1
|
Sørum ME, Gang AO, Tholstrup DM, Gudbrandsdottir S, Kissow H, Kornblit B, Müller K, Knop FK. Semaglutide treatment for PRevention Of Toxicity in high-dosE Chemotherapy with autologous haematopoietic stem-cell Transplantation (PROTECT): study protocol for a randomised, double-blind, placebo-controlled, investigator-initiated study. BMJ Open 2024; 14:e089862. [PMID: 39384243 PMCID: PMC11474865 DOI: 10.1136/bmjopen-2024-089862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Cancer treatment with high-dose chemotherapy damages the mucosal barrier of the gastrointestinal (GI) tract and is associated with severe toxicity involving mucositis, severe inflammation and organ dysfunction. Currently, there is no effective prophylaxis against this. Glucagon-like peptide 1 (GLP-1), a well-known regulator of blood glucose, has been suggested in mouse studies to possess trophic effects on gut epithelial cells as well as anti-inflammatory properties. In line with this, endogenous GLP-1 levels have been shown to be inversely correlated with toxicities after haematopoietic stem cell transplantation (HSCT) and treatment with a GLP-1 receptor agonist (GLP-1RA) was shown to limit chemotherapy-induced mucositis in rodents. This present study investigates the effects of the GLP-1RA semaglutide on GI mucositis severity score in patients with lymphoma undergoing high-dose chemotherapy followed by autologous (auto) HSCT. METHODS AND ANALYSIS This is a randomised, double-blind, placebo-controlled, two-centre investigator-initiated clinical study. Forty adult patients with malignant lymphoma referred for auto-HSCT will be randomised in a 1:1 manner to receive either semaglutide or placebo once-weekly for 8 weeks. This includes a run-in period of 3-4 weeks with semaglutide 0.25 mg prior to high-dose chemotherapy treatment followed by a period of 4-5 weeks with semaglutide 0.5 mg including the 1 week of high-dose chemotherapy treatment. Clinical assessment of endpoint measurements and safety will be performed weekly during treatment and in a follow-up period of 10 weeks. The primary endpoint is GI mucositis severity (mean severity grade (0-II) during week 1-4 after auto-HSCT). Secondary endpoints include C-reactive protein increment, quality of life and safety. Fever, bacteraemia, antibiotic use, weight loss, morphine consumption, duration of hospitalisation, use of parenteral nutrition, change in muscle mass and clinical and laboratory evidence of organ toxicities will also be assessed. ETHICS AND DISSEMINATION The study complies with Danish and European Union legislation and is approved by the Danish Medicines Agency, the Danish National Medical Research Ethics Committee (EU CT #2022-502139-20-00) and the Danish Data Protection Agency. The study is monitored by the Capital Region of Denmark's good clinical practice unit. All results, positive, negative and inconclusive, will be disseminated at national and international scientific meetings and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT06449625.
Collapse
Affiliation(s)
- Maria Ebbesen Sørum
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Sif Gudbrandsdottir
- Department of Haematology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Kornblit
- Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
2
|
Krogh LM, Nissen A, Weischendorff S, Hartmann B, Andersen JL, Holst JJ, Sørensen K, Fridh MK, Mackey AL, Müller K. Bone remodeling in survivors of pediatric hematopoietic stem cell transplantation: Impact of heavy resistance training. Pediatr Blood Cancer 2024; 71:e31159. [PMID: 38953152 DOI: 10.1002/pbc.31159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Early-onset osteoporosis is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT). It remains unknown if physical training can improve bone formation in these patients, as the transplantation procedure may cause sustained dysregulation of the bone-forming osteoblast progenitor cells. OBJECTIVE We aimed to explore the effect of resistance training on bone remodeling in long-term survivors of pediatric HSCT. PROCEDURE In this prospective, controlled intervention study, we included seven HSCT survivors and 15 age- and sex-matched healthy controls. The participants completed a 12-week heavy load, lower extremity resistance training intervention with three weekly sessions. We measured fasting serum levels of the bone formation marker "N-terminal propeptide of type I procollagen" (P1NP), and the bone resorption marker "C-terminal telopeptide of type I collagen" (CTX). The hypothesis was planned before data collection began. The trial was registered at Clinicaltrials.gov before including the first participant, with trial registration no. NCT04922970. RESULTS Resistance training led to significantly increased levels of fasting P1NP in both patients (from 57.62 to 114.99 ng/mL, p = .03) and controls (from 66.02 to 104.62 ng/mL, p < .001). No significant changes in fasting CTX levels were observed. CONCLUSIONS Despite previous high-dose cytotoxic therapy, long-term survivors of pediatric HSCT respond to resistance training with improvement of bone formation, comparable to that of healthy controls. This suggests that resistance training might be a promising non-pharmacological approach to prevent the early decline in bone mass, and should be considered as part of a follow-up program to counteract long-term sequela after pediatric HSCT.
