1
|
Tsoi SC, Barrientos AC, Vicario DS, Phan ML, Pytte CL. Daily high doses of atorvastatin alter neuronal morphology in a juvenile songbird model. PLoS One 2025; 20:e0314690. [PMID: 40294005 PMCID: PMC12036933 DOI: 10.1371/journal.pone.0314690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/11/2024] [Indexed: 04/30/2025] Open
Abstract
Statins are highly effective and widely prescribed cholesterol lowering drugs. However, statins cross the blood-brain barrier and decrease neural cholesterol in animal models, raising concern that long-term statin use may impact cholesterol-dependent structures and functions in the brain. Cholesterol is a fundamental component of cell membranes and experimentally decreasing membrane cholesterol has been shown to alter cell morphology in vitro. In addition, brain regions that undergo adult neurogenesis rely on local brain cholesterol for the manufacture of new neuronal membranes. Thus neurogenesis may be particularly vulnerable to long-term statin use. Here we asked whether oral statin treatment impacts neurogenesis in juveniles, either by decreasing numbers of new cells formed or altering the structure of new neurons. The use of statins in children and adolescents has received less attention than in older adults, with few studies on potential unintended effects in young brains. We examined neurons in the juvenile zebra finch songbird in telencephalic regions that function in song perception and memory (caudomedial nidopallium, NCM) and song production (HVC). Birds received either 40 mg/kg of atorvastatin in water or water vehicle once daily for 2-3 months until they reached adulthood. We labeled newborn cells using systemic injections of bromodeoxyuridine (BrdU) and quantified cells double-labeled with antibodies for BrdU and the neuron-specific protein Hu 30-32 days post mitosis. We also quantified a younger cohort of new neurons in the same birds using antibody to the neuronal protein doublecortin (DCX). We then compared numbers of new neurons and soma morphology of BrdU + /Hu+ neurons between statin-treated and control birds. We did not find an effect of statins on the density of newly formed neurons in either brain region, suggesting that statin treatment did not impact neurogenesis or young neuron survival in our paradigm. However, we found that neuronal soma morphology differed significantly between statin-treated and control birds. Somata of BrdU + /Hu+ (30-32 day old) neurons were flatter and had more furrowed contours in statin-treated birds relative to controls. In a larger, heterogeneous cohort of non-birthdated BrdU-/Hu+ neurons, largely born prior to statin treatment, somata were smaller in statin-treated birds than in controls. Our findings indicate that atorvastatin may affect neural cytoarchitecture in both newly formed and mature neurons, perhaps as a consequence of decreased cholesterol availability in the brain.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Alicia C. Barrientos
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Mimi L. Phan
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, Flushing, New York, United States of America
| |
Collapse
|
2
|
Rolland M, Zai AT, Hahnloser RHR, Del Negro C, Giret N. Visually-guided compensation of deafening-induced song deterioration. Front Psychol 2025; 16:1521407. [PMID: 39981385 PMCID: PMC11839652 DOI: 10.3389/fpsyg.2025.1521407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Human language learning and maintenance depend primarily on auditory feedback but are also shaped by other sensory modalities. Individuals who become deaf after learning to speak (post-lingual deafness) experience a gradual decline in their language abilities. A similar process occurs in songbirds, where deafness leads to progressive song deterioration. However, songbirds can modify their songs using non-auditory cues, challenging the prevailing assumption that auditory feedback is essential for vocal control. In this study, we investigated whether deafened birds could use visual cues to prevent or limit song deterioration. We developed a new metric for assessing syllable deterioration called the spectrogram divergence score. We then trained deafened birds in a behavioral task where the spectrogram divergence score of a target syllable was computed in real-time, triggering a contingent visual stimulus based on the score. Birds exposed to the contingent visual stimulus-a brief light extinction-showed more stable song syllables than birds that received either no light extinction or randomly triggered light extinction. Notably, this effect was specific to the targeted syllable and did not influence other syllables. This study demonstrates that deafness-induced song deterioration in birds can be partially mitigated with visual cues.
