1
|
Oliveira A, Azevedo M, Seixas R, Silva S, Martinho R, Serrão P, Silva E, Moreira-Rodrigues M. Hippocampus muscarinic M4 receptor mRNA expression may influence central cholinergic activity, causing fear memory strengthening by peripheral adrenaline. Neuropharmacology 2025; 271:110382. [PMID: 39988278 DOI: 10.1016/j.neuropharm.2025.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Adrenaline (Ad) strengthens contextual fear memory by increasing blood glucose, possibly enhancing hippocampus acetylcholine synthesis. Nevertheless, it is unclear if peripheral Ad influences the cholinergic system, contributing to contextual fear memory strengthening. We aimed to evaluate whether peripheral Ad alters muscarinic receptor expression and if the cholinergic system is involved in peripheral Ad contextual fear memory strengthening effect. Wild-type (WT) and Ad-deficient male mice (129 × 1/SvJ) underwent a fear conditioning procedure followed by intraperitoneal pre-training and pre-context administration of Ad (0.1 mg/kg), atropine (10 mg/kg), methylatropine (0.5 mg/kg), Ad (0.1 mg/kg) plus atropine (10 mg/kg) or vehicle (NaCl, 0.9%). Shock responsiveness and freezing behaviour were accessed. Hippocampal M1, M2, and M4 mRNA expression were evaluated. Ad-deficient mice presented decreased hippocampal muscarinic M4 subtype receptor mRNA expression compared to WT mice. In Ad-administered Ad-deficient mice, hippocampal muscarinic M4 subtype receptor mRNA expression increased compared with vehicle-administered Ad-deficient mice. On the context day, atropine-administered WT mice presented decreased freezing behaviour compared to vehicle or methylatropine-administered WT mice. Moreover, Ad plus atropine-administered Ad-deficient mice led to decreased freezing behaviour compared to Ad-administered Ad-deficient mice. In conclusion, Ad-deficient mice's contextual fear memory impairment was associated with hippocampal muscarinic M4 subtype receptor down expression, which was reversed by Ad. This may be related to contextual fear memory consolidation or retrieval induced by peripheral Ad. Furthermore, the effect of Ad contextual fear memory might be due to increased hippocampus muscarinic subtype M4 expression, which may contribute to increased cholinergic activity in the central nervous system.
Collapse
Affiliation(s)
- Ana Oliveira
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Márcia Azevedo
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Rafaela Seixas
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Soraia Silva
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Raquel Martinho
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Elisabete Silva
- Ageing and Stress Group, i3S- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Mónica Moreira-Rodrigues
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal.
| |
Collapse
|
2
|
Shahin NN, Ahmed-Farid OA, Sakr EAE, Kamel EA, Mohamed MM. Oral Supplements of Combined Lactobacillus plantarum and Asparagus officinalis Modulate Gut Microbiota and Alleviate High-Fat Diet-Induced Cognitive Deficits and Neurodegeneration in Rats. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10429-7. [PMID: 39777720 DOI: 10.1007/s12602-024-10429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
High-fat diet (HFD) consumption disrupts the gut microbiome, instigating metabolic disturbance, brain pathology, and cognitive decline via the gut-brain axis. Probiotic and prebiotic supplementation have been found to improve gut microbiome health, suggesting they could be effective in managing neurodegenerative disorders. This study explored the potential benefits of the probiotic strain Lactobacillus plantarum 20174 (L. plantarum), prebiotic Asparagus officinalis (A. officinalis) extract, or their synbiotic combination against HFD-induced cognitive dysfunction and neurodegeneration in rats. Male Sprague-Dawley rats were fed either a normal diet or an HFD for 24 weeks. Starting from week 13, rats on either diet were divided into vehicle-, prebiotic-, probiotic-, and synbiotic-treated subgroups. Rats received their assigned intervention for 12 more weeks. Prebiotic, probiotic, or synbiotic treatment reverted HFD-instigated alterations in hippocampal amyloid beta, p-tau, α-synuclein, and BDNF levels, leading to restored cognitive function. The tested therapies also improved the HFD-disrupted lipid profile. Interestingly, probiotic and synbiotic therapies attenuated oxidative stress and inflammation, reinstated neurotransmitter balance, and mitigated the energy deficit in HFD-fed rats. Furthermore, L. plantarum and Asparagus administration modulated gut microbiota composition by raising Lactobacillus species and reducing Coliform and Staphylococci bacteria as well as fungi populations. These findings suggest that the oral consumption of A. officinalis prebiotics and/or L. plantarum probiotics alleviates HFD-induced cognitive deficit and neurodegeneration through modulation of the gut-brain axis with superior restorative effects being achieved by synbiotic treatment.