Collapse
Affiliation(s)
- Lise Marie Krogh
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Nissen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Weischendorff
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Løvind Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg & Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Bone Marrow Transplantation and Immunodeficiency, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Kaj Fridh
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Abigail Louise Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg & Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Rella S, Onyiah J, Baker C, Singh V, Her A, Rasouli N. Design and rationale for the SIB trial: a randomized parallel comparison of semaglutide versus placebo on intestinal barrier function in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2023; 14:20420188231207348. [PMID: 37916028 PMCID: PMC10617296 DOI: 10.1177/20420188231207348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Objective To describe the rationale and design of the SIB trial, an interventional clinical trial testing the hypothesis that subcutaneous (s.c.) once-weekly semaglutide can improve intestinal permeability and reduce systemic inflammation in participants with type 2 diabetes (T2D) and obesity. Methods SIB (NCT04979130) is an investigator-initiated, single-center randomized, double-blinded, placebo-controlled clinical study being conducted at the University of Colorado Anschutz Medical Campus. The primary objective of this novel trial is to test the hypothesis that subcutaneous (s.c.) once-weekly semaglutide could improve intestinal permeability and reduce systemic inflammation in participants with T2D and obesity. Eligible participants had a diagnosis of type 2 diabetes, elevated body mass index, and evidence of systemic inflammation. Participants were randomized 1:1 to s.c. semaglutide or placebo. Participants were assessed for intestinal permeability and markers of inflammation at baseline, mid-study, and at the end of the study. Efficacy assessments were based on the analysis of the following: lactulose:mannitol ratio test, serum lipopolysaccharide-binding protein (LBP), fecal calprotectin, inflammatory biomarkers (IL-6, TNF, IL-1, IL-8, hs-CRP), and HbA1c. All participants who enrolled in the trial provided written informed consent after having received written and oral information on the trial. The risks of semaglutide use were minimized by administration according to FDA-labeled use and close monitoring for adverse events. Discussion SIB is the first study to examine the effects of GLP-1 receptor agonists on intestinal permeability in humans and will provide important data on their impact on systemic inflammation and intestinal permeability in the setting of T2D and obesity.
