1
|
Elagali A, Eisner A, Tanner S, Drummond K, Symeonides C, Love C, Tang ML, Mansell T, Burgner D, Collier F, Sly PD, O'Hely M, Dunlop S, Vuillermin P, Ponsonby AL. A pathway-based genetic score for inflammation: An indicator of vulnerability to phthalate-induced adverse neurodevelopment outcomes. Int J Hyg Environ Health 2025; 264:114514. [PMID: 39721371 DOI: 10.1016/j.ijheh.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Phthalates, chemical additives used to enhance plastic products' flexibility, are easily released into the environment, and can harm the brain development through various mechanisms including inflammation. Genetic variation influencing an individual's susceptibility to inflammation may play a role in the effects of phthalate exposure on neurodevelopment however there is no summary measure developed for genetic susceptibility to inflammation. METHODS We developed a genetic pathway function score for inflammation (gPFSin), based on the transcriptional activity of the inflammatory response pathway in the brain and other tissues. Using the Barwon Infant Study (a birth cohort of n = 1074), we examined the connection between gPFSin and key neurodevelopmental outcomes, along with the interplay between prenatal phthalate levels, children's genetic susceptibility to inflammation (gPFSin), and adverse neurodevelopmental outcomes. RESULTS Regression techniques revealed consistent associations between gPFSin-phthalate combinations and key neurodevelopmental outcomes. A high gPFSin score was associated with an increased risk of doctor-diagnosed Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) by age 11.5 years, with adjusted odds ratios of 2.15(p = 0.039) and 2.42(p = 0.005), respectively. Furthermore, individuals with both high gPFSin and prenatal phthalate exposure exhibited more neurodevelopmental problems. This included associations of high gPFSin and bis(2-ethylhexyl) phthalate (DEHP) levels with parent-reported ASD traits and doctor-diagnosed ASD. The attributable proportions due to this interaction were 0.39 (p = 0.045) and 0.37 (p = 0.037), respectively. CONCLUSION These findings contribute to the evidence linking gestational phthalate exposure and inflammation to adverse neurodevelopment and underscoring increased risks in children with higher genetic susceptibility to inflammation.
Collapse
Affiliation(s)
- Ahmed Elagali
- Minderoo Foundation, Perth, WA, 6009, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christos Symeonides
- Minderoo Foundation, Perth, WA, 6009, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Chloe Love
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Martin O'Hely
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, WA, 6009, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
2
|
Cogo PR, Moadab G, Bliss-Moreau E, Pittet F. Prenatal Zika Virus Exposure Alters the Interaction Between Affective Processing and Decision-Making in Juvenile Rhesus Macaques (Macaca mulatta). Dev Psychobiol 2024; 66:e70002. [PMID: 39508455 DOI: 10.1002/dev.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Many challenges during pregnancy can disrupt fetal development and have varying consequences on the subsequent psychological development of infants. Notably, exposure to infectious pathogens during fetal development, such as those encountered in viral pandemics, has been associated with persistent developmental consequences on infants' brains and behavior. However, the underlying mechanisms and the degree to which neural plasticity over infancy may accommodate fetal insults remain unclear. To address this gap, we investigated the interaction between affective processing and decision-making in a cohort of rhesus monkey juveniles exposed to Zika virus (ZIKV) during fetal development, a pathogen known to profoundly disrupt central nervous system development. Ten juveniles exposed to ZIKV during their fetal development and nine procedure-matched controls (CONs) completed a judgment bias task with and without a negative mood induction. Although ZIKV exposure did not impact the monkeys' decision-making processes during the task or the magnitude of their behavioral responses to the mood induction procedure, it did alter the influence of mood induction on decision-making. Although CON monkeys exhibited significantly more conservative decision-making following negative mood induction, the decision-making of Zika-exposed monkeys remained consistent among conditions. These findings suggest that fetal exposure to ZIKV impacts the neural systems involved in integrating affective and cognitive information, with potential long-term implications for learning, memory, and emotion regulation.