Collapse
Affiliation(s)
- Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | | | - Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Enas A Kamel
- Biochemistry and Nutrition Department, Faculty of Women for Arts Science and Education, Ain Shams University, Cairo, Egypt
| | - Maha M Mohamed
- Home Economic Department, Faculty of Women for Arts Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Lalonde R, Strazielle C. One-Trial Appetitive Learning Tasks for Drug Targeting. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:680-686. [PMID: 37287290 DOI: 10.2174/1871527322666230607152758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandoeuvre-les- Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandoeuvre-les- Nancy, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
4
|
Zheng F, Wess J, Alzheimer C. Long-Term-But Not Short-Term-Plasticity at the Mossy Fiber-CA3 Pyramidal Cell Synapse in Hippocampus Is Altered in M1/M3 Muscarinic Acetylcholine Receptor Double Knockout Mice. Cells 2023; 12:1890. [PMID: 37508553 PMCID: PMC10378318 DOI: 10.3390/cells12141890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Muscarinic acetylcholine receptors are well-known for their crucial involvement in hippocampus-dependent learning and memory, but the exact roles of the various receptor subtypes (M1-M5) are still not fully understood. Here, we studied how M1 and M3 receptors affect plasticity at the mossy fiber (MF)-CA3 pyramidal cell synapse. In hippocampal slices from M1/M3 receptor double knockout (M1/M3-dKO) mice, the signature short-term plasticity of the MF-CA3 synapse was not significantly affected. However, the rather unique NMDA receptor-independent and presynaptic form of long-term potentiation (LTP) of this synapse was much larger in M1/M3-deficient slices compared to wild-type slices in both field potential and whole-cell recordings. Consistent with its presynaptic origin, induction of MF-LTP strongly enhanced the excitatory drive onto single CA3 pyramidal cells, with the effect being more pronounced in M1/M3-dKO cells. In an earlier study, we found that the deletion of M2 receptors in mice disinhibits MF-LTP in a similar fashion, suggesting that endogenous acetylcholine employs both M1/M3 and M2 receptors to constrain MF-LTP. Importantly, such synergism was not observed for MF long-term depression (LTD). Low-frequency stimulation, which reliably induced LTD of MF synapses in control slices, failed to do so in M1/M3-dKO slices and gave rise to LTP instead. In striking contrast, loss of M2 receptors augmented LTD when compared to control slices. Taken together, our data demonstrate convergence of M1/M3 and M2 receptors on MF-LTP, but functional divergence on MF-LTD, with the net effect resulting in a well-balanced bidirectional plasticity of the MF-CA3 pyramidal cell synapse.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Biological Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Perepelkina OV, Poletaeva II. Selection of Mice for Object Permanence Cognitive Task Solution. Neurol Int 2022; 14:696-706. [PMID: 36135993 PMCID: PMC9502561 DOI: 10.3390/neurolint14030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The selection of mice for high (“plus”) and low (“minus”) scores in the puzzle-box test was performed over five generations. This test evaluates the success (or failure) in finding the underpass, leading to the dark part of the box, when it is blocked. This means that the mouse is either able or unable to operate the “object permanence rule” (one of the index’s cognitive abilities). For the “+” strain, animals were bred who solved the test when the underpass test blocked with a plug; the “−” strain comprised those who were unable to solve this task. In mice of the “+” strain, the proportion of animals that was able to solve “plug” stages of the test was higher than in the “−” strain and in the non-selected genetically heterogeneous population. The “+” mice ate significantly more new food in the hyponeophagia test. Animals of both strains demonstrated the ability to “manipulate” the plug blocking the underpass, touching the plug with their paws and muzzle, although the majority of “−” mice were unable to open the underpass effectively. Thus, mice of both selected strains demonstrated that they were able to understand that the underpass does exist, but only “+”-strain animals (at least the majority of them) were able to realize the solution. The selection for plug-stage solution success affected the mouse’s ability to open the hidden underpass.
Collapse
|
7
|
Sola E, Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Pelayo A, de la Cabeza Fernandez M, Del Pino J. Cadmium-induced neurotoxic effects on rat basal forebrain cholinergic system through thyroid hormones disruption. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103791. [PMID: 34968718 DOI: 10.1016/j.etap.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) single and repeated exposure produces cognitive dysfunctions. Basal forebrain cholinergic neurons (BFCN) regulate cognitive functions. BFCN loss or cholinergic neurotransmission dysfunction leads to cognitive disabilities. Thyroid hormones (THs) maintain BFCN viability and functions, and Cd disrupts their levels. However, Cd-induced BFCN damages and THs disruption involvement was not studied. To research this we treated male Wistar rats intraperitoneally with Cd once (1 mg/kg) or repetitively for 28 days (0.1 mg/kg) with/without triiodothyronine (T3, 40 µg/kg/day). Cd increased thyroid-stimulating-hormone (TSH) and decreased T3 and tetraiodothyronine (T4). Cd altered cholinergic transmission and induced a more pronounced neurodegeneration on BFCN, mediated partially by THs reduction. Additionally, Cd antagonized muscarinic 1 receptor (M1R), overexpressed acetylcholinesterase S variant (AChE-S), downregulated AChE-R, M2R, M3R and M4R, and reduced AChE and choline acetyltransferase activities through THs disruption. These results may assist to discover cadmium mechanisms that induce cognitive disabilities, revealing a new possible therapeutic tool.
Collapse
Affiliation(s)
- Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria de la Cabeza Fernandez
- Department of Chemistry in Pharmaceutical Sciences, Pharnacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Perepelkina OV, Poletaeva II. Selection of Laboratory Mice for the Cognitive Task Successful Solution and for the Inability to Solve It. DOKL BIOCHEM BIOPHYS 2021; 499:207-210. [PMID: 34426912 DOI: 10.1134/s1607672921040116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/23/2022]
Abstract
Using the selected mouse strain EX as the founding population (selection for extrapolation ability) three selection generations of mice were obtained, which were selected for successful solution of object permanence test (plus-sub-strain) and for lack of such solution (minus-sub-strain). The successful solution required not only the ability to operate the object permanence rule (by J. Piajet), but the performance of complicated action (executive function) which was significantly higher in plus-substrain, and this is the unique example of successful selection for cognitive trait.
Collapse
Affiliation(s)
| | - I I Poletaeva
- Biology Department, Moscow State University, Moscow, Russia.
| |
Collapse
|
9
|
Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031273. [PMID: 33525357 PMCID: PMC7865740 DOI: 10.3390/ijms22031273] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are a major public health problem worldwide with a wide spectrum of symptoms and physiological effects. It has been long reported that the dysregulation of the cholinergic system and the adrenergic system are linked to the etiology of Alzheimer’s disease. Cholinergic neurons are widely distributed in brain regions that play a role in cognitive functions and normal cholinergic signaling related to learning and memory is dependent on acetylcholine. The Locus Coeruleus norepinephrine (LC-NE) is the main noradrenergic nucleus that projects and supplies norepinephrine to different brain regions. Norepinephrine has been shown to be neuroprotective against neurodegeneration and plays a role in behavior and cognition. Cholinergic and adrenergic signaling are dysregulated in Alzheimer’s disease. The degeneration of cholinergic neurons in nucleus basalis of Meynert in the basal forebrain and the degeneration of LC-NE neurons were reported in Alzheimer’s disease. The aim of this review is to describe current literature on the role of the cholinergic system and the adrenergic system (LC-NE) in the pathology of Alzheimer’s disease and potential therapeutic implications.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
12
|
Reboreda A, Theissen FM, Valero-Aracama MJ, Arboit A, Corbu MA, Yoshida M. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators. Behav Brain Res 2018; 354:64-83. [PMID: 29501506 DOI: 10.1016/j.bbr.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
Collapse
Affiliation(s)
- Antonio Reboreda
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany.