Collapse
Affiliation(s)
- Steven Rella
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Mail Stop 8106, 12631 East 17th Avenue, Aurora, CO 80045-2559, USA
| | - Joseph Onyiah
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chelsea Baker
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vatsala Singh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Her
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neda Rasouli
- University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Vadmand AC, Nissen AA, Mathiesen S, Soerum ME, Gerbek T, Fridh MK, Sørensen K, Hartmann B, Holst JJ, Müller K. Metabolic Dysregulation in Adult Survivors of Pediatric Hematopoietic Stem Cell Transplantation: The Role of Incretins. J Clin Endocrinol Metab 2023; 108:453-462. [PMID: 36181459 DOI: 10.1210/clinem/dgac561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/19/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Survivors of pediatric hematopoietic stem cell transplantation (HSCT) have increased risk of developing metabolic syndrome (MetS), but the mechanisms are poorly understood. OBJECTIVE We aimed to test the hypothesis that insufficient secretion of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) plays a pathogenetic role in HSCT survivors with MetS. METHODS This cross-sectional cohort study, conducted at the Danish national referral center for HSCT, studied 42 male HSCT survivors (median age 28.9 years) for a median 21.2 years from HSCT, along with 15 age- and sex-matched healthy controls. Main outcome measures were glucose metabolism and incretin hormones (by oral glucose tolerance test [OGTT]) and MetS criteria. The hypothesis was formulated before data collection. RESULTS GLP-1, GIP, and glucagon during an OGTT were similar in patients and controls, with no overall difference between survivors with (24%) and without MetS. However, fasting glucagon was significantly higher in patients with hypertriglyceridemia (mean difference [MD]: 6.1 pmol/L; 95% CI, 1.5-10.8; P = 0.01), and correlated with HDL (MD: 4.7 mmol/L; 95% CI, -0.6 to 9.9; P = 0.08), android-gynoid ratio (correlation coefficient [r] = 0.6, P = 0.0001) and waist-hip ratio (r = 0.5, P = 0.002). A similar pattern was seen for GIP, correlating positively with triglyceride (MD: 60%; 95% CI, 44-82; P = 0.002). GIP levels were significantly increased in patients treated with total body irradiation (TBI) (MD: 165%; 95% CI, 118-230; P = 0.004), which was found to be a significant risk factor for MetS. CONCLUSION This study demonstrates an altered production of incretin hormones in HSCT survivors previously treated with TBI, developing dyslipidemia and abdominal adiposity.
Collapse
Affiliation(s)
- Amalia Christina Vadmand
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Anne Anker Nissen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Sidsel Mathiesen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Maria Ebbesen Soerum
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Tina Gerbek
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Martin Kaj Fridh
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Bolette Hartmann
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
- Institute for Inflammation Research, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Wong CK, Yusta B, Koehler JA, Baggio LL, McLean BA, Matthews D, Seeley RJ, Drucker DJ. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab 2022; 34:1514-1531.e7. [PMID: 36027914 DOI: 10.1016/j.cmet.2022.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
Gut intraepithelial lymphocytes (IELs) are thought to calibrate glucagon-like peptide 1 (GLP-1) bioavailability, thereby regulating systemic glucose and lipid metabolism. Here, we show that the gut IEL GLP-1 receptor (GLP-1R) is not required for enteroendocrine L cell GLP-1 secretion and glucose homeostasis nor for the metabolic benefits of GLP-1R agonists (GLP-1RAs). Instead, the gut IEL GLP-1R is essential for the full effects of GLP-1RAs on gut microbiota. Moreover, independent of glucose control or weight loss, the anti-inflammatory actions of GLP-1RAs require the gut IEL GLP-1R to selectively restrain local and systemic T cell-induced, but not lipopolysaccharide-induced, inflammation. Such effects are mediated by the suppression of gut IEL effector functions linked to the dampening of proximal T cell receptor signaling in a protein-kinase-A-dependent manner. These data reposition key roles of the L cell-gut IEL GLP-1R axis, revealing mechanisms linking GLP-1R activation in gut IELs to modulation of microbiota composition and control of intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Bernardo Yusta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brent A McLean
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Pang J, Feng JN, Ling W, Jin T. The anti-inflammatory feature of glucagon-like peptide-1 and its based diabetes drugs—Therapeutic potential exploration in lung injury. Acta Pharm Sin B 2022; 12:4040-4055. [PMID: 36386481 PMCID: PMC9643154 DOI: 10.1016/j.apsb.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Since 2005, GLP-1 receptor (GLP-1R) agonists (GLP-1RAs) have been developed as therapeutic agents for type 2 diabetes (T2D). GLP-1R is not only expressed in pancreatic islets but also other organs, especially the lung. However, controversy on extra-pancreatic GLP-1R expression still needs to be further resolved, utilizing different tools including the use of more reliable GLP-1R antibodies in immune-staining and co-immune-staining. Extra-pancreatic expression of GLP-1R has triggered extensive investigations on extra-pancreatic functions of GLP-1RAs, aiming to repurpose them into therapeutic agents for other disorders. Extensive studies have demonstrated promising anti-inflammatory features of GLP-1RAs. Whether those features are directly mediated by GLP-1R expressed in immune cells also remains controversial. Following a brief review on GLP-1 as an incretin hormone and the development of GLP-1RAs as therapeutic agents for T2D, we have summarized our current understanding of the anti-inflammatory features of GLP-1RAs and commented on the controversy on extra-pancreatic GLP-1R expression. The main part of this review is a literature discussion on GLP-1RA utilization in animal models with chronic airway diseases and acute lung injuries, including studies on the combined use of mesenchymal stem cell (MSC) based therapy. This is followed by a brief summary.