Collapse
Affiliation(s)
- Patrick R Cogo
- California National Primate Research Center, University of California, Davis, California, USA
| | - Gilda Moadab
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Florent Pittet
- California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
3
|
Al-Gailani L, Al-Kaleel A. The Relationship Between Prenatal, Perinatal, and Postnatal Factors and ADHD: The Role of Nutrition, Diet, and Stress. Dev Psychobiol 2024; 66:e70004. [PMID: 39508433 DOI: 10.1002/dev.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Attention-Deficit Hyperactive Disorder (ADHD) is a neurobehavioral syndrome affecting children aged 6-17 with symptoms manifesting before age 12. ADHD presents heterogeneously and is associated with various psychiatric disorders. The cause remains elusive, but genetic and environmental factors, brain region maturation delays, and neurotransmitter dysregulation are implicated. Effective treatment requires a multi-disciplinary approach, primarily involving pharmacological and behavioral intervention. Stimulants like methylphenidate and amphetamines are first-line medications, but non-stimulants may be considered for some patients. However, stimulants face challenges related to misuse, dependence, and long-term tolerability issues. The etiology of ADHD involved genetic predisposition, environmental influences, and prenatal, perinatal, and postnatal factors. Prenatal causes encompass maternal diet, alcohol consumption, viral infections, and stress. Postnatal factors include head trauma, meningitis, toxin, nutritional deficiencies, as well as iodine deficiency and hypothyroidism. The gut microbiome's role in ADHD is emerging, influencing neurodevelopment through microbiota-gut-brain axis. Understanding these diverse etiological factors is essential for comprehensive ADHD management.
Collapse
Affiliation(s)
- Lubna Al-Gailani
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
4
|
ElGrawani W, Mueller FS, Schalbetter SM, Brown SA, Weber-Stadlbauer U, Tarokh L. Maternal immune activation exerts long-term effects on activity and sleep in male offspring mice. Eur J Neurosci 2024; 60:5505-5521. [PMID: 39210746 DOI: 10.1111/ejn.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Exposure to infectious or non-infectious immune activation during early development is a serious risk factor for long-term behavioural dysfunctions. Mouse models of maternal immune activation (MIA) have increasingly been used to address neuronal and behavioural dysfunctions in response to prenatal infections. One commonly employed MIA model involves administering poly(I:C) (polyriboinosinic-polyribocytdilic acid), a synthetic analogue of double-stranded RNA, during gestation, which robustly induces an acute viral-like inflammatory response. Using electroencephalography (EEG) and infrared (IR) activity recordings, we explored alterations in sleep/wake, circadian and locomotor activity patterns on the adult male offspring of poly(I:C)-treated mothers. Our findings demonstrate that these offspring displayed reduced home cage activity during the (subjective) night under both light/dark or constant darkness conditions. In line with this finding, these mice exhibited an increase in non-rapid eye movement (NREM) sleep duration as well as an increase in sleep spindles density. Following sleep deprivation, poly(I:C)-exposed offspring extended NREM sleep duration and prolonged NREM sleep bouts during the dark phase as compared with non-exposed mice. Additionally, these mice exhibited a significant alteration in NREM sleep EEG spectral power under heightened sleep pressure. Together, our study highlights the lasting effects of infection and/or immune activation during pregnancy on circadian activity and sleep/wake patterns in the offspring.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Leila Tarokh
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Shen F, Zhou H. Advances in the etiology and neuroimaging of children with attention deficit hyperactivity disorder. Front Pediatr 2024; 12:1400468. [PMID: 38915870 PMCID: PMC11194347 DOI: 10.3389/fped.2024.1400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children, characterized by age-inappropriate inattention, hyperactivity, and impulsivity, which can cause extensive damage to children's academic, occupational, and social skills. This review will present current advancements in the field of attention deficit hyperactivity disorder, including genetics, environmental factors, epigenetics, and neuroimaging features. Simultaneously, we will discuss the highlights of promising directions for further study.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, China
| |
Collapse
|
6
|