Collapse
Affiliation(s)
- Manon Rolland
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Anja T. Zai
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Catherine Del Negro
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| |
Collapse
|
3
|
Parishar P, Rajagopalan M, Iyengar S. Changes in the dopaminergic circuitry and adult neurogenesis linked to reinforcement learning in corvids. Front Neurosci 2024; 18:1359874. [PMID: 38808028 PMCID: PMC11130420 DOI: 10.3389/fnins.2024.1359874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The caudolateral nidopallium (NCL, an analog of the prefrontal cortex) is known to be involved in learning, memory, and discrimination in corvids (a songbird), whereas the involvement of other brain regions in these phenomena is not well explored. We used house crows (Corvus splendens) to explore the neural correlates of learning and decision-making by initially training them on a shape discrimination task followed by immunohistochemistry to study the immediate early gene expression (Arc), a dopaminoceptive neuronal marker (DARPP-32, Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) to understand the involvement of the reward pathway and an immature neuronal marker (DCX, doublecortin) to detect learning-induced changes in adult neurogenesis. We performed neuronal counts and neuronal tracing, followed by morphometric analyses. Our present results have demonstrated that besides NCL, other parts of the caudal nidopallium (NC), avian basal ganglia, and intriguingly, vocal control regions in house crows are involved in visual discrimination. We have also found that training on the visual discrimination task can be correlated with neurite pruning in mature dopaminoceptive neurons and immature DCX-positive neurons in the NC of house crows. Furthermore, there is an increase in the incorporation of new neurons throughout NC and the medial striatum which can also be linked to learning. For the first time, our results demonstrate that a combination of structural changes in mature and immature neurons and adult neurogenesis are linked to learning in corvids.
Collapse
|
4
|
Furest Cataldo B, Yang L, Cabezas B, Ovetsky J, Vicario DS. Novel sound exposure drives dynamic changes in auditory lateralization that are associated with perceptual learning in zebra finches. Commun Biol 2023; 6:1205. [PMID: 38012325 PMCID: PMC10681987 DOI: 10.1038/s42003-023-05567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Songbirds provide a model for adult plasticity in the auditory cortex as a function of recent experience due to parallels with human auditory processing. As for speech processing in humans, activity in songbirds' higher auditory cortex (caudomedial nidopallium, NCM) is lateralized for complex vocalization sounds. However, in Zebra finches exposed to a novel heterospecific (canary) acoustic environment for 4-9 days, the typical pattern of right-lateralization is reversed. We now report that, in birds passively exposed to a novel heterospecific environment for extended periods (up to 21 days), the right-lateralized pattern of epidural auditory potentials first reverses transiently then returns to the typical pattern. Using acute, bilateral multi-unit electrophysiology, we confirm that this dynamic pattern occurs in NCM. Furthermore, extended exposure enhances discrimination for heterospecific stimuli. We conclude that lateralization is functionally labile and, when engaged by novel sensory experience, contributes to discrimination of novel stimuli that may be ethologically relevant. Future studies seek to determine whether, (1) the dynamicity of lateralized processes engaged by novel sensory experiences recurs with every novel challenge in the same organism; (2) the dynamic pattern extends to other cortical, thalamic or midbrain structures; and (3) the phenomenon generalizes across sensory modalities.
Collapse
Affiliation(s)
| | - Lillian Yang
- The City College of New York (CUNY), Physiology, Pharmacology and Neuroscience Department, New York, NY, 10031, USA
| | - Bryan Cabezas
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - Jonathan Ovetsky
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - David S Vicario
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Understanding hippocampal neural plasticity in captivity: Unique contributions of spatial specialists. Learn Behav 2022; 50:55-70. [PMID: 35237946 DOI: 10.3758/s13420-021-00504-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
Neural plasticity in the hippocampus has been studied in a wide variety of model systems, including in avian species where the hippocampus underlies specialized spatial behaviours. Examples of such behaviours include navigating to a home roost over long distances by homing pigeons or returning to a potential nest site for egg deposit by brood parasites. The best studied example, however, is food storing in parids and the interaction between this behaviour and changes in hippocampus volume and neurogenesis. However, understanding the interaction between brain and behaviour necessitates research that includes studies with at least some form of captivity, which may itself affect hippocampal plasticity. Captivity might particularly affect spatial specialists where free-ranging movement on a large scale is especially important in daily, and seasonal, behaviours. This review examines how captivity might affect hippocampal plasticity in avian spatial specialists and specifically food-storing parids, and also considers how the effects of captivity may be mitigated by researchers studying hippocampal plasticity when the goal is understanding the relationship between behaviour and hippocampal change.