Collapse
|
7
|
Ebbesen M, Kissow H, Hartmann B, Kielsen K, Sørensen K, Stinson SE, Frithioff-Bøjsøe C, Esmann Fonvig C, Holm JC, Hansen T, Holst JJ, Müller KG. Glucagon-Like Peptide-1 Is Associated With Systemic Inflammation in Pediatric Patients Treated With Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:793588. [PMID: 34956226 PMCID: PMC8692255 DOI: 10.3389/fimmu.2021.793588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are challenged with severe side effects, which are propagated by mucosal barrier disruption, and the related microbial translocation and systemic inflammation. Glucagon-like peptide-1 (GLP-1), a well-known incretin hormone, possesses anti-inflammatory properties and promotes regeneration of damaged intestinal epithelium in animal studies. We hypothesized that the immense inter-individual variation in the degree of mucosal damage and systemic inflammation, seen after HSCT is influenced by endogenous GLP-1 and could be related to acute post-transplant complications. In this prospective study we measured serial weekly fasting plasma GLP-1, along with C-reactive protein (CRP), and citrulline in 82 pediatric patients during allogeneic HSCT together with a fasting plasma GLP-1 in sex- and age-matched healthy controls. Overall, GLP-1 levels were increased in the patients during the course of HSCT compared with the controls, but tended to decrease post-transplant, most pronounced in patients receiving high-intensity conditioning regimen. The increase in CRP seen in the early post-transplant phase was significantly lower from day +8 to +13 in patients with GLP-1 above the upper quartile (>10 pmol/L) at day 0 (all P ≤ 0.03). Similar findings were seen for peak CRP levels after adjusting for type of conditioning (-47.0%; 95% CI, -8.1 - -69.4%, P = 0.02). Citrulline declined significantly following the transplantation illustrating a decrease in viable enterocytes, most evident in patients receiving high-intensity conditioning regimen. GLP-1 levels at day 0 associated with the recovery rate of citrulline from day 0 to +21 (34 percentage points (pp)/GLP-1 doubling; 95% CI, 10 - 58pp; P = 0. 008) and day 0 to day +90 (48 pp/GLP-1 doubling; 95% CI, 17 - 79pp; P = 0. 004), also after adjustment for type of conditioning. This translated into a reduced risk of acute graft-versus-host disease (aGvHD) in patients with highest day 0 GLP-1 levels (>10 pmol/L) (cause-specific HR: 0.3; 95% CI, 0.2 - 0.9, P = 0.02). In conclusion, this study strongly suggests that GLP-1 influences regeneration of injured epithelial barriers and ameliorates inflammatory responses in the early post-transplant phase.