Lesh TA, Iosif AM, Tanase C, Vlasova RM, Ryan AM, Bennett J, Hogrefe CE, Maddock RJ, Geschwind DH, Van de Water J, McAllister AK, Styner MA, Bauman MD, Carter CS. Extracellular free water elevations are associated with brain volume and maternal cytokine response in a longitudinal nonhuman primate maternal immune activation model. Mol Psychiatry 2023; 28:4185-4194. [PMID: 37582858 PMCID: PMC10867284 DOI: 10.1038/s41380-023-02213-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Costin Tanase
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | | | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, CA, USA
- Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - A Kimberley McAllister
- MIND Institute, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Boktor JC, Adame MD, Rose DR, Schumann CM, Murray KD, Bauman MD, Careaga M, Mazmanian SK, Ashwood P, Needham BD. Global metabolic profiles in a non-human primate model of maternal immune activation: implications for neurodevelopmental disorders. Mol Psychiatry 2022; 27:4959-4973. [PMID: 36028571 PMCID: PMC9772216 DOI: 10.1038/s41380-022-01752-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Epidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents. We sought to better understand the molecular signatures characterizing the MIA model in an organism more closely related to humans, rhesus monkeys (Macaca mulatta), by evaluating changes in global metabolic profiles in MIA-exposed offspring. Herein, we present the global metabolome in six peripheral tissues (plasma, cerebrospinal fluid, three regions of intestinal mucosa scrapings, and feces) from 13 MIA and 10 control offspring that were confirmed to display atypical neurodevelopment, elevated immune profiles, and neuropathology. Differences in lipid, amino acid, and nucleotide metabolism discriminated these MIA and control samples, with correlations of specific metabolites to behavior scores as well as to cytokine levels in plasma, intestinal, and brain tissues. We also observed modest changes in fecal and intestinal microbial profiles, and identify differential metabolomic profiles within males and females. These findings support a connection between maternal immune activation and the metabolism, microbiota, and behavioral traits of offspring, and may further the translational applications of the MIA model and the advancement of biomarkers for neurodevelopmental disorders such as ASD or schizophrenia.
Collapse
Affiliation(s)
- Joseph C Boktor
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Cynthia M Schumann
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Karl D Murray
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA.
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Brittany D Needham
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Ryan AM, Bauman MD. Primate Models as a Translational Tool for Understanding Prenatal Origins of Neurodevelopmental Disorders Associated With Maternal Infection. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:510-523. [PMID: 35276404 PMCID: PMC8902899 DOI: 10.1016/j.bpsc.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
Pregnant women represent a uniquely vulnerable population during an infectious disease outbreak, such as the COVID-19 pandemic. Although we are at the early stages of understanding the specific impact of SARS-CoV-2 exposure during pregnancy, mounting epidemiological evidence strongly supports a link between exposure to a variety of maternal infections and an increased risk for offspring neurodevelopmental disorders. Inflammatory biomarkers identified from archived or prospectively collected maternal biospecimens suggest that the maternal immune response is the critical link between infection during pregnancy and altered offspring neurodevelopment. This maternal immune activation (MIA) hypothesis has been tested in animal models by artificially activating the immune system during pregnancy and evaluating the neurodevelopmental consequences in MIA-exposed offspring. Although the vast majority of MIA model research is carried out in rodents, the nonhuman primate model has emerged in recent years as an important translational tool. In this review, we briefly summarize human epidemiological studies that have prompted the development of translationally relevant MIA models. We then highlight notable similarities between humans and nonhuman primates, including placental structure, pregnancy physiology, gestational timelines, and offspring neurodevelopmental stages, that provide an opportunity to explore the MIA hypothesis in species more closely related to humans. Finally, we provide a comprehensive review of neurodevelopmental alterations reported in current nonhuman primate models of maternal infection and discuss future directions for this promising area of research.