| | - Frederik M Theissen
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054 Erlangen, Germany
| | - Alberto Arboit
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Mihaela A Corbu
- Ruhr University Bochum (RUB), Universitätsstraße 150, 44801, Bochum, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany.
| |
Collapse
|
13
|
Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption. Toxicology 2018; 394:54-62. [DOI: 10.1016/j.tox.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
14
|
Romberg C, Bartko S, Wess J, Saksida LM, Bussey TJ. Impaired object-location learning and recognition memory but enhanced sustained attention in M2 muscarinic receptor-deficient mice. Psychopharmacology (Berl) 2018; 235:3495-3508. [PMID: 30327842 PMCID: PMC6267149 DOI: 10.1007/s00213-018-5065-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/03/2018] [Indexed: 11/30/2022]
Abstract
RATIONALE Muscarinic acetylcholine receptors are known to play key roles in mediating cognitive processes, and impaired muscarinic cholinergic neurotransmission is associated with normal ageing processes and Alzheimer's disease. However, the specific contributions of the individual muscarinic receptor subtypes (M1-M5) to cognition are presently not well understood. OBJECTIVES The aim of this study was to investigate the contribution of M2-type muscarinic receptor signalling to sustained attention, executive control and learning and memory. METHODS M2 receptor-deficient (M2-/-) mice were tested on a touchscreen-operated task battery testing visual discrimination, behavioural flexibility, object-location associative learning, attention and response control. Spontaneous recognition memory for real-world objects was also assessed. RESULTS We found that M2-/- mice showed an enhancement of attentional performance, but significant deficits on some tests of learning and memory. Executive control and visual discrimination were unaffected by M2-depletion. CONCLUSIONS These findings suggest that M2 activation has heterogeneous effects across cognitive domains, and provide insights into how acetylcholine may support multiple specific cognitive processes through functionally distinct cholinergic receptor subtypes. They also suggest that therapeutics involving M2 receptor-active compounds should be assessed across a broad range of cognitive domains, as they may enhance some cognitive functions, but impair others.
Collapse
Affiliation(s)
- Carola Romberg
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK. .,Wellcome Trust and MRC Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK. .,Department of Psychology, Research Unit Biological Psychology, Ludwig-Maximilians-University, Munich, Germany.
| | - Susan Bartko
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Lisa M. Saksida
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK ,Wellcome Trust and MRC Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK ,Department of Psychology, Research Unit Biological Psychology, Ludwig-Maximilians-University, Munich, Germany ,Brain and Mind Institute, Western University, London, ON Canada
| | - Timothy J. Bussey
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK ,Wellcome Trust and MRC Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK ,Brain and Mind Institute, Western University, London, ON Canada ,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON Canada
| |
Collapse
|
15
|
Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats. Neurotox Res 2017; 34:834-847. [DOI: 10.1007/s12640-017-9813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022]
|
16
|
Thomsen M, Sørensen G, Dencker D. Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology 2017; 136:411-420. [PMID: 28911965 DOI: 10.1016/j.neuropharm.2017.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Because the five muscarinic acetylcholine receptor subtypes have overlapping distributions in many CNS tissues, and because ligands with a high degree of selectivity for a given subtype long remained elusive, it has been difficult to determine the physiological functions of each receptor. Genetically engineered knockout mice, in which one or more muscarinic acetylcholine receptor subtype has been inactivated, have been instrumental in identifying muscarinic receptor functions in the CNS, at the neuronal, circuit, and behavioral level. These studies revealed important functions of muscarinic receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark; Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | - Gunnar Sørensen
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark
| |
Collapse
|
17
|
Roelofs S, Murphy E, Ni H, Gieling E, Nordquist RE, van der Staay FJ. Judgement bias in pigs is independent of performance in a spatial holeboard task and conditional discrimination learning. Anim Cogn 2017; 20:739-753. [PMID: 28508125 PMCID: PMC5486501 DOI: 10.1007/s10071-017-1095-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
Abstract
Biases in judgement of ambiguous stimuli, as measured in a judgement bias task, have been proposed as a measure of the valence of affective states in animals. We recently suggested a list of criteria for behavioural tests of emotion, one of them stating that responses on the task used to assess emotionality should not be confounded by, among others, differences in learning capacity, i.e. must not simply reflect the cognitive capacity of an animal. We performed three independent studies in which pigs acquired a spatial holeboard task, a free choice maze which simultaneously assesses working memory and reference memory. Next, pigs learned a conditional discrimination between auditory stimuli predicting a large or small reward, a prerequisite for assessment of judgement bias. Once pigs had acquired the conditional discrimination task, optimistic responses to previously unheard ambiguous stimuli were measured in the judgement bias task as choices indicating expectation of the large reward. We found that optimism in the judgement bias task was independent of all three measures of learning and memory indicating that the performance is not dependent on the pig's cognitive abilities. These results support the use of biases in judgement as proxy indicators of emotional valence in animals.
Collapse
Affiliation(s)
- Sanne Roelofs
- Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.
- Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Eimear Murphy
- Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Division of Animal Welfare, VPHI Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Haifang Ni
- Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
- Department of Methodology and Statistics, Faculty of Social and Behavioural Sciences, Utrecht University, Padualaan 14, 3584 CH, Utrecht, The Netherlands
| | - Elise Gieling
- Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Rebecca E Nordquist
- Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - F Josef van der Staay
- Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
18
|
Malikowska N, Sałat K, Podkowa A. Comparison of pro-amnesic efficacy of scopolamine, biperiden, and phencyclidine by using passive avoidance task in CD-1 mice. J Pharmacol Toxicol Methods 2017; 86:76-80. [PMID: 28412329 DOI: 10.1016/j.vascn.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Memory disorders accompany numerous diseases and therapies, and this is becoming a growing medical issue worldwide. Currently, various animal models of memory impairments are available; however, many of them require high financial outlay and/or are time-consuming. A simple way to achieve an efficient behavioral model of cognitive disorders is to inject defined drug that has pro-amnesic properties. Since the involvement of cholinergic and glutamatergic neurotransmission in cognition is well established, the utilization of a nonselective muscarinic receptor antagonist, scopolamine (SCOP), a selective M1 muscarinic receptor antagonist, biperiden (BIP), and a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine (PCP) seems to be reliable tools to induce amnesia. As the determination of their effective doses remains vague and the active doses vary significantly in laboratory settings and in mouse species being tested, the aim of this study was to compare these three models of amnesia in CD-1 mice. METHODS Male Swiss Albino mice were used in passive avoidance (PA) test. All the compounds were administered intraperitoneally (ip) at doses 1mg/kg, 5mg/kg, and 10mg/kg (SCOP and BIP), and 1mg/kg, 3mg/kg, and 6mg/kg (PCP). RESULTS In the retention trial of the PA task, SCOP and PCP led to the reduction of step-through latency at all the tested doses as compared to control, but BIP was effective only at the dose of 10mg/kg. CONCLUSION This study revealed the effectiveness of SCOP, PCP, and BIP as tools to induce amnesia, with the PCP model being the most efficacious and SCOP being the only model that demonstrates a clear dose-response relationship.
Collapse
Affiliation(s)
- Natalia Malikowska
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland.
| | - Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Adrian Podkowa
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| |
Collapse
|
19
|
Svoboda J, Popelikova A, Stuchlik A. Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation. Front Psychiatry 2017; 8:215. [PMID: 29170645 PMCID: PMC5684124 DOI: 10.3389/fpsyt.2017.00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
Collapse
Affiliation(s)
- Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
20
|
Leaderbrand K, Chen HJ, Corcoran KA, Guedea AL, Jovasevic V, Wess J, Radulovic J. Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. ACTA ACUST UNITED AC 2016; 23:631-638. [PMID: 27918283 PMCID: PMC5066603 DOI: 10.1101/lm.043133.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on which mAChR subtypes are critical for memory processing. Using pharmacological and genetic approaches, we found that (1) encoding and retrieval of contextual memory requires mAChR in the dorsal hippocampus (DH) and retrosplenial cortex (RSC), (2) memory formation requires hippocampal M3 and cooperative activity of RSC M1 and M3, and (3) memory retrieval is more impaired by inactivation of multiple M1–M4 mAChR in DH or RSC than inactivation of individual receptor subtypes. Contrary to the view that acetylcholine supports learning but is detrimental to memory retrieval, we found that coactivation of multiple mAChR is required for retrieval of both recently and remotely acquired context memories. Manipulations with higher receptor specificity were generally less potent than manipulations targeting multiple receptor subtypes, suggesting that mAChR act in synergy to regulate memory processes. These findings provide unique insight into the development of therapies for amnestic symptoms, suggesting that broadly acting, rather than receptor-specific, mAchR agonists and positive allosteric modulators may be the most effective therapeutic approach.
Collapse
Affiliation(s)
- Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen J Chen
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jurgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res 2016; 95:836-852. [PMID: 27704595 DOI: 10.1002/jnr.23840] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Jim R Fadel
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
22
|
Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors. Behav Pharmacol 2016; 27:470-8. [DOI: 10.1097/fbp.0000000000000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Thomas SA. Neuromodulatory signaling in hippocampus-dependent memory retrieval. Hippocampus 2015; 25:415-31. [PMID: 25475876 DOI: 10.1002/hipo.22394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Considerable advances have been made toward understanding the molecular signaling events that underlie memory acquisition and consolidation. In contrast, less is known about memory retrieval, despite its necessity for utilizing learned information. This review focuses on neuromodulatory and intracellular signaling events that underlie memory retrieval mediated by the hippocampus, for which the most information is currently available. Among neuromodulators, adrenergic signaling is required for the retrieval of various types of hippocampus-dependent memory. Although they contribute to acquisition and/or consolidation, cholinergic and dopaminergic signaling are generally not required for retrieval. Interestingly, while not required for retrieval, serotonergic and opioid signaling may actually constrain memory retrieval. Roles for histamine and non-opioid neuropeptides are currently unclear but possible. A critical effector of adrenergic signaling in retrieval is reduction of the slow afterhyperpolarization mediated by β1 receptors, cyclic AMP, protein kinase A, Epac, and possibly ERK. In contrast, stress and glucocorticoids impair retrieval by decreasing cyclic AMP, mediated in part by the activation of β2 -adrenergic receptors. Clinically, alterations in neuromodulatory signaling and in memory retrieval occur in Alzheimer's disease, Down syndrome, depression, and post-traumatic stress disorder, and recent evidence has begun to link changes in neuromodulatory signaling with effects on memory retrieval.
Collapse
Affiliation(s)
- Steven A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Effect of Ginseng (Panax ginseng) Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:316527. [PMID: 26161118 PMCID: PMC4486251 DOI: 10.1155/2015/316527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022]
Abstract
High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM). The effect of ginseng (Panax ginseng) berry ethyl acetate fraction (GBEF) on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight) for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests), blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC) accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS) was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM) mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside.