Collapse
Affiliation(s)
- Maria Ebbesen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hannelouise Kissow
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Kielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Frithioff-Bøjsøe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
- Department of Pediatrics, Kolding Hospital a Part of Lillebælt Hospital, Kolding, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Gottlob Müller
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Dahlgren D, Sjöblom M, Hellström PM, Lennernäs H. Chemotherapeutics-Induced Intestinal Mucositis: Pathophysiology and Potential Treatment Strategies. Front Pharmacol 2021; 12:681417. [PMID: 34017262 PMCID: PMC8129190 DOI: 10.3389/fphar.2021.681417] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is particularly vulnerable to off-target effects of antineoplastic drugs because intestinal epithelial cells proliferate rapidly and have a complex immunological interaction with gut microbiota. As a result, up to 40-100% of all cancer patients dosed with chemotherapeutics experience gut toxicity, called chemotherapeutics-induced intestinal mucositis (CIM). The condition is associated with histological changes and inflammation in the mucosa arising from stem-cell apoptosis and disturbed cellular renewal and maturation processes. In turn, this results in various pathologies, including ulceration, pain, nausea, diarrhea, and bacterial translocation sepsis. In addition to reducing patient quality-of-life, CIM often leads to dose-reduction and subsequent decrease of anticancer effect. Despite decades of experimental and clinical investigations CIM remains an unsolved clinical issue, and there is a strong consensus that effective strategies are needed for preventing and treating CIM. Recent progress in the understanding of the molecular and functional pathology of CIM had provided many new potential targets and opportunities for treatment. This review presents an overview of the functions and physiology of the healthy intestinal barrier followed by a summary of the pathophysiological mechanisms involved in the development of CIM. Finally, we highlight some pharmacological and microbial interventions that have shown potential. Conclusively, one must accept that to date no single treatment has substantially transformed the clinical management of CIM. We therefore believe that the best chance for success is to use combination treatments. An optimal combination treatment will likely include prophylactics (e.g., antibiotics/probiotics) and drugs that impact the acute phase (e.g., anti-oxidants, apoptosis inhibitors, and anti-inflammatory agents) as well as the recovery phase (e.g., stimulation of proliferation and adaptation).
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Hunt JE, Holst JJ, Jeppesen PB, Kissow H. GLP-1 and Intestinal Diseases. Biomedicines 2021; 9:biomedicines9040383. [PMID: 33916501 PMCID: PMC8067135 DOI: 10.3390/biomedicines9040383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence implicates glucagon-like peptide-1 (GLP-1) to have, beyond glucose maintenance, a beneficial role in the gastrointestinal tract. Here, we review emerging data investigating GLP-1 as a novel treatment for intestinal diseases, including inflammatory bowel diseases, short-bowel syndrome, intestinal toxicities and coeliac disease. Possible beneficial mechanisms for these diseases include GLP-1′s influence on gastric emptying, its anti-inflammatory properties and its intestinotrophic effect. The current knowledge basis derives from the available GLP-1 agonist treatments in experimental animals and small clinical trials. However, new novel strategies including dual GLP-1/GLP-2 agonists are also in development for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (J.E.H.); (J.J.H.)
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (J.E.H.); (J.J.H.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Palle Bekker Jeppesen
- Department of Medical Gastroenterology and Hepatology, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (J.E.H.); (J.J.H.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
10
|
Ebbesen M, Enevold C, Juul A, Heilmann C, Sengeløv H, Müller K. Insulin-Like Growth Factor Gene Polymorphisms Predict Clinical Course in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:1646. [PMID: 32793242 PMCID: PMC7393983 DOI: 10.3389/fimmu.2020.01646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is challenged by significant toxicities that are propagated by systemic inflammation caused by cytotoxic damage. Insulin-like growth factor-1 (IGF-1) is key in repair of most tissues and is to a large extent genetically determined. We investigated eight single nucleotide polymorphisms (SNPs) in the genes encoding IGF-1 and its binding protein (IGFBP3) in 543 patients undergoing HSCT to access their impact on systemic inflammation and clinical outcomes. Overall, median serum levels of both IGF-1 and IGFBP3 were found reduced from the referral until 2 years post-HSCT compared with healthy sex- and age-matched individuals, but, for individuals homozygous of the known high-producer minor allele of rs1520220 (IGF1), rs978458 (IGF1), or rs2854744 (IGFBP3) serum levels remained normal during the whole period. In accordance, maximum C-reactive protein levels were lower for these genotypes of IGF1 (rs1520220: median 66 vs. 102 mg/L, P = 0.005 and rs978458: 53 vs. 104 mg/L, P < 0.001), translating into borderline significant superior survival (P = 0.060 for rs1520220) and reduced treatment-related mortality (P = 0.050 for rs978458). In conclusion, we found that three SNPs in the IGF-1 axis with known functional impact were associated with circulating IGF-1 or IGFBP-3 levels also in the setting of HSCT, and predictive of the severity of the toxic-inflammatory response during the treatment.
Collapse
Affiliation(s)
- Maria Ebbesen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Heilmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|