Collapse
Affiliation(s)
- Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| |
Collapse
|
9
|
Vlasova RM, Iosif AM, Ryan AM, Funk LH, Murai T, Chen S, Lesh TA, Rowland DJ, Bennett J, Hogrefe CE, Maddock RJ, Gandal MJ, Geschwind DH, Schumann CM, Van de Water J, McAllister AK, Carter CS, Styner MA, Amaral DG, Bauman MD. Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. J Neurosci 2021; 41:9971-9987. [PMID: 34607967 PMCID: PMC8638691 DOI: 10.1523/jneurosci.0378-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Takeshi Murai
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Douglas J Rowland
- Center for Genomic and Molecular Imaging, University of California, Davis, California, 95616
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Michael J Gandal
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Judy Van de Water
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - A Kimberley McAllister
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Center for Neuroscience, University of California, Davis, California, 95618
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| |
Collapse
|
10
|
Irfan M, Evonuk KS, DeSilva TM. Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS J 2021; 289:2110-2127. [PMID: 34496137 DOI: 10.1111/febs.16190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/21/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Emerging roles for microglia in modifying normal brain development continue to provide new perspectives on the functions of this resident immune cell in the brain. While the molecular underpinnings driving microglia's position in regulating developmental programs remain largely an unchartered territory, innate immune signaling lies at the forefront. At least three innate immune receptors expressed on microglia-fractalkine, complement, and triggering receptor expressed on microglia (TREM2)-modulate developmental synaptic pruning to refine brain circuitry. Our laboratory recently published that microglia with a unique amoeboid morphology invade the corpus callosum and engulf oligodendrocyte progenitor cells (OPCs) during early postnatal development before myelination in a fractalkine receptor (CX3CR1)-dependent manner to modulate ensheathment of axons. Amoeboid microglia are observed in the corpus callosum but not cerebral cortex, and lose their amoeboid shape at the commencement of myelination assuming a resting phenotype. Furthermore, OPCs contacted or engulfed by microglia do not express markers of cell death suggesting a novel homeostatic mechanism facilitating an appropriate OPC:axon ratio for proper myelin ensheathment. The unique morphology of microglia and the restricted window for phagocytic engulfment of OPCs suggest a critical period for OPC engulfment important for action potential propagation during development when activity-dependent mechanisms regulate synaptic pruning. In this review, we summarize the role of activity-dependent mechanisms in sculpting brain circuitry, how myelin ensheathment influences action potential propagation, the spatial and temporal relationship of microglia-dependent elimination of OPCs and synapses, and implications for the synergistic role of microglial phagocytosis in shaping the architecture for neuronal function.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kirsten S Evonuk
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
11
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Fitzgerald E, Hor K, Drake AJ. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum Dev 2020; 150:105190. [PMID: 32948364 PMCID: PMC7481314 DOI: 10.1016/j.earlhumdev.2020.105190] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kahyee Hor
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
13
|
Maternal Immunity in Autism Spectrum Disorders: Questions of Causality, Validity, and Specificity. J Clin Med 2020; 9:jcm9082590. [PMID: 32785127 PMCID: PMC7464885 DOI: 10.3390/jcm9082590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders with unknown heterogeneous aetiologies. Epidemiological studies have found an association between maternal infection and development of ASD in the offspring, and clinical findings reveal a state of immune dysregulation in the pre- and postnatal period of affected subjects. Maternal immune activation (MIA) has been proposed to mediate this association by altering fetal neurodevelopment and leading to autism. Although animal models have supported a causal link between MIA and development of ASD, their validity needs to be explored. Moreover, considering that only a small proportion of affected offspring develop autism, and that MIA has been implicated in related diseases such as schizophrenia, a key unsolved question is how disease specificity and phenotypic outcome are determined. Here, we have integrated preclinical and clinical evidence, including the use of animal models for establishing causality, to explore the role of maternal infections in ASD. A proposed priming/multi-hit model may offer insights into the clinical heterogeneity of ASD, its convergence with related disorders, and therapeutic strategies.
Collapse
|
14
|
Ryan AM, Berman RF, Bauman MD. Bridging the species gap in translational research for neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106950. [PMID: 30347236 PMCID: PMC6474835 DOI: 10.1016/j.nlm.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
The prevalence and societal impact of neurodevelopmental disorders (NDDs) continue to increase despite years of research in both patient populations and animal models. There remains an urgent need for translational efforts between clinical and preclinical research to (i) identify and evaluate putative causes of NDD, (ii) determine their underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches, and (iv) translate basic research into safe and effective clinical practices. Given the complexity behind potential causes and behaviors affected by NDDs, modeling these uniquely human brain disorders in animals will require that we capitalize on unique advantages of a diverse array of species. While much NDD research has been conducted in more traditional animal models such as the mouse, ultimately, we may benefit from creating animal models with species that have a more sophisticated social behavior repertoire such as the rat (Rattus norvegicus) or species that more closely related to humans, such as the rhesus macaque (Macaca mulatta). Here, we highlight the rat and rhesus macaque models for their role in previous psychological research discoveries, current efforts to understand the neurobiology of NDDs, and focus on the convergence of behavior outcome measures that parallel features of human NDDs.