Collapse
|
25
|
Jeong JH, Kim HJ, Park SK, Jin DE, Kwon OJ, Kim HJ, Heo HJ. An investigation into the ameliorating effect of black soybean extract on learning and memory impairment with assessment of neuroprotective effects. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:482. [PMID: 25496367 PMCID: PMC4301853 DOI: 10.1186/1472-6882-14-482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/10/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The physiological effects of the non-anthocyanin fraction (NAF) in a black soybean seed coat extract on Aβ-induced oxidative stress were investigated to confirm neuroprotection. In addition, we examined the preventive effect of NAF on cognitive defects induced by the intracerebroventricular (ICV) injection of Aβ. METHODS Levels of cellular oxidative stress were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). Neuronal cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. To investigate in vivo anti-amnesic effects of NAF by using Y-maze and passive avoidance tests, the learning and memory impairment in mice was induced by Aβ. After in vivo assays, acetylcholinesterase (AChE) activity and level of malondialdehyde (MDA) in the mouse brain were determined to confirm the cognitive effect. Individual phenolics of NAF were qualitatively analyzed by using an ultra-performance liquid chromatography (UPLC) Accurate-Mass Quadrupole Time of-Flight (Q-TOF) UPLC/MS. RESULTS A NAF showed cell protective effects against oxidative stress-induced cytotoxicity. Intracellular ROS accumulated through Aβ1-40 treatment was significantly reduced in comparison to cells only treated with Aβ1-40. In MTT and LDH assay, the NAF also presented neuroprotective effects on Aβ1-40-treated cytotoxicity. Finally, the administration of this NAF in mice significantly reversed the Aβ1-40-induced cognitive defects in in vivo behavioral tests. After behavioral tests, the mice brains were collected in order to examine lipid peroxidation and AChE activity. AChE, preparation was inhibited by NAF in a dose-dependent manner. MDA generation in the brain homogenate of mice treated with the NAF was decreased. Q-TOF UPLC/MS analyses revealed three major phenolics from the non-anthocyanin fraction; epicatechin, procyanidin B1, and procyanidin B2. CONCLUSIONS The results suggest that the NAF in black soybean seed coat extracts may improve the cytotoxicity of Aβ in PC12 cells, possibly by reducing oxidative stress, and also have an anti-amnesic effect on the in vivo learning and memory deficits caused by Aβ. Q-TOF UPLC/MS analyses showed three major phenolics; (-)-epicatechin, procyanidin B1, and procyanidin B2. Above results suggest that (-)-epicatechins are the major components, and contributors to the anti-amnesic effect of the NAF from black soybean seed coat.
Collapse
Affiliation(s)
- Ji Hee Jeong
- />Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701 South Korea
| | - Hyeon Ju Kim
- />Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701 South Korea
| | - Seon Kyeong Park
- />Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701 South Korea
| | - Dong Eun Jin
- />Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701 South Korea
| | - O-Jun Kwon
- />Daegyeong Institute for Regional Program Evaluation, Regional Industry, Evaluation Agency for Gyeongbuk, Gyeongsan, 712-210 South Korea
| | - Hyun-Jin Kim
- />Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701 South Korea
| | - Ho Jin Heo
- />Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701 South Korea
| |
Collapse
|
26
|
Mans RA, Warmus BA, Smith CC, McMahon LL. An acetylcholinesterase inhibitor, eserine, induces long-term depression at CA3-CA1 synapses in the hippocampus of adult rats. J Neurophysiol 2014; 112:2388-97. [PMID: 25143547 DOI: 10.1152/jn.00048.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies in humans and rodents support a role for muscarinic ACh receptor (mAChR) and nicotinic AChR in learning and memory, and both regulate hippocampal synaptic plasticity using complex and often times opposing mechanisms. Acetylcholinesterase (AChE) inhibitors are commonly prescribed to enhance cholinergic signaling in Alzheimer's disease in hopes of rescuing cognitive function, caused, in part, by degeneration of cholinergic innervation to the hippocampus and cortex. Unfortunately, therapeutic efficacy is moderate and inconsistent, perhaps due to unanticipated mechanisms. M1 mAChRs bidirectionally control synaptic strength at CA3-CA1 synapses; weak pharmacological activation using carbachol (CCh) facilitates potentiation, whereas strong agonism induces muscarinic long-term depression (mLTD) via an ERK-dependent mechanism. Here, we tested the prediction that accumulation of extracellular ACh via inhibition of AChE is sufficient to induce LTD at CA3-CA1 synapses in hippocampal slices from adult rats. Although AChE inhibition with eserine induces LTD, it unexpectedly does not share properties with mLTD induced by CCh, as reported previously. Eserine-LTD was prevented by the M3 mAChR-preferring antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), and pharmacological inhibition of MEK was completely ineffective. Additionally, pharmacological inhibition of p38 MAPK prevents mLTD but has no effect on eserine-LTD. Finally, long-term expression of eserine-LTD is partially dependent on a decrease in presynaptic release probability, likely caused by tonic activation of mAChRs by the sustained increase in extracellular ACh. Thus these findings extend current literature by showing that pharmacological AChE inhibition causes a prolonged decrease in presynaptic glutamate release at CA3-CA1 synapses, in addition to inducing a likely postsynaptic form of LTD.
Collapse
Affiliation(s)
- Robert Alan Mans
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian A Warmus
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Caroline C Smith
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
27
|
Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice. PLoS One 2014; 9:e89584. [PMID: 24586890 PMCID: PMC3933641 DOI: 10.1371/journal.pone.0089584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS), such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO) mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Keizo Takao
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Ohnishi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- * E-mail: (HO); (TM)
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (HO); (TM)
| |
Collapse
|
28
|
Bartko SJ, Winters BD, Saksida LM, Bussey TJ. Different roles for M1 and M2 receptors within perirhinal cortex in object recognition and discrimination. Neurobiol Learn Mem 2014; 110:16-26. [PMID: 24462721 DOI: 10.1016/j.nlm.2014.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Abstract
Recognition and discrimination of objects and individuals are critical cognitive faculties in both humans and non-human animals, and cholinergic transmission has been shown to be essential for both of these functions. In the present study we focused on the role of M1 and M2 muscarinic receptors in perirhinal cortex (PRh)-dependent object recognition and discrimination. The selective M1 antagonists pirenzepine and the snake toxin MT-7, and a selective M2 antagonist, AF-DX 116, were infused directly into PRh. Pre-sample infusions of both pirenzepine and AF-DX 116 significantly impaired object recognition memory in a delay-dependent manner. However, pirenzepine and MT-7, but not AF-DX 116, impaired oddity discrimination performance in a perceptual difficulty-dependent manner. The findings indicate distinct functions for M1 and M2 receptors in object recognition and discrimination.
