1
|
Pfaus JG, García-Juárez M, Ordóñez RD, Tecamachaltzi-Silvarán MB, Lucio RA, González-Flores O. Cellular and molecular mechanisms of action of ovarian steroid hormones II: Regulation of sexual behavior in female rodents. Neurosci Biobehav Rev 2025; 168:105946. [PMID: 39571668 DOI: 10.1016/j.neubiorev.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T). The classical model of steroid hormone action through intracellular receptor binding has been complemented by an alternative scenario wherein the steroid functions as a transcription factor after binding the receptor protein to DNA. Another possible mechanism occurs through the activation of second messenger systems (cyclic AMP, cyclic GMP, calcium), which subsequently initiate phosphorylation events via diverse kinase systems (protein kinases A, G, or C). These kinases target the progesterone receptor (PR) or associated effector proteins that connect the PR to the trans-activation machinery. This may also happen to the androgen receptor (AR). In addition, other cellular mechanisms could be involved since the chemical structure of these non-steroidal agents causes a change in their lipophobicity that prevents them from penetrating the cell and exerting direct transcriptional effects; however, they can exert effects on different components of the cell membrane activating a cross-talk between the cell membrane and the regulation of the transcriptional mechanisms.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany 25067, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague 18200, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez Ordóñez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
2
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
3
|
Heimovics S, Rubin N, Ford M. Dehydroepiandrosterone (DHEA) increases undirected singing behavior and alters dopaminergic regulation of undirected song in non-breeding male European starlings ( Sturnus vulgaris). Front Endocrinol (Lausanne) 2023; 14:1153085. [PMID: 37234810 PMCID: PMC10206333 DOI: 10.3389/fendo.2023.1153085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction It has been proposed that in species that defend territories across multiple life history stages, brain metabolism of adrenal dehydroepiandrosterone (DHEA) regulates aggressive behavior at times when gonadal androgen synthesis is low (i.e. the non-breeding season). To date, a role for DHEA in the regulation of other forms of social behavior that are expressed outside of the context of breeding remains unknown. Methods In this experiment, we used the European starling (Sturnus vulgaris) model system to investigate a role for DHEA in the neuroendocrine regulation of singing behavior by males in non-breeding condition. Starling song in a non-breeding context is spontaneous, not directed towards conspecifics, and functions to maintain cohesion of overwintering flocks. Results Using within-subjects design, we found that DHEA implants significantly increase undirected singing behavior by non-breeding condition male starlings. Given that DHEA is known to modulate multiple neurotransmitter systems including dopamine (DA) and DA regulates undirected song, we subsequently used immunohistochemistry for phosphorylated tyrosine hydroxylase (pTH, the active form of the rate-limiting enzyme in DA synthesis) to investigate the effect of DHEA on dopaminergic regulation of singing behavior in a non-breeding context. Pearson correlation analysis revealed a positive linear association between undirected singing behavior and pTH immunoreactivity in the ventral tegmental area and midbrain central gray of DHEA-implanted, but not control-implanted, males. Discussion Taken together, these data suggest that undirected singing behavior by non-breeding starlings is modulated by effects of DHEA on dopaminergic neurotransmission. More broadly, these data expand the social behavior functions of DHEA beyond territorial aggression to include undirected, affiliative social communication.
Collapse
|
4
|
Saengmearnuparp T, Lojanapiwat B, Chattipakorn N, Chattipakorn S. The connection of 5-alpha reductase inhibitors to the development of depression. Biomed Pharmacother 2021; 143:112100. [PMID: 34479019 DOI: 10.1016/j.biopha.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recent literature connects 5-alpha reductase inhibitors (5-ARIs) with neuropsychiatric adverse effects. Several clinical studies have indicated that former 5-ARIs users had a higher incidence of depressive symptoms and neuropsychiatric side effects than non-users. However, the underlying mechanisms involved in the depression in former 5-ARIs patients, a condition known as "post finasteride syndrome (PFS)", are not thoroughly understood. This review aims to summarize and discuss the association between 5-ARIs and depression as well as possible mechanisms. We used PubMed search terms including "depression", "depressive symptoms", "MDD", "anxiety", or "suicidal idea", and "5-alpha reductase inhibitors", "finasteride", "dutasteride", "5-ARIs". All relevant articles from in vivo and clinical studies from 2002 to 2021 were carefully reviewed. Any contradictory findings were included and debated. The potential mechanisms that link 5-ARIs and depression include alteration in neuroactive steroids, dopaminergic dysfunction, reduced hippocampal neurogenesis, increased neuroinflammation, alteration of the HPA axis, and epigenetic modifications. From this review, we hope to provide information for future studies based on animal experiments, and potential therapeutic strategies for depressive patients with PFS.