Collapse
|
6
|
Aronowitz JV, Perez A, O’Brien C, Aziz S, Rodriguez E, Wasner K, Ribeiro S, Green D, Faruk F, Pytte CL. Unilateral vocal nerve resection alters neurogenesis in the avian song system in a region-specific manner. PLoS One 2021; 16:e0256709. [PMID: 34464400 PMCID: PMC8407570 DOI: 10.1371/journal.pone.0256709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.
Collapse
Affiliation(s)
- Jake V. Aronowitz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Alice Perez
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| | - Christopher O’Brien
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Siaresh Aziz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Erica Rodriguez
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Kobi Wasner
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Sissi Ribeiro
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Dovounnae Green
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Farhana Faruk
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Carolyn L. Pytte
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
- Biology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| |
Collapse
|
7
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
8
|
Kumar S, Mohapatra AN, Pundir AS, Kumari M, Din U, Sharma S, Datta A, Arora V, Iyengar S. Blocking Opioid Receptors in a Songbird Cortical Region Modulates the Acoustic Features and Levels of Female-Directed Singing. Front Neurosci 2020; 14:554094. [PMID: 33071736 PMCID: PMC7533562 DOI: 10.3389/fnins.2020.554094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
The organization of the anterior forebrain pathway (AFP) of songbirds important for context-dependent singing is similar to that of cortical basal ganglia loops (CBG) in mammals, which underlie motor behaviors including vocalization. Since different components of the AFP express high levels of μ-opioid receptors (μ-ORs) as do CBG loops, songbirds act as model systems to study the role of opioid modulation on vocalization and the motivation to sing. The AFP in songbirds includes the cortical/pallial region LMAN (lateral magnocellular nucleus of the anterior nidopallium) which projects to Area X, a nucleus of the avian basal ganglia. In the present study, microdialysis was used to infuse different doses of the opioid antagonist naloxone in LMAN of adult male zebra finches. Whereas all doses of naloxone led to significant decreases in the number of FD (female-directed) songs, only 100 and 200 ng/ml of naloxone affected their acoustic properties. The decrease in FD song was not accompanied by changes in levels of attention toward females or those of neurotransmitters (dopamine, glutamate, and GABA) in LMAN. An earlier study had shown that similar manipulations in Area X did not lead to alterations in the number of FD songs but had significantly greater effects on their acoustic properties. Taken together, our results suggest that there are reciprocal effects of OR modulation on cortical and basal ganglia components of the AFP in songbirds.
Collapse
Affiliation(s)
| | | | | | | | - Uzma Din
- National Brain Research Centre, Manesar, India
| | | | - Atanu Datta
- National Brain Research Centre, Manesar, India
| | - Vasav Arora
- National Brain Research Centre, Manesar, India
| | | |
Collapse
|
9
|
Pytte CL. Adult Neurogenesis in the Songbird: Region-Specific Contributions of New Neurons to Behavioral Plasticity and Stability. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:191-204. [PMID: 27560148 DOI: 10.1159/000447048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our understanding of the role of new neurons in learning and encoding new information has been largely based on studies of new neurons in the mammalian dentate gyrus and olfactory bulb - brain regions that may be specialized for learning. Thus the role of new neurons in regions that serve other functions has yet to be fully explored. The song system provides a model for studying new neuron function in brain regions that contribute differently to song learning, song auditory discrimination, and song motor production. These regions subserve learning as well as long-term storage of previously learned information. This review examines the differences between learning-based and activity-based retention of new neurons and explores the potential contributions of new neurons to behavioral stability in the song motor production pathway.