Collapse
Affiliation(s)
- Susan J Bartko
- Department of Experimental Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, UK; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, UK; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, UK; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
29
|
Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ. Altered receptor binding densities in experimental antiphospholipid syndrome despite only moderately enhanced autoantibody levels and absence of behavioral features. Immunobiology 2013; 219:341-9. [PMID: 24332889 DOI: 10.1016/j.imbio.2013.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/27/2022]
Abstract
Experimental antiphospholipid syndrome (eAPS) in Balb/c mice causes neuropsychiatric abnormalities including hyperactivity, increased explorative behavior and cognitive deficits. Recently, we have demonstrated that these behavioral changes were linked to an upregulation of serotonergic 5-HT1A receptor binding densities in cortical and hippocampal regions while excitatory and inhibitory neurotransmitter receptors remain largely unchanged. To examine whether the observed behavioral features depend on a critical antibody concentration, mice with only moderately enhanced antiphospholipid antibodies (aPL), about 50-80% of high levels, were analyzed and compared to controls. The staircase test was used to test animals for hyperactivity and explorative behavior. The brains were analyzed for tissue integrity and inflammation. Ligand binding densities of NMDA, AMPA, GABAA, 5-HT1A, M1 and M2 muscarinic acetylcholine receptors, respectively, were analyzed by in vitro receptor autoradiography and compared to brains of mice from our previous study with high levels of aPL. Mice with only moderately enhanced aPL did not develop significant behavioral changes. Brain parenchyma remained intact and neither inflammation nor glial activation was detectable. However, there was a significant decrease of NMDA receptor binding densities in the motor cortex as well as an increase in M1 binding densities in cortical and hippocampal regions, whereas the other receptors analyzed were not altered. Lack of neuropsychiatric symptoms may be due to modulations of receptors resulting in normal behavior. In conclusion, our results support the hypothesis that high levels of aPL are required for the manifestation of neuropsychiatric involvement while at lower antibody levels compensatory mechanisms may preserve normal behavior.
Collapse
Affiliation(s)
- Katrin Frauenknecht
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Aviva Katzav
- Department of Neurology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Hashomer, Israel
| | - Christina Grimm
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Joab Chapman
- Department of Neurology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Hashomer, Israel
| | - Clemens J Sommer
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
30
|
Barbarese E, Ifrim MF, Hsieh L, Guo C, Tatavarty V, Maggipinto MJ, Korza G, Tutolo JW, Giampetruzzi A, Le H, Ma XM, Levine E, Bishop B, Kim DO, Kuwada S, Carson JH. Conditional knockout of tumor overexpressed gene in mouse neurons affects RNA granule assembly, granule translation, LTP and short term habituation. PLoS One 2013; 8:e69989. [PMID: 23936366 PMCID: PMC3735573 DOI: 10.1371/journal.pone.0069989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO) in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC) mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP) are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior.
Collapse
Affiliation(s)
- Elisa Barbarese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012; 32:6525-41. [PMID: 22573675 DOI: 10.1523/jneurosci.6107-11.2012] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the synaptic scaffolding protein gene SHANK3 are strongly implicated in autism and Phelan-McDermid 22q13 deletion syndrome. The precise location of the mutation within the Shank3 gene is key to its phenotypic outcomes. Here, we report the physiological and behavioral consequences of null and heterozygous mutations in the ankyrin repeat domain in Shank3 mice. Both homozygous and heterozygous mice showed reduced glutamatergic transmission and long-term potentiation in the hippocampus with more severe deficits detected in the homozygous mice. Three independent cohorts were evaluated for magnitude and replicability of behavioral endophenotypes relevant to autism and Phelan-McDermid syndrome. Mild social impairments were detected, primarily in juveniles during reciprocal interactions, while all genotypes displayed normal adult sociability on the three-chambered task. Impaired novel object recognition and rotarod performance were consistent across cohorts of null mutants. Repetitive self-grooming, reduced ultrasonic vocalizations, and deficits in reversal of water maze learning were detected only in some cohorts, emphasizing the importance of replication analyses. These results demonstrate the exquisite specificity of deletions in discrete domains within the Shank3 gene in determining severity of symptoms.
Collapse
|
32
|
Zheng F, Wess J, Alzheimer C. M2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion. J Neurophysiol 2012; 108:91-100. [PMID: 22490561 DOI: 10.1152/jn.00740.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic receptors have long been known as crucial players in hippocampus-dependent learning and memory, but our understanding of the cellular underpinnings and the receptor subtypes involved lags well behind. This holds in particular for the hippocampal CA3 region, where the mechanisms of synaptic plasticity depend on the type of afferent input. Williams and Johnston (Williams S, Johnston D. Science 242: 84-87, 1988; Williams S, Johnston D. J Neurophysiol 64: 1089-1097, 1990) demonstrated muscarinic depression of mossy fiber (MF) long-term potentiation (LTP) through a presynaptic site of action and Maeda et al. (Maeda T, Kaneko S, Satoh M. Brain Res 619: 324-330, 1993) proposed a bidirectional modulation of MF LTP by muscarinic receptor subtypes. Since then, this issue, as well as muscarinic regulation of plasticity at associational/commissural (A/C) fiber-CA3 synapses has remained largely neglected, not least because of the lack of highly selective ligands for the different muscarinic receptor subtypes. In the present study, we performed field potential and whole cell recordings from the hippocampal CA3 region of M(2) receptor knockout mice to determine the role of M(2) receptors in short-term and long-term plasticity at A/C and MF inputs to CA3 pyramidal cells. At the A/C synapse, M(2) receptors promoted short-term facilitation and LTP. Unexpectedly, M(2) receptors mediated the opposite effect on LTP at the MF synapse, which was significantly reduced, most likely involving a depressant effect of M(2) receptors on adenylyl cyclase activity in MF terminals. Our data demonstrate that cholinergic projections recruit M(2) receptors to redistribute the gain of LTP in CA3 pyramidal cells in an input-specific manner.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology, University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
33
|
Hunsaker MR. Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Prog Neurobiol 2012; 96:220-41. [PMID: 22266125 PMCID: PMC3289520 DOI: 10.1016/j.pneurobio.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
34
|
van der Staay FJ, Gieling ET, Pinzón NE, Nordquist RE, Ohl F. The appetitively motivated “cognitive” holeboard: A family of complex spatial discrimination tasks for assessing learning and memory. Neurosci Biobehav Rev 2012; 36:379-403. [DOI: 10.1016/j.neubiorev.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/27/2022]
|
35
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
36
|
Yamamoto S, Nishiyama S, Kawamata M, Ohba H, Wakuda T, Takei N, Tsukada H, Domino EF. Muscarinic receptor occupancy and cognitive impairment: a PET study with [11C](+)3-MPB and scopolamine in conscious monkeys. Neuropsychopharmacology 2011; 36:1455-65. [PMID: 21430646 PMCID: PMC3096814 DOI: 10.1038/npp.2011.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43-59 and 65-89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11-24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described.