Collapse
Affiliation(s)
| | - Bannakij Lojanapiwat
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Scheggi S, De Montis MG, Gambarana C. DARPP-32 in the orchestration of responses to positive natural stimuli. J Neurochem 2018; 147:439-453. [PMID: 30043390 DOI: 10.1111/jnc.14558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023]
Abstract
Dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa, DARPP-32) is an integrator of multiple neuronal signals and plays a crucial role particularly in mediating the dopaminergic component of the systems involved in the evaluation of stimuli and the ensuing elaboration of complex behavioral responses (e.g., responses to reinforcers and stressors). Dopamine neurons can fire tonically or phasically in distinct timescales and in specific brain regions to code different behaviorally relevant information. Dopamine signaling is mediated mainly through the regulation of adenylyl cyclase activity, stimulated by D1-like or inhibited by D2-like receptors, respectively, that modulates cAMP-dependent protein kinase (PKA) function. The activity of DARPP-32 is finely regulated by its phosphorylation at multiple sites. Phosphorylation at the threonine (Thr) 34 residue by PKA converts DARPP-32 into an inhibitor of protein phosphatase 1, while the phosphorylation at the Thr75 residue turns it into an inhibitor of PKA. Thus, DARPP-32 is critically implicated in regulating striatal output in response to the convergent pathways that influence signaling of the cAMP/PKA pathway. This review summarizes some of the landmark and recent studies of DARPP-32-mediated signaling in the attempt to clarify the role played by DARPP-32 in the response to rewarding natural stimuli. Particularly, the review deals with data derived from rodents studies and discusses the involvement of the cAMP/PKA/DARPP-32 pathway in: 1) appetitive food-sustained motivated behaviors, 2) motivated behaviors sustained by social reward, 3) sexual behavior, and 4) responses to environmental enrichment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Fanni S, Scheggi S, Rossi F, Tronci E, Traccis F, Stancampiano R, De Montis MG, Devoto P, Gambarana C, Bortolato M, Frau R, Carta M. 5alpha-reductase inhibitors dampen L-DOPA-induced dyskinesia via normalization of dopamine D1-receptor signaling pathway and D1-D3 receptor interaction. Neurobiol Dis 2018; 121:120-130. [PMID: 30261284 DOI: 10.1016/j.nbd.2018.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Although 1-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay therapy for treating Parkinson's disease (PD), its long-term administration is accompanied by the development of motor complications, particularly L-DOPA induced dyskinesia (LID), that dramatically affects patients' quality of life. LID has consistently been related to an excessive dopamine receptor transmission, particularly at the down-stream signaling of the striatal D1 receptors (D1R), resulting in an exaggerated stimulation of cAMP-dependent protein kinase and extracellular signal-regulated kinase (ERK) pathway. We previously reported that pharmacological blockade of 5alpha-reductase (5AR), the rate-limiting enzyme in neurosteroids synthesis, attenuates the severity of a broad set of behavioral alterations induced by D1R and D3R activation, without inducing extrapyramidal symptoms. In line with this evidence, in a recent study, we found that inhibition of 5AR by finasteride (FIN) produced a significant reduction of dyskinesia induced by L-DOPA and direct dopaminergic agonists in 6-OHDA-lesioned rats. In the attempt to further investigate the effect of 5AR inhibitors on dyskinesia and shed light on the mechanism of action, in the present study we compared the effect of FIN and dutasteride (DUTA), a potent dual 5AR inhibitor, on the development of LID, on the therapeutic efficacy of L-DOPA, on the molecular alterations downstream to the D1R, as well as on D1R-D3R interaction. The results indicated that both FIN and DUTA administration significantly reduced development and expression of LID; however, DUTA appeared more effective than FIN at a lower dose and produced its antidyskinetic effect without impacting the ability of L-DOPA to increase motor activation, or ameliorate forelimb use in parkinsonian rats. Moreover, this study demonstrates for the first time that 5AR inhibitors are able to prevent key events in the appearance of dyskinesia, such as L-DOPA-induced upregulation of striatal D1R-related cAMP/PKA/ERK signaling pathways and D1R-D3R coimmunoprecipitation, an index of heteromer formation. These findings are relevant as they confirm the 5AR enzyme as a potential therapeutic target for treatment of dyskinesia in PD, suggesting the first ever evidence that neurosteroidogenesis may affect functional interaction between dopamine D1R and D3R.
