric Clinic, "P & A Kyriakou" Children's Hospital, National and Kapodistrian University of Athens Athens Greece
- Pediatric Research Laboratory, Faculty of Nursing National and Kapodistrian University of Athens Athens Greece
| | - Konstantina Giamaiou
- Pediatric Research Laboratory, Faculty of Nursing National and Kapodistrian University of Athens Athens Greece
- Stem cell Transplant Unit, "Aghia Sophia" Children's Hospital Athens Greece
| | - Evgenios Goussetis
- Stem cell Transplant Unit, "Aghia Sophia" Children's Hospital Athens Greece
| | - Stelios Graphakos
- Stem cell Transplant Unit, "Aghia Sophia" Children's Hospital Athens Greece
| | | | - Elina Horefti
- Public Health Laboratories, Hellenic Pasteur Institute Athens Greece
| | - Andreas Mentis
- Public Health Laboratories, Hellenic Pasteur Institute Athens Greece
| | - Ioannis Elefsiniotis
- Department of Internal Medicine, Faculty of Nursing Athens General and Oncology Hospital "Agii Anargyri", National and Kapodistrian University of Athens Athens Greece
| | - Ioanna D. Pavlopoulou
- Faculty of Nursing Pediatric Clinic, "P & A Kyriakou" Children's Hospital, National and Kapodistrian University of Athens Athens Greece
- Pediatric Research Laboratory, Faculty of Nursing National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
27
|
Tamaki H, Ikegame K, Yoshihara S, Kaida K, Yoshihara K, Inoue T, Kato R, Nakata J, Fujioka T, Soma T, Okada M, Ogawa H. Low incidence of HHV‐6 reactivation in haploidentical hematopoietic stem cell transplantation with corticosteroid as graft‐vs‐host disease prophylaxis compared with cord blood transplantation. Transpl Infect Dis 2019; 21:e13073. [DOI: 10.1111/tid.13073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Satoshi Yoshihara
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Kyoko Yoshihara
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Takayuki Inoue
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Ruri Kato
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Jun Nakata
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Tatsuya Fujioka
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Toshihiro Soma
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
- Laboratory of Cell Transplantation, Institute for Advanced Medical Sciences Hyogo College of Medicine Nishinomiya Japan
| | - Masaya Okada
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Japan
- Laboratory of Cell Transplantation, Institute for Advanced Medical Sciences Hyogo College of Medicine Nishinomiya Japan
| |
Collapse
|