Collapse
Affiliation(s)
- A M Ryan
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States
| | - R F Berman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Neurological Surgery, University of California, Davis, United States
| | - M D Bauman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States.
| |
Collapse
|
15
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
16
|
The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev 2019; 104:141-157. [DOI: 10.1016/j.neubiorev.2019.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023]
|
17
|
Ahn SJ, Cornea E, Murphy V, Styner M, Jarskog LF, Gilmore JH. White matter development in infants at risk for schizophrenia. Schizophr Res 2019; 210:107-114. [PMID: 31182322 PMCID: PMC6689450 DOI: 10.1016/j.schres.2019.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Schizophrenia is considered a neurodevelopmental disorder with a pathophysiology that likely begins long before the onset of clinical symptoms. White matter abnormalities have been observed in schizophrenia and we hypothesized that the first 2 years of life is a period in which white matter abnormalities associated with schizophrenia risk may emerge. METHODS 38 infants at high risk for schizophrenia and 202 healthy controls underwent diffusion tensor MRIs after birth and at 1 and 2 years of age. Quantitative tractography was used to determine diffusion properties (fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD)) of 18 white matter tracts and a general linear model was used to analyze group differences at each age. RESULTS Adjusting gestational age at birth, postnatal age at MRI, gender, MRI scanner type, and maternal education, neonates at high risk had significantly lower FA (p = 0.02) and AD (p = 0.03) in the superior segment of the left cingulate, and higher RD in the hippocampal segment of the left cingulate (p = 0.04). High risk one year olds had significantly lower FA (p < 0.01) and AD (p = 0.02) in the hippocampal segment of the left cingulate. High risk two year olds had significantly lower FA in the left prefrontal cortico-thalamic tract (p = 0.04) and higher RD in the right uncinate fasciculus (p = 0.04). None of the tract differences remained significant after correction for multiple comparisons. CONCLUSIONS There is evidence of abnormal white matter development in young children at risk for schizophrenia, especially in the hippocampal segment of left cingulum. These results support the neurodevelopmental theory of schizophrenia and indicate that impaired white matter may be present in early childhood.
Collapse
Affiliation(s)
- Sung Jun Ahn
- Department of Radiology, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, 27599-7160, USA
| | - Veronica Murphy
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, 27599-7160, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, 27599-7160, USA,Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - L. Fredrik Jarskog
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, 27599-7160, USA
| | - John H. Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, 27599-7160, USA
| |
Collapse
|
18
|
Jenabi E, Bashirian S, Khazaei S, Basiri Z. The maternal prepregnancy body mass index and the risk of attention deficit hyperactivity disorder among children and adolescents: a systematic review and meta-analysis. KOREAN JOURNAL OF PEDIATRICS 2019; 62:374-379. [PMID: 31208166 PMCID: PMC6801198 DOI: 10.3345/kjp.2019.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
Abstract
Background Attention deficit hyperactivity disorder (ADHD) symptoms have a major impact on individuals, families, and society. Therefore identification risk factors of ADHD are a public health priority. Purpose This is meta-analysis evaluated the association between maternal prepregnancy body mass index and the risk of ADHD among the resulting offspring. Methods The search identified studies published through December 2018 in the PubMed, Web of Science, and Scopus databases. The odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CI) extracted from eligible studies were used as the common measure of association among studies. Results A significant association was found between overweight women and the risk of ADHD among children with the pooled HR and OR estimates (HR, 1.27 and 95% CI, 1.17–1.37; OR, 1.28 and 95% CI, 1.15–1.40, respectively). This association was significant between obese women and the risk of ADHD among children and adolescents with the pooled estimates of HR and OR (HR, 1.65 and 95% CI, 1.55–1.76; OR, 1.42 and 95% CI, 1.23–1.61). Conclusion The current epidemiological studies present sufficient evidence that prepregnancy overweight and obesity are significantly associated with an increased risk of ADHD among children and adolescents. These findings provide a new approach to preventing ADHD by controlling weight gain in the prenatal period, which should be considered by policymakers.
Collapse
Affiliation(s)
- Ensiyeh Jenabi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saied Bashirian
- Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Basiri
- Master of Science Epidemiology, Faculty of Science, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Yoshimi A, Yamada S, Kunimoto S, Aleksic B, Hirakawa A, Ohashi M, Matsumoto Y, Hada K, Itoh N, Arioka Y, Kimura H, Kushima I, Nakamura Y, Shiino T, Mori D, Tanaka S, Hamada S, Noda Y, Nagai T, Yamada K, Ozaki N. Proteomic analysis of lymphoblastoid cell lines from schizophrenic patients. Transl Psychiatry 2019; 9:126. [PMID: 31011151 PMCID: PMC6476876 DOI: 10.1038/s41398-019-0461-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
Although a number of studies have identified several convincing candidate genes or molecules, the pathophysiology of schizophrenia (SCZ) has not been completely elucidated. Therapeutic optimization based on pathophysiology should be performed as early as possible to improve functional outcomes and prognosis; to detect useful biomarkers for SCZ, which reflect pathophysiology and can be utilized for timely diagnosis and effective therapy. To explore biomarkers for SCZ, we employed fluorescence two-dimensional differential gel electrophoresis (2D-DIGE) of lymphoblastoid cell lines (LCLs) (1st sample set: 30 SCZ and 30 CON). Differentially expressed proteins were sequenced by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and identified proteins were confirmed by western blotting (WB) (1st and 2nd sample set: 60 SCZ and 60 CON). Multivariate logistic regression analysis was performed to identify an optimal combination of biomarkers to create a prediction model for SCZ. Twenty protein spots were differentially expressed between SCZ and CON in 2D-DIGE analysis and 22 unique proteins were identified by LC-MS/MS. Differential expression of eight of 22 proteins was confirmed by WB. Among the eight candidate proteins (HSPA4L, MX1, GLRX3, UROD, MAPRE1, TBCB, IGHM, and GART), we successfully constructed logistic regression models comprised of 4- and 6-markers with good discriminative ability between SCZ and CON. In both WB and gene expression analysis of LCL, MX1 showed reproducibly significant associations. Moreover, Mx1 and its related proinflamatory genes (Mx2, Il1b, and Tnf) were also up-regulated in poly I:C-treated mice. Differentially expressed proteins might be associated with molecular pathophysiology of SCZ, including dysregulation of immunological reactions and potentially provide diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Akira Yoshimi
- grid.259879.8Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503 Japan ,0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Shinnosuke Yamada
- grid.259879.8Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503 Japan ,0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Shohko Kunimoto
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Akihiro Hirakawa
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Biostatistics and Bioinformatics, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033 Japan
| | - Mitsuki Ohashi
- grid.259879.8Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503 Japan
| | - Yurie Matsumoto
- grid.259879.8Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503 Japan ,0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Kazuhiro Hada
- 0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Norimichi Itoh
- 0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yuko Arioka
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0004 0569 8970grid.437848.4Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, 466-8550 Japan
| | - Hiroki Kimura
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0004 0569 8970grid.437848.4Department of Psychiatry, Nagoya University Hospital, Nagoya, 466-8550 Japan
| | - Itaru Kushima
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0004 0569 8970grid.437848.4Department of Psychiatry, Nagoya University Hospital, Nagoya, 466-8550 Japan ,0000 0001 0943 978Xgrid.27476.30Institute for Advanced Research, Nagoya University, Nagoya, 464-8601 Japan
| | - Yukako Nakamura
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Tomoko Shiino
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0000 9832 2227grid.416859.7Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| | - Daisuke Mori
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0001 0943 978Xgrid.27476.30Brain and Mind Research Center, Nagoya University, Nagoya, 466-8550 Japan
| | - Satoshi Tanaka
- 0000 0004 0569 8970grid.437848.4Department of Psychiatry, Nagoya University Hospital, Nagoya, 466-8550 Japan
| | - Shuko Hamada
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yukihiro Noda
- grid.259879.8Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503 Japan ,0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Taku Nagai
- 0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Kiyofumi Yamada
- 0000 0001 0943 978Xgrid.27476.30Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Norio Ozaki
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,0000 0004 0569 8970grid.437848.4Department of Psychiatry, Nagoya University Hospital, Nagoya, 466-8550 Japan
| |
Collapse
|
20
|
Preliminary evidence of increased striatal dopamine in a nonhuman primate model of maternal immune activation. Transl Psychiatry 2019; 9:135. [PMID: 30979867 PMCID: PMC6461624 DOI: 10.1038/s41398-019-0449-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Women exposed to a variety of viral and bacterial infections during pregnancy have an increased risk of giving birth to a child with autism, schizophrenia or other neurodevelopmental disorders. Preclinical maternal immune activation (MIA) models are powerful translational tools to investigate mechanisms underlying epidemiological links between infection during pregnancy and offspring neurodevelopmental disorders. Our previous studies documenting the emergence of aberrant behavior in rhesus monkey offspring born to MIA-treated dams extends the rodent MIA model into a species more closely related to humans. Here we present novel neuroimaging data from these animals to further explore the translational potential of the nonhuman primate MIA model. Nine male MIA-treated offspring and 4 controls from our original cohort underwent in vivo positron emission tomography (PET) scanning at approximately 3.5-years of age using [18F] fluoro-l-m-tyrosine (FMT) to measure presynaptic dopamine levels in the striatum, which are consistently elevated in individuals with schizophrenia. Analysis of [18F]FMT signal in the striatum of these nonhuman primates showed that MIA animals had significantly higher [18F]FMT index of influx compared to control animals. In spite of the modest sample size, this group difference reflects a large effect size (Cohen's d = 0.998). Nonhuman primates born to MIA-treated dams exhibited increased striatal dopamine in late adolescence-a hallmark molecular biomarker of schizophrenia. These results validate the MIA model in a species more closely related to humans and open up new avenues for understanding the neurodevelopmental biology of schizophrenia and other neurodevelopmental disorders associated with prenatal immune challenge.
Collapse
|
21
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
22
|
Qin D, Wu S, Chen Y, Hu X. Behavioral screening tools for identifying autism in macaques: existing and promising tests. Brain Res Bull 2019; 146:87-93. [PMID: 30605712 DOI: 10.1016/j.brainresbull.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 02/05/2023]
Abstract
Autism is a behaviorally defined neurodevelopmental disease characterized by social communication and social interaction deficits, as well as repetitive behaviors and restricted interests. Although the causes of autism are extremely complex, involving genes, environments and gene-environment interactions, genetic mutations are the important risk factors. For this reason, preclinical research is now shifting into focusing on generating transgenic and knockout models, especially using macaques, which are the closest relatives to humans. In spite of unique advantages of macaques over rodents in both functionally specialized brain structures and highly sophisticated social behaviors, the limited availability of phenotype screening tools restricts their translational utility. Here, this review focuses specially on behavioral phenotyping assays for macaque models of autism. In the first part, the existing behavioral tests are discussed, and the second part is devoted to some few, in our view, very promising tests of new developments. In years to come, we should develop macaque models with high construct validity, improve face validity by designing more specialized behavioral screening tools, strengthen collaborative efforts between rodent and macaque models, and ultimately translate the results from animal models into human clinical trials.
Collapse
Affiliation(s)
- Dongdong Qin
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Shihao Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
23
|
Brown AS, Meyer U. Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. Am J Psychiatry 2018; 175:1073-1083. [PMID: 30220221 PMCID: PMC6408273 DOI: 10.1176/appi.ajp.2018.17121311] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidemiologic studies, including prospective birth cohort investigations, have implicated maternal immune activation in the etiology of neuropsychiatric disorders. Maternal infectious pathogens and inflammation are plausible risk factors for these outcomes and have been associated with schizophrenia, autism spectrum disorder, and bipolar disorder. Concurrent with epidemiologic research are animal models of prenatal immune activation, which have documented behavioral, neurochemical, neuroanatomic, and neurophysiologic disruptions that mirror phenotypes observed in these neuropsychiatric disorders. Epidemiologic studies of maternal immune activation offer the advantage of directly evaluating human populations but are limited in their ability to uncover pathogenic mechanisms. Animal models, on the other hand, are limited in their generalizability to psychiatric disorders but have made significