1
|
Klesse M, Schanz O, Heine A. Establishing a low-dose x-ray irradiation protocol for experimental acute graft-versus-host disease. Exp Hematol 2025; 146:104765. [PMID: 40164325 DOI: 10.1016/j.exphem.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The investigation of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation heavily relies on the use of experimental animal models and total body irradiation (TBI) as a conditioning regimen. However, 137Cs is gradually being replaced as the main source of radiation due to safety concerns, and the transfer of established irradiation protocols to x-ray irradiators has proven difficult. Here, we describe the establishment of an x-ray-based irradiation protocol in an experimental mouse model for acute GvHD (C57BL6 → BALB/c). Our data show that commonly reported dosages of 6-9 Gy did not result in a viable model. Instead, irradiation with 5 Gy led to the development of clinical symptoms of GvHD in mice after transplantation with allogeneic bone marrow and T cells. Mice with GvHD displayed altered hemograms and increased serum levels of proinflammatory cytokines compared with mice without GvHD, which was accompanied by sequestration of donor lymphocytes within organs. Donor chimerism and hemogram analyses also indicated sufficient myeloablation and hematopoietic reconstitution. Overall, we show that low-dose x-ray TBI effectively promotes acute GvHD in a mismatched mouse model. We also propose that the transfer of previously established gamma-ray TBI protocols should be carefully evaluated according to individual circumstances.
Collapse
Affiliation(s)
- Michelle Klesse
- Medical Clinic III for Oncology, Hematology, Rheumatology and Stem Cell Transplantation, University Hospital Bonn, Bonn, Germany
| | - Oliver Schanz
- Medical Clinic III for Oncology, Hematology, Rheumatology and Stem Cell Transplantation, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III for Oncology, Hematology, Rheumatology and Stem Cell Transplantation, University Hospital Bonn, Bonn, Germany; Clinical Division of Hematology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria.
| |
Collapse
|
2
|
Hill AE, Ju X, Sharland AF, Silveira PA, Clark GJ. A Clinically Relevant Mouse Model of Reduced-Intensity Conditioning for Allogeneic HLA-Identical Hematopoietic Stem Cell Transplantation. Methods Mol Biol 2025; 2907:161-181. [PMID: 40100598 DOI: 10.1007/978-1-0716-4430-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) is curative for many blood malignancies. This procedure balances the need for engraftment of donor cells while enhancing the curative graft-versus-tumor response. The need to diminish morbidity associated with HCT protocols has led to the development of reduced-intensity conditioning protocols. Modeling the clinical scenario that patients undergo in preclinical small animal models is challenging. We describe herein a mouse model using a conditioning regimen consisting of cytotoxic drugs similar to some human protocols together with reduced-intensity radiation. Furthermore, the choice of a major histocompatibility-matched, minor histocompatibility-mismatched C57BL/6 (H-2b) donor to BALB.b (H-2b) recipient strain combination resembles the allogeneic human leukocyte antigen-identical sibling or matched unrelated human transplant setting.
Collapse
Affiliation(s)
- Alexandra E Hill
- Charles Perkins Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alexandra F Sharland
- Charles Perkins Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Pablo A Silveira
- ANZAC Research Institute, Sydney Local Health District, Concord, NSW, Australia
| | - Georgina J Clark
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Elliott J, Koldej R, Khot A, Ritchie D. Graft-Versus-Host Disease Mouse Models: A Clinical-Translational Perspective. Methods Mol Biol 2025; 2907:1-56. [PMID: 40100591 DOI: 10.1007/978-1-0716-4430-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A variety of graft-versus-host disease (GVHD) models have been developed in mice for the purpose of allowing laboratory investigation of the pathobiology, prevention, and treatment of GVHD in humans. While such models are crucial in advancing our knowledge in this field, there are some key limitations that need to be considered when translating laboratory discoveries into the clinical context. This chapter will discuss current clinical practices in transplantation and GVHD and the relative strengths and weaknesses of mouse models that attempt to replicate these states.
Collapse
Affiliation(s)
- Jessica Elliott
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amit Khot
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Wang Z, Li R, Fu W, Cheng H, Zhang Y, Tang G, Yang J, Wang J, Ni X. Anti-CD4 monoclonal antibody prevents chronic graft-versus-host disease in mice by inducing immune tolerance of CD8 + T cells and alleviating thymus injury. Front Immunol 2024; 15:1460687. [PMID: 39776911 PMCID: PMC11703850 DOI: 10.3389/fimmu.2024.1460687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge. Materials and methods Here, we used a representative cGVHD model with the donor C57BL/6 to recipient BALB/c combination. Post-HCT, mice were treated with IgG or anti-CD4 monoclonal antibody. The severity of cGVHD was assessed by evaluating symptoms of cGVHD and histopathology examination (H&E) of target organs. Thymus gland damage and defects of the negative selection were assessed by analyzing the CD4+CD8+ double-positive thymocytes, cortical thymic epithelial cells and medullary thymic epithelial cells (mTECs). Immunotolerance of CD8+ T cells was assessed by detecting the expression of CD80, PD-1, GRAIL and IL-7Rα. Long-term cellular and humoral immunity associated with graft-versus-leukemia (GVL) effects were evaluated through detecting the percentage of CD4+ T cells, IgG, IgM and IgA concentrations, and performing tumor challenge experiment. Results Donor CD8+ T cells caused thymic epithelial cells damage and impaired negative selection in recipients, leading to generation of autoreactive T cells and causing cGVHD. Anti-CD4 mAb treatment promoted immune incompetence of thymus-infiltrating CD8+ T cells, facilitated recovery of CD4+CD8+ thymocytes and regeneration mTECs, and preserved negative-selection, but had no effects on the long-term cellular immunity and humoral immunity, resulting in preservation of GVL effect. Conclusion Our results indicate that anti-CD4 mAb therapy early post-HCT allows thymus recovery by inducing the immune tolerance of thymus infiltrated CD8+ T cells, thereby alleviating thymic epithelial cells damage, preserving negative selection, and preserving long-term GVL effect at the same time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiong Ni
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Sun Y, Zhang Y, Shen J, Shi F, Li Y, Wang C, Dong X, Chen T, Yu F, Zhou Y, Wan P. A Novel Murine Model for Lupus-Like Ocular Chronic Graft-Versus-Host Disease. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38864812 PMCID: PMC11174147 DOI: 10.1167/iovs.65.6.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/19/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose Lupus-like chronic graft-versus-host disease (cGVHD) has been previously described, but the ocular findings have not been elucidated. Recipient mice in a lupus-like cGVHD model manifested notable and persistent ocular surface phenotypes. Herein, we further explored immunopathogenic mechanisms underlying these ocular phenotypes. Methods A previously described lupus-like cGVHD model was established by intraperitoneal injection of splenocytes from bm12 mice into C57BL/6J mice. Systemic findings were evaluated for the presence of splenomegaly, proteinuria, and autoantibodies. Comprehensive evaluations were conducted on ocular manifestations and immunopathological features in this model. Results The lupus-like cGVHD model was successfully constructed 2 weeks post-transplantation. The recipient mice developed lupus-like phenotypes, including splenomegaly, proteinuria, and increased autoantibodies, and their ocular presentations included corneal epithelial defects and decreased tear secretion. Histological analysis revealed a reduction in corneal nerve fiber density and corneal endothelial cells, along with conjunctival fibrosis and loss of goblet cells. Moreover, cGVHD induced progressive aggravation of immune cell infiltration and fibrosis in the lacrimal glands. RNA-Sequencing (RNA-seq) results of the lacrimal glands demonstrated that the differentially expressed genes (DEGs) between the control and cGVHD groups were associated with GVHD pathways. Immune infiltration analysis using RNA-seq and flow cytometry confirmed that CD8+ T lymphocytes predominantly constituted the inflammatory infiltrating cells within the lacrimal glands. Conclusions This lupus-like cGVHD model (bm12→C57BL/6J) exhibited persistent ocular surface manifestations, characterized by immune infiltration of CD8+ T lymphocytes in the lacrimal glands. Thus, this ocular cGVHD model may be used to explore the underlying mechanisms and discover novel therapeutic interventions.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiani Shen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Shi
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Li
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Congyao Wang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenfen Yu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Steven P, Perez VL, Sharma A. Murine models of graft versus host disease (GVHD): Focus on ocular GVHD. Ocul Surf 2023; 30:179-186. [PMID: 37742740 PMCID: PMC10841907 DOI: 10.1016/j.jtos.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Graft versus host disease (GVHD) remains a major and serious complication of allogeneic hematopoietic stem cell transplantation. Based on the time of onset, clinical phenotypes, progression kinetics, and pathophysiology, GVHD is stratified into acute, chronic, and overlapping types. The eyes are among the most commonly affected organs in GVHD. Mouse models have played an important role in understanding the several key elements of GVHD pathobiology. The current review discusses the immunology, pathology, and key phenotypic features of mouse models of systemic GVHD. Furthermore, a critical appraisal of mouse models of ocular GVHD (oGVHD) is provided. The disease mechanisms underlying the ocular surface, meibomian gland, and lacrimal gland injury in these models are reviewed, and the relevance of oGVHD murine models to clinical oGVHD is also included.
Collapse
Affiliation(s)
- Philipp Steven
- Department of Ophthalmology, Division for Dry-Eye and Ocular GVHD, Medical Faculty, University of Cologne, Cologne, Germany
| | - Victor L Perez
- Foster Center for Ocular Immunology, Department of Ophthalmology, Duke University School of Medicine, United States
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States.
| |
Collapse
|
7
|
Nilles JP, Roberts D, Salmon JH, Song L, O’Dea C, Marjoram LT, Bower JJ, Hirsch ML, Gilger BC. AAV-mediated expression of HLA-G for the prevention of experimental ocular graft vs. host disease. Mol Ther Methods Clin Dev 2023; 29:227-235. [PMID: 37090476 PMCID: PMC10119803 DOI: 10.1016/j.omtm.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Ocular graft versus host disease (OGvHD) develops after allogeneic hematopoietic stem cell transplantation (HSCT) and manifests as ocular surface inflammatory disease. This study evaluated the efficacy of adeno-associated virus (AAV) gene therapy encoding human leukocyte antigen G (HLA-G) to inhibit OGvHD. A major histocompatibility mismatch chronic OGvHD murine model was evaluated. 7 days after HSCT, mice were dosed subconjunctivally with scAAV8-HLA-G1/5 (1 x 109 vg/eye), topical cyclosporine (twice daily), or left untreated. Body weights and tear production (red thread test) were recorded, and eyelid, corneal opacity, and corneal fluorescein retention were scored through day 44 after HSCT. Tissues were collected for vector biodistribution, ocular histology, and immunofluorescence. Compared with untreated HSCT eyes, those dosed with scAAV8-HLA-G1/5 had significantly reduced clinical inflammatory signs of OGvHD. On histology, eyes that received scAAV8-HLA-G1/5 or cyclosporine had a significantly lower mean limbal mononuclear cell count when compared with non-treated HSCT eyes. HLA-G immunofluorescence was detected in the subconjunctiva and peripheral cornea in HSCT animals treated with scAAV8-HLA-G1/5. Vector genomes were detected in the lacrimal gland, but not in the other tested organs. These results provide evidence that subconjunctival AAV targets ocular surface and corneal disease and support that HLA-G-based gene therapy may be an effective treatment for OGvHD.
Collapse
Affiliation(s)
- Jacob P. Nilles
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Darby Roberts
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jacklyn H. Salmon
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | - Carly O’Dea
- Powered Research, Research Triangle Park, NC, USA
| | | | | | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Brian C. Gilger
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Pang Y, Holtzman NG. Immunopathogenic mechanisms and modulatory approaches to graft-versus-host disease prevention in acute myeloid leukaemia. Best Pract Res Clin Haematol 2023; 36:101475. [PMID: 37353287 PMCID: PMC10291443 DOI: 10.1016/j.beha.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) remains the only potential cure for intermediate to high-risk acute myeloid leukaemia (AML). The therapeutic effect of HSCT is largely dependent on the powerful donor-derived immune response against recipient leukaemia cells, known as graft-versus-leukaemia effect (GvL). However, the donor-derived immune system can also cause acute or chronic damage to normal recipient organs and tissues, in a process known as graft-versus-host disease (GvHD). GvHD is a leading cause of non-relapse mortality in HSCT recipients. There are many similarities and cross talk between the immune pathways of GvL and GvHD. Studies have demonstrated that both processes require the presence of mismatched alloantigens between the donor and recipient, and activation of immune responses centered around donor T-cells, which can be further modulated by various recipient or donor factors. Dissecting GvL from GvHD to achieve more effective GvHD prevention and enhanced GvL has been the holy grail of HSCT research. In this review, we focused on the key factors that contribute to the immune responses of GvL and GvHD, the effect on GvL with different GvHD prophylactic strategies, and the potential impact of various AML relapse prevention therapy or treatments on GvHD.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Haematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA.
| | - Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Perez VL, Mousa HM, Soifer M, Beatty C, Sarantopoulos S, Saban DR, Levy RB. Meibomian Gland Dysfunction: A Route of Ocular Graft-Versus-Host Disease Progression That Drives a Vicious Cycle of Ocular Surface Inflammatory Damage. Am J Ophthalmol 2023; 247:42-60. [PMID: 36162534 PMCID: PMC10270654 DOI: 10.1016/j.ajo.2022.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To investigate the role of aggressive meibomian gland dysfunction (MGD) in the immune pathogenesis of ocular graft-vs-host disease (GVHD). METHODS In mice, an allogeneic GVHD model was established by transferring bone marrow (BM) and purified splenic T cells from C57BL/6J mice into irradiated C3-SW.H2b mice (BM+T). Control groups received BM only. Mice were scored clinically across the post-transplantation period. MGD severity was categorized using the degree of atrophy on harvested lids. Immune disease was analyzed using flow cytometry of tissues along with fluorescent tracking of BM cells onto the ocular surface. In humans, parameters from 57 patients with ocular GVHD presenting to the Duke Eye Center were retrospectively reviewed. MGD was categorized using the degree of atrophy on meibographs. Immune analysis was done using high-parameter flow cytometry on tear samples. RESULTS Compared with BM only, BM+T mice had higher systemic disease scores that correlated with tear fluid loss and eyelid edema. BM+T had higher immune cell infiltration in the ocular tissues and higher CD4+-cell cytokine expression in draining lymph nodes. BM+T mice with worse MGD scores had significantly worse corneal staining. In patients with ocular GVHD, 96% had other organs affected. Patients with ocular GVHD had abnormal parameters on dry eye testing, high matrix metalloproteinase-9 positivity (92%), and abundance of immune cells in tear samples. Ocular surface disease signs were worse in patients with higher MGD severity scores. CONCLUSIONS Ocular GVHD is driven by a systemic, T-cell-dependent process that causes meibomian gland damage and induces a robust form of ocular surface disease that correlates with MGD severity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Victor L Perez
- Foster Center for Ocular Immunology, Department of Ophthalmology (V.L.P., H.M.M., M.S.); Duke Eye Center, Duke University School of Medicine; Department of Immunology, Duke University Medical Center (C.B., D.R.S.).
| | - Hazem M Mousa
- Foster Center for Ocular Immunology, Department of Ophthalmology (V.L.P., H.M.M., M.S.); Duke Eye Center, Duke University School of Medicine; Department of Immunology, Duke University Medical Center (C.B., D.R.S.)
| | - Matias Soifer
- Foster Center for Ocular Immunology, Department of Ophthalmology (V.L.P., H.M.M., M.S.); Duke Eye Center, Duke University School of Medicine; Department of Immunology, Duke University Medical Center (C.B., D.R.S.)
| | - Cole Beatty
- Duke Eye Center, Duke University School of Medicine; Department of Immunology, Duke University Medical Center (C.B., D.R.S.)
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute (S.S.) Durham, North Carolina
| | - Daniel R Saban
- Duke Eye Center, Duke University School of Medicine; Department of Immunology, Duke University Medical Center (C.B., D.R.S.)
| | - Robert B Levy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida (R.B.L.), USA
| |
Collapse
|
10
|
Shi PA, Luchsinger LL, Greally JM, Delaney CS. Umbilical cord blood: an undervalued and underutilized resource in allogeneic hematopoietic stem cell transplant and novel cell therapy applications. Curr Opin Hematol 2022; 29:317-326. [PMID: 36066376 PMCID: PMC9547826 DOI: 10.1097/moh.0000000000000732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to primarily discuss the unwarranted decline in the use of umbilical cord blood (UCB) as a source of donor hematopoietic stem cells (HSC) for hematopoietic cell transplantation (HCT) and the resulting important implications in addressing healthcare inequities, and secondly to highlight the incredible potential of UCB and related birthing tissues for the development of a broad range of therapies to treat human disease including but not limited to oncology, neurologic, cardiac, orthopedic and immunologic conditions. RECENT FINDINGS When current best practices are followed, unrelated donor umbilical cord blood transplant (CBT) can provide superior quality of life-related survival compared to other allogeneic HSC donor sources (sibling, matched or mismatched unrelated, and haploidentical) through decreased risks of relapse and chronic graft vs. host disease. Current best practices include improved UCB donor selection criteria with consideration of higher resolution human leukocyte antigen (HLA) typing and CD34+ cell dose, availability of newer myeloablative but reduced toxicity conditioning regimens, and rigorous supportive care in the early posttransplant period with monitoring for known complications, especially related to viral and other infections that may require intervention. Emerging best practice may include the use of ex vivo expanded single-unit CBT rather than double-unit CBT (dCBT) or 'haplo-cord' transplant, and the incorporation of posttransplant cyclophosphamide as with haploidentical transplant and/or incorporation of novel posttransplant therapies to reduce the risk of relapse, such as NK cell adoptive transfer. Novel, non-HCT uses of UCB and birthing tissue include the production of UCB-derived immune effector cell therapies such as unmodified NK cells, chimeric antigen receptor-natural killer cells and immune T-cell populations, the isolation of mesenchymal stem cells for immune modulatory treatments and derivation of induced pluripotent stem cells haplobanks for regenerative medicine development and population studies to facilitate exploration of drug development through functional genomics. SUMMARY The potential of allogeneic UCB for HCT and novel cell-based therapies is undervalued and underutilized. The inventory of high-quality UCB units available from public cord blood banks (CBB) should be expanding rather than contracting in order to address ongoing healthcare inequities and to maintain a valuable source of cellular starting material for cell and gene therapies and regenerative medicine approaches. The expertise in Good Manufacturing Practice-grade manufacturing provided by CBB should be supported to effectively partner with groups developing UCB for novel cell-based therapies.
Collapse
Affiliation(s)
- Patricia A. Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York City, NY 10065
| | - Larry L. Luchsinger
- Lindsley F. Kimball Research Institute, New York Blood Center, New York City, NY 10065
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Colleen S. Delaney
- Division of Hematology-Oncology, Seattle Children’s Hospital, Seattle WA; and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
- Deverra Therapeutics, Inc., Seattle, WA 98102
| |
Collapse
|
11
|
Scheurer J, Leithäuser F, Debatin KM, Strauss G. Modeling acute graft-versus-host disease (aGVHD) in murine bone marrow transplantation (BMT) models with MHC disparity. Methods Cell Biol 2022; 168:19-39. [PMID: 35366982 DOI: 10.1016/bs.mcb.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For more than 50years, hematopoietic stem cell transplantation (HSCT) has been the major curative therapy for hematological malignancies and genetic disorders, but its success is limited by the development of graft-versus-host disease (GVHD). GVHD represents a post-transplantation disorder representing the immune-mediated attack of transplant-derived T cells against recipient tissue finally leading to increased morbidity and mortality of the recipient. GVHD develops if donor and recipient are disparate in major or minor histocompatibility antigens (MHC, miHA). Most of the initial knowledge about the biology of GVHD is derived from murine bone marrow transplantation (BMT) models. Of course, GVHD mouse models do not reflect one to one the human situation, but they contribute significantly to our understanding how conditioning and danger signals activate the immune system, enlighten the role of individual molecules, e.g., cytokines, chemokines, death-inducing ligands, define the function of lymphocytes subpopulations for GVHD development and have significant impact on establishing new treatment and prevention strategies used in clinical HSCT. This chapter describes in detail the procedure of allogeneic BMT and the development of GVHD in two commonly used allogeneic murine BMT models (B6→B6.bm1, B6→B6D2F1) with different MHC disparities, which can be used as a basis for advanced studies of GVHD pathology or the development of new treatment strategies.
Collapse
Affiliation(s)
- Jasmin Scheurer
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | | - Klaus-Michael Debatin
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Gudrun Strauss
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany.
| |
Collapse
|
12
|
Giesler S, Zeiser R. Deciphering the role of Minor histocompatibility antigens for acute graft-versus-host disease. Transplant Cell Ther 2021; 27:523-524. [PMID: 34210498 DOI: 10.1016/j.jtct.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sophie Giesler
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg.
| |
Collapse
|
13
|
Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis. Int J Mol Sci 2021; 22:ijms22126191. [PMID: 34201218 PMCID: PMC8228997 DOI: 10.3390/ijms22126191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/04/2023] Open
Abstract
Ocular graft-versus-host disease (oGVHD) is a fast progressing, autoimmunological disease following hematopoietic stem cell transplantation, leading to severe inflammation of the eye and destruction of the lacrimal functional unit with consecutive sight-threatening consequences. The therapeutic “window of opportunity” is narrow, and current treatment options are limited and often insufficient. To achieve new insights into the pathogenesis and to develop new therapeutic approaches, clinically relevant models of oGVHD are desirable. In this study, the ocular phenotype was described in a murine, chemotherapy-based, minor-mismatch GVHD model mimicking early-onset chronic oGVHD, with corneal epitheliopathy, inflammation of the lacrimal glands, and blepharitis. Additionally, corneal lymphangiogenesis was observed as part of oGVHD pathogenesis for the first time, thus opening up the investigation of lymphangiogenesis as a potential therapeutic and diagnostic tool.
Collapse
|
14
|
Hong C, Jin R, Dai X, Gao X. Functional Contributions of Antigen Presenting Cells in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:614183. [PMID: 33717098 PMCID: PMC7943746 DOI: 10.3389/fimmu.2021.614183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is one of the most common reasons of late non-relapse morbidity and mortality of patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). While acute GVHD is considered driven by a pathogenic T cell dominant mechanism, the pathogenesis of cGVHD is much complicated and involves participation of a variety of immune cells other than pathogenic T cells. Existing studies have revealed that antigen presenting cells (APCs) play crucial roles in the pathophysiology of cGVHD. APCs could not only present auto- and alloantigens to prime and activate pathogenic T cells, but also directly mediate the pathogenesis of cGVHD via multiple mechanisms including infiltration into tissues/organs, production of inflammatory cytokines as well as auto- and alloantibodies. The studies of this field have led to several therapies targeting different APCs with promising results. This review will focus on the important roles of APCs and their contributions in the pathophysiology of cGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
16
|
Choi EY, Choi K, Nam G, Kim W, Chung M. H60: A Unique Murine Hematopoietic Cell-Restricted Minor Histocompatibility Antigen for Graft-versus-Leukemia Effect. Front Immunol 2020; 11:1163. [PMID: 32587590 PMCID: PMC7297985 DOI: 10.3389/fimmu.2020.01163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for many types of hematological malignancies. Matching of donor and recipient for the major histocompatibility complex (MHC) improves the HSCT reconstitution, but donor-derived T cells reactive to non-MHC encoded minor histocompatibility antigens (MiHAs) can induce graft-versus-host disease (GVHD) while also being needed for graft-versus-leukemia (GVL) effects. MiHAs are allelically variant self-peptides presented conventionally on MHC molecules, but are alloantigenic in transplantation settings. Immunodominant MiHAs are most strongly associated with GVHD and GVL. There is need for mouse paradigms to understand these contradictory effects. H60 is a highly immunodominant mouse MiHA with hematopoietic cell-restricted expression. Immunodominance of H60 is tightly associated with its allelic nature (presence vs. absence of the transcripts), and the qualitative (TCR diversity) and quantitative (frequency) traits of the reactive T cells. The identity as a hematopoietic cell-restricted antigen (HRA) of H60 assists the appearance of the immunodominace in allo-HSCT circumstances, and generation of GVL effects without induction of serious GVHD after adoptive T cell transfer. Also it allows the low avidity T cells to escape thymic negative selection and exert GVL effect in the periphery, which is a previously unevaluated finding related to HRAs. In this review, we describe the molecular features and immunobiology in detail through which H60 selectively exerts its potent GVL effect. We further describe how lessons learned can be extrapolated to human allo-HCST.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungho Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Giri Nam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Woojin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Minho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|