Collapse
Affiliation(s)
- Shigeyuki Yamamoto
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Masahiro Kawamata
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nori Takei
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-05632, USA, Tel: +1 734 764 9115, Fax: +1 734 763 4450, E-mail:
| |
Collapse
|
37
|
Jafari-Sabet M. Involvement of dorsal hippocampal muscarinic cholinergic receptors on muscimol state-dependent memory of passive avoidance in mice. Life Sci 2011; 88:1136-41. [DOI: 10.1016/j.lfs.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/24/2011] [Accepted: 04/07/2011] [Indexed: 11/27/2022]
|
38
|
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221:443-65. [PMID: 21315109 DOI: 10.1016/j.bbr.2011.01.055] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and mechanisms of novel and better cholinomimetics may prove useful in the treatment of neurodegenerative or psychiatric disorders with cognitive endophenotypes.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
39
|
Ball ER, Caniglia MK, Wilcox JL, Overton KA, Burr MJ, Wolfe BD, Sanders BJ, Wisniewski AB, Wrenn CC. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats. Horm Behav 2010; 57:313-22. [PMID: 20053350 PMCID: PMC2834867 DOI: 10.1016/j.yhbeh.2009.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/27/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
Abstract
Endocrine disruptors, chemicals that disturb the actions of endogenous hormones, have been implicated in birth defects associated with hormone-dependent development. Phytoestrogens are a class of endocrine disruptors found in plants. In the current study we examined the effects of exposure at various perinatal time periods to genistein, a soy phytoestrogen, on reproductive development and learning in male rats. Dams were fed genistein-containing (5 mg/kg feed) food during both gestation and lactation, during gestation only, during lactation only, or during neither period. Measures of reproductive development and body mass were taken in the male offspring during postnatal development, and learning and memory performance was assessed in adulthood. Genistein exposure via the maternal diet decreased body mass in the male offspring of dams fed genistein during both gestation and lactation, during lactation only, but not during gestation only. Genistein decreased anogenital distance when exposure was during both gestation and lactation, but there was no effect when exposure was limited to one of these time periods. Similarly, spatial learning in the Morris water maze was impaired in male rats exposed to genistein during both gestation and lactation, but not in rats exposed during only one of these time periods. There was no effect of genistein on cued or contextual fear conditioning. In summary, the data indicate that exposure to genistein through the maternal diet significantly impacts growth in male offspring if exposure is during lactation. The effects of genistein on reproductive development and spatial learning required exposure throughout the pre- and postnatal periods.
Collapse
Affiliation(s)
- Evan R. Ball
- Department of Pharmaceutical, Biomedical & Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, 50311 USA
| | | | - Jenna L. Wilcox
- Neuroscience Program, Drake University, Des Moines, IA, 50311 USA
| | - Karla A. Overton
- Neuroscience Program, Drake University, Des Moines, IA, 50311 USA
| | - Marra J. Burr
- Department of Pharmaceutical, Biomedical & Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, 50311 USA
- Neuroscience Program, Drake University, Des Moines, IA, 50311 USA
| | - Brady D. Wolfe
- Department of Pharmaceutical, Biomedical & Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, 50311 USA
| | - Brian J. Sanders
- Neuroscience Program, Drake University, Des Moines, IA, 50311 USA
- Department of Psychology, Drake University, Des Moines, IA 50311 USA
| | - Amy B. Wisniewski
- Section of Pediatric Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117 USA
| | - Craige C. Wrenn
- Department of Pharmaceutical, Biomedical & Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, 50311 USA
- Neuroscience Program, Drake University, Des Moines, IA, 50311 USA
- To whom correspondence should be addressed: Craige C. Wrenn, Ph.D., 109 Fitch Hall, 2507 University Avenue, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311, Voice: 515-271-3326, Fax: 515-271-1867,
| |
Collapse
|
40
|
Mignogna P, Viggiano D. Brain distribution of genes related to changes in locomotor activity. Physiol Behav 2010; 99:618-26. [PMID: 20138074 DOI: 10.1016/j.physbeh.2010.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 11/19/2009] [Accepted: 01/26/2010] [Indexed: 02/09/2023]
Abstract
The relationship between genes and behavior, and particularly the hyperactive behavior, is clearly not linear nor monotonic. To address this problem, a database of the locomotor behavior obtained from thousands of mutant mice has been previously retrieved from the literature. Data showed that the percent of genes in the genome related to locomotor hyperactivity is probably more than 1.56%. These genes do not belong to a single neurotransmitter system or biochemical pathway. Indeed, they are probably required for the correct development of a specific neuronal network necessary to decrease locomotor activity. The present paper analyzes the brain expression pattern of the genes whose deletion is accompanied by changes in locomotor behavior. Using literature data concerning knockout mice, 46 genes whose deletion was accompanied by increased locomotor behavior, 24 genes related to decreased locomotor behavior and 23 genes not involved in locomotor behavior (but important for other brain functions) have been identified. These three groups of genes belonged to overlapping neurotransmitter systems or cellular functions. Therefore, we postulated that a better predictor of the locomotor behavior resulting from gene deletion might be the brain expression pattern. To this aim we correlated the brain expression of the genes and the locomotor activity resulting from the deletion of the same genes, using two databases (Allen Brain Atlas and SymAtlas). The results showed that the deletion of genes with higher expression level in the brain had higher probability to be accompanied by increased behavioral activity. Moreover the genes that were accompanied by locomotor hyperactivity when deleted, were more expressed in the cerebral cortex, amygdala and hippocampus compared to the genes unrelated to locomotor activity. Therefore, the prediction of the behavioral effect of a gene should take into consideration its brain distribution. Moreover, data confirmed that genes highly expressed in the brain are more likely to induce hyperactivity when deleted. Finally, it is suggested that gene mutations linked to specific behavioral abnormalities (e.g. inattention) might probably be associated to hyperactivity if the same gene has elevated brain expression.
Collapse
Affiliation(s)
- Pasquale Mignogna
- Department of Health Sciences, University of Molise, Campobasso, 86100, Italy
| | | |
Collapse
|
41
|
Turner J, Hughes LF, Toth LA. Sleep, activity, temperature and arousal responses of mice deficient for muscarinic receptor M2 or M4. Life Sci 2009; 86:158-69. [PMID: 19958780 DOI: 10.1016/j.lfs.2009.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/18/2009] [Accepted: 11/23/2009] [Indexed: 01/14/2023]
Abstract
AIMS The type 2 muscarinic receptor (M2R) differs from the other G-protein-coupled muscarinic receptor (type 4, or M4R) in tissue distribution and physiologic effects. We studied the impact of these receptors on sleep and arousal by using M2R and M4R knock-out (KO) mice. MAIN METHODS M2R and M4R KO and genetically intact mice were compared in terms of normal patterns of sleep, responses to sleep loss, infectious challenge and acoustic startle, and acoustic prepulse inhibition of startle (PPI). KEY FINDINGS Under basal conditions, M2R and M4R KO mice do not differ from the background strain or each other in the amount or diurnal pattern of sleep, locomotor activity, and body temperature. After enforced sleep loss, M2R KO mice, in contrast to the other two strains, show no rebound in slow-wave sleep (SWS) time, although their SWS is consolidated, and they show a greater rebound in time spent in REMS (rapid-eye-movement sleep) and REMS consolidation. During influenza infection, M2R KO mice, as compared with the other strains, show marked hypothermia and a less robust increase in SWS. During Candida albicans infection, M2R KO mice show a greater increase in SWS and a greater inflammatory response than do the other strains. M2R KO mice also show greater acoustic startle amplitude than does the background strain, although PPI was not different across the 3 strains over a range of stimulus intensities. SIGNIFICANCE Taken together, these findings support different roles for M2R and M4R in the modulation of sleep and arousal during homeostatic challenge.
Collapse
Affiliation(s)
- Jeremy Turner
- Department of Psychology, Illinois College Jacksonville, IL 62650, USA
| | | | | |
Collapse
|
42
|
Abstract
This unit presents two basic protocols that offer rapid assessments of anosmia (the absence of a sense of smell) in mice. The buried food test is used to check for the ability to smell volatile odors. The olfactory habituation/dishabituation test is used to test whether the animal can detect and differentiate different odors, including both nonsocial and social odors. A non-contact method of odor presentation, along with a general method for collecting urine samples, is given as an alternate protocol. The tests described in this unit only require simple equipment and can be adopted readily by most laboratories.
Collapse
Affiliation(s)
- Mu Yang
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
43
|
Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, Lamari FN. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 2008; 198:352-8. [PMID: 19056430 DOI: 10.1016/j.bbr.2008.11.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/30/2008] [Accepted: 11/09/2008] [Indexed: 11/30/2022]
Abstract
The aim of this study was to examine the effect of a polyphenol-rich extract (PrB) of Vaccinium angustifolium (wild blueberries) introduced intraperitoneally (i.p.) at 30 (PrB30) and 60 (PrB60) mg/kg body weight for 7 days, on cognitive performance, brain oxidative status and acetylcholinesterase activity in adult, male, 3-4-month-old Balb-c mice. Evaluation of rodent learning and memory was assessed by a step-through test on day 6 after a double training and an initial acquisition trial on day 5. Antioxidant status was determined by ferric reducing antioxidant power (FRAP), ascorbic acid concentration (FRASC), malondialdehyde and reduced glutathione levels in whole brain homogenates. Acetylcholinesterase (AChE) activity was determined by Ellman's colorimetric method. Results showed that the PrB60-treated mice exhibited a significant improvement in learning and memory (step-through latency time of 228+/-38 s compared to 101+/-32 s of the control group). PrB extract administration also resulted in reduced lipid peroxidation products (38 and 79%) and higher brain ascorbic acid levels (21 and 64%) in both PrB30 and PrB60-treated groups, respectively, and higher glutathione levels (28%) in the PrB60-treated group. Furthermore, salt- and detergent soluble AChE activity significantly decreased in both PrB-treated groups. Thus, the significant cognitive enhancement observed in adult mice after short-term i.p. supplementation with the blueberry extract concentrated in polyphenols, is closely related to higher brain antioxidant properties and inhibition of AChE activity. These findings stress the critical impact of wild blueberry bioactive components on brain function.
Collapse
Affiliation(s)
- Magdalini A Papandreou
- Laboratory of Human & Animal Physiology, Department of Biology, University of Patras, Greece
| | | | | | | | | | | | | |
Collapse
|