Collapse
Affiliation(s)
- Silvia Fanni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 4, 53100 Siena, Italy
| | - Francesca Rossi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Roberto Stancampiano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Maria Graziella De Montis
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 4, 53100 Siena, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 4, 53100 Siena, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy; Tourette Syndrome Center, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy; Sleep Medicine Center, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy; National Institute of Neuroscience (INN), University of Cagliari, Monserrato, CA, Italy.
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy.
| |
Collapse
|
7
|
Frau R, Savoia P, Fanni S, Fiorentini C, Fidalgo C, Tronci E, Stancampiano R, Meloni M, Cannas A, Marrosu F, Bortolato M, Devoto P, Missale C, Carta M. The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2017; 291:1-7. [DOI: 10.1016/j.expneurol.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 02/09/2023]
|
8
|
Frau R, Mosher LJ, Bini V, Pillolla G, Pes R, Saba P, Fanni S, Devoto P, Bortolato M. The neurosteroidogenic enzyme 5α-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating. Psychoneuroendocrinology 2016; 63:59-67. [PMID: 26415119 PMCID: PMC4695380 DOI: 10.1016/j.psyneuen.2015.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
Neurosteroids exert diverse modulatory actions on dopamine neurotransmission and signaling. We previously documented that the enzyme 5α-reductase, which catalyzes the main rate-limiting step in neurosteroid synthesis, is required for the behavioral responses of Sprague-Dawley rats to non-selective dopaminergic agonists, such as the D1-D2 receptor agonist apomorphine. Specifically, systemic and intra-accumbal administrations of the 5α-reductase inhibitor finasteride countered apomorphine-induced deficits of sensorimotor gating, as measured by the prepulse inhibition (PPI) of the startle reflex; the classes of dopamine receptors involved in these effects, however, remain unknown. Prior rodent studies have revealed that the contributions of dopamine receptors to PPI regulation vary depending on the genetic background; thus, we analyzed the effect of finasteride on the PPI deficits induced by selective dopamine receptor agonists in Long-Evans (a strain exhibiting PPI deficits in response to both D1 and D2 receptor agonists) and Sprague-Dawley rats (which display PPI reductions following treatment with D2, and D3, but not D1 receptor agonists). In Long-Evans rats, finasteride opposed the PPI deficits induced by activation of D1, but not D2 receptors; conversely, in Sprague-Dawley rats, finasteride prevented the reductions in %PPI and accumbal dopamine extracellular levels caused by selective stimulation of D3, but not D2 receptors; however, the effects on %PPI were not confirmed by analyses on absolute PPI values. Our findings suggest that 5α-reductase modulates the effects of D1, but not D2 receptor agonists on sensorimotor gating. These data may help elucidate the role of neurosteroids in neuropsychiatric disorders featuring PPI deficits, including schizophrenia and Tourette syndrome.
Collapse
MESH Headings
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism
- 5-alpha Reductase Inhibitors/pharmacology
- Animals
- Dopamine Agonists/pharmacology
- Finasteride/pharmacology
- Male
- Microdialysis
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Prepulse Inhibition/drug effects
- Prepulse Inhibition/physiology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/drug effects
- Receptors, Dopamine D3/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Sensory Gating/drug effects
- Sensory Gating/physiology
Collapse
Affiliation(s)
- Roberto Frau
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Laura J Mosher
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA
| | - Valentina Bini
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Romina Pes
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Pierluigi Saba
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Silvia Fanni
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Paola Devoto
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
9
|
Frau R, Pillolla G, Bini V, Tambaro S, Devoto P, Bortolato M. Inhibition of 5α-reductase attenuates behavioral effects of D1-, but not D2-like receptor agonists in C57BL/6 mice. Psychoneuroendocrinology 2013; 38:542-51. [PMID: 22877998 PMCID: PMC3540184 DOI: 10.1016/j.psyneuen.2012.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022]
Abstract
Converging lines of evidence point to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of steroid 5α-reductase (5αR), the key rate-limiting enzyme in neurosteroidogenesis, attenuates the behavioral effects of non-selective DA receptor agonists in rats, including stereotyped responses and sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. Since previous findings suggested that the role of DA D(1)- and D(2)-like receptor families in behavioral regulation may exhibit broad interspecies and interstrain variations, we assessed the impact of 5αR blockade on the behavioral effects of DAergic agonists in C57BL/6 mice. The prototypical 5αR inhibitor finasteride (FIN; 25-50 mg/kg, intraperitoneally, IP) dose-dependently countered the PPI deficits and the enhancement of rearing responses induced by the full D(1)-like receptor agonist SKF-82958 (0.3 mg/kg, IP); however, FIN did not significantly affect the hyperlocomotive and startle-attenuating effects of SKF-82958. Whereas the D(2)-like receptor agonist quinpirole (QUIN; 0.5 mg/kg, IP) did not induce significant changes in PPI, the combination of this agent and FIN surprisingly produced marked gating and startle deficits. In contrast with previous data on rats, FIN did not affect the reductions of startle reflex and PPI produced by the non-selective DAergic agonist apomorphine (APO; 0.5 mg/kg, IP). These findings collectively indicate that, in C57BL/6 mice, 5αR differentially modulates the effects of D(1)- and D(2)-like receptor agonists in behavioral regulation.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
- Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Valentina Bini
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
| | - Paola Devoto
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
- Corresponding author: Marco Bortolato, MD PhD, Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 527, PSC 1985 Zonal Ave, Los Angeles, CA 90089, Phone: 323-442-3225, Fax: 323-442-3229,
| |
Collapse
|
10
|
Pawlisch BA, Kelm-Nelson CA, Stevenson SA, Riters LV. Behavioral indices of breeding readiness in female European starlings correlate with immunolabeling for catecholamine markers in brain areas involved in sexual motivation. Gen Comp Endocrinol 2012; 179:359-68. [PMID: 22999823 DOI: 10.1016/j.ygcen.2012.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/11/2012] [Indexed: 01/31/2023]
Abstract
In seasonally-breeding songbirds, lengthening photoperiod, increases in estradiol and exposure to male courtship facilitate breeding behavior in females in spring. However, there is extreme variability in the extent to which spring-condition females are attracted by male courtship or engage in nesting behavior. Here we explore possible links between catecholamines and individual differences in behaviors indicative of breeding readiness. Female European starlings were placed in conditions typical of the breeding season (spring-like) or the non-breeding season (fall-like). Although many females examined nesting locations, only a subset of spring-like females occupied nest sites. Labeling for dopamine-beta-hydroxylase (DBH; the enzyme involved in norepinephrine synthesis) in the ventromedial nucleus of the hypothalamus (VMH) was densest in females that acquired nest sites compared to spring-like females without nest sites or fall-like females. Within the group of spring-like females, nesting behaviors correlated positively with DBH labeling in VMH. Females with nest sites had the lowest density of DBH labeling in the ventral tegmental area, and labeling correlated negatively with spring-like female nesting behaviors. Labeling for tyrosine hydroxylase (TH; the rate limiting enzyme for catecholamine synthesis) in putative nucleus accumbens was lowest in spring-like females without nest sites, and labeling correlated positively with nesting behavior in spring-like females. TH labeling density in the medial preoptic nucleus was highest in fall-like females, but a trend was observed for a positive correlation between TH labeling and spring-like female nesting behaviors. These results link distinct patterns of catecholamine activity in brain regions implicated in sexual motivation to female breeding readiness.
Collapse
Affiliation(s)
- Benjamin A Pawlisch
- Department of Zoology, Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Steroid hormones, such as progesterone, are typically considered to be primarily secreted by the gonads (albeit adrenals can also be a source) and to exert their actions through cognate intracellular progestin receptors (PRs). Through its actions in the midbrain ventral tegmental Area (VTA), progesterone mediates appetitive (exploratory, anxiety, social approach) and consummatory (social, sexual) aspects of rodents' mating behaviour. However, progesterone and its natural metabolites ('progestogens') are produced in the midbrain VTA independent of peripheral sources and midbrain VTA of adult rodents is devoid of intracellular PRs. One approach that we have used to understand the effects of progesterone and mechanisms in the VTA for mating is to manipulate the actions of progesterone in the VTA and to examine effects on lordosis (the posture female rodents assume for mating to occur). This review focuses on the effects and mechanisms of progestogens to influence reproduction and related processes. The actions of progesterone and its 5α-reduced metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP; allopregnanolone) in the midbrain VTA to facilitate mating are described. The findings that 3α,5α-THP biosynthesis in the midbrain occurs with mating are discussed. Evidence for the actions of 3α,5α-THP in the midbrain VTA via nontraditional steroid targets is summarised. The broader relevance of these actions of 3α,5α-THP for aspects of reproduction, beyond lordosis, is summarised. Finally, the potential role of the pregnane xenobiotic receptor in mediating 3α,5α-THP biosynthesis in the midbrain is introduced.
Collapse
Affiliation(s)
- Cheryl Anne Frye
- Department of Psychology, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
12
|
Sakakibara R, Kishi M, Ogawa E, Tateno F, Uchiyama T, Yamamoto T, Yamanishi T. Bladder, bowel, and sexual dysfunction in Parkinson's disease. PARKINSONS DISEASE 2011; 2011:924605. [PMID: 21918729 PMCID: PMC3171780 DOI: 10.4061/2011/924605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 05/06/2011] [Accepted: 05/30/2011] [Indexed: 12/14/2022]
Abstract
Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called “pelvic organ” dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.
Collapse
Affiliation(s)
- Ryuji Sakakibara
- Neurology Division, Department of Internal Medicine, Sakura Medical Center, Toho University, 564-1 Shimoshizu, Sakura 285-8741, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Carrillo-Martínez GE, Gómora-Arrati P, González-Arenas A, Morimoto S, Camacho-Arroyo I, González-Flores O. Role of progesterone receptors during postpartum estrus in rats. Horm Behav 2011; 59:37-43. [PMID: 20950620 DOI: 10.1016/j.yhbeh.2010.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 11/23/2022]
Abstract
We studied the role of progesterone receptor (PR) in the display of female sexual behavior during postpartum estrus in rats. Adult female rats were treated with the PR antagonist, RU486 (1.25 and 5 mg), 3 h after parturition and sexual behavior was evaluated throughout the first postpartum day. Estradiol and progesterone serum levels changed during the first 24 h postpartum. The highest estradiol and progesterone levels were found at 9 and 12 h postpartum, respectively. The predominant PR isoform in the hypothalamus and the preoptic area was PR-A during postpartum day. The content of PR-A increased at 6 h postpartum in the hypothalamus and the preoptic area, and decreased in both regions at 9 h. PR-B content only increased in the preoptic area at 12 h postpartum. The highest display of lordotic and proceptive behaviors were found at 12 h postpartum. The treatment with 1.25 and 5 mg of RU486 respectively reduced lordosis by 61% and 92% at 12 h postpartum. These results suggest that PR is essential in the display of postpartum estrus in rats.
Collapse
|
14
|
O'Connell LA, Matthews BJ, Ryan MJ, Hofmann HA. Characterization of the dopamine system in the brain of the túngara frog, Physalaemus pustulosus. BRAIN, BEHAVIOR AND EVOLUTION 2010; 76:211-25. [PMID: 21099197 DOI: 10.1159/000321715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
Dopamine is an evolutionarily ancient neurotransmitter that plays an essential role in mediating behavior. In vertebrates, dopamine is central to the mesolimbic reward system, a neural network concerned with the valuation of stimulus salience, and to the nigrostriatal motor system and hypothalamic nuclei involved in the regulation of locomotion and social behavior. In amphibians, dopaminergic neurons have been mapped out in several species, yet the distribution of dopaminoreceptive cells is unknown. The túngara frog, Physalaemus pustulosus, is an excellent model system for the study of neural mechanisms by which valuations of stimuli salience and social decisions are made, especially in the context of mate choice. In order to better understand where dopamine acts to regulate social decisions in this species, we have determined the distribution of putative dopaminergic cells (using tyrosine hydroxylase immunohistochemistry) and cells receptive to dopaminergic signaling (using DARPP-32 immunohistochemistry) throughout the brain of P. pustulosus. The distribution of dopaminergic cells was comparable to other anurans. DARPP-32 immunoreactivity was identified in key brain regions known to modulate social behavior in other vertebrates including the proposed anuran homologues of the mammalian amygdalar complex, nucleus accumbens, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Due to its widespread distribution, DARPP-32 likely also plays many roles in non-limbic brain regions that mediate non-social information processing. These results significantly extend our understanding of the distribution of the dopaminergic system in the anuran brain and beyond.
Collapse
|