Collapse
Affiliation(s)
- Carolyn L Pytte
- Psychology Department, Queens College and The Graduate Center, City University of New York, Flushing, N.Y., USA
| |
Collapse
|
10
|
Abstract
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| | - Tracy A Larson
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
11
|
Yang LM, Vicario DS. Exposure to a novel stimulus environment alters patterns of lateralization in avian auditory cortex. Neuroscience 2015; 285:107-18. [PMID: 25453763 PMCID: PMC10560509 DOI: 10.1016/j.neuroscience.2014.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/26/2022]
Abstract
Perceptual filters formed early in development provide an initial means of parsing the incoming auditory stream. However, these filters may not remain fixed, and may be updated by subsequent auditory input, such that, even in an adult organism, the auditory system undergoes plastic changes to achieve a more efficient representation of the recent auditory environment. Songbirds are an excellent model system for experimental studies of auditory phenomena due to many parallels between song learning in birds and language acquisition in humans. In the present study, we explored the effects of passive immersion in a novel heterospecific auditory environment on neural responses in caudo-medial neostriatum (NCM), a songbird auditory area similar to the secondary auditory cortex in mammals. In zebra finches, a well-studied species of songbirds, NCM responds selectively to conspecific songs and contains a neuronal memory for tutor and other familiar conspecific songs. Adult male zebra finches were randomly assigned to either a conspecific or heterospecific auditory environment. After 2, 4 or 9 days of exposure, subjects were presented with heterospecific and conspecific songs during awake electrophysiological recording. The neural response strength and rate of adaptation to the testing stimuli were recorded bilaterally. Controls exposed to conspecific environment sounds exhibited the normal pattern of hemispheric lateralization with higher absolute response strength and faster adaptation in the right hemisphere. The pattern of lateralization was fully reversed in birds exposed to heterospecific environment for 4 or 9 days and partially reversed in birds exposed to heterospecific environment for 2 days. Our results show that brief passive exposure to a novel category of sounds was sufficient to induce a gradual reorganization of the left and right secondary auditory cortices. These changes may reflect modification of perceptual filters to form a more efficient representation of auditory space.
Collapse
Affiliation(s)
- L M Yang
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ, United States.
| | - D S Vicario
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ, United States.
| |
Collapse
|
12
|
Tsoi SC, Aiya UV, Wasner KD, Phan ML, Pytte CL, Vicario DS. Hemispheric asymmetry in new neurons in adulthood is associated with vocal learning and auditory memory. PLoS One 2014; 9:e108929. [PMID: 25251077 PMCID: PMC4177556 DOI: 10.1371/journal.pone.0108929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- Biology Department, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Utsav V. Aiya
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kobi D. Wasner
- Psychology Department, Queens College, City University of New York, New York, New York, United States of America
| | - Mimi L. Phan
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- Biology Department, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
van der Kant A, Derégnaucourt S, Gahr M, Van der Linden A, Poirier C. Representation of early sensory experience in the adult auditory midbrain: implications for vocal learning. PLoS One 2013; 8:e61764. [PMID: 23637903 PMCID: PMC3634856 DOI: 10.1371/journal.pone.0061764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/12/2013] [Indexed: 02/04/2023] Open
Abstract
Vocal learning in songbirds and humans occurs by imitation of adult vocalizations. In both groups, vocal learning includes a perceptual phase during which juveniles birds and infants memorize adult vocalizations. Despite intensive research, the neural mechanisms supporting this auditory memory are still poorly understood. The present functional MRI study demonstrates that in adult zebra finches, the right auditory midbrain nucleus responds selectively to the copied vocalizations. The selective signal is distinct from selectivity for the bird's own song and does not simply reflect acoustic differences between the stimuli. Furthermore, the amplitude of the selective signal is positively correlated with the strength of vocal learning, measured by the amount of song that experimental birds copied from the adult model. These results indicate that early sensory experience can generate a long-lasting memory trace in the auditory midbrain of songbirds that may support song learning.
Collapse
Affiliation(s)
| | - Sébastien Derégnaucourt
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | |
Collapse
|
14
|
Adult neurogenesis is associated with the maintenance of a stereotyped, learned motor behavior. J Neurosci 2012; 32:7052-7. [PMID: 22593073 DOI: 10.1523/jneurosci.5385-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adult neurogenesis is thought to provide neural plasticity used in forming and storing new memories. Here we show a novel relationship between numbers of new neurons and the stability of a previously learned motor pattern. In the adult zebra finch, new projection neurons are added to the nucleus HVC and become part of the motor pathway for producing learned song. However, new song learning occurs only in juveniles and the behavioral impact of adding new neurons to HVC throughout life is unclear. We report that song changes after deafening are inversely correlated with the number of new neurons added to HVC, suggesting that adult neurogenesis in this context may contribute to behavioral stability. More broadly, we propose that new neuron function may depend on the site of integration and can vary as widely as promoting, or restricting, behavioral plasticity.
Collapse
|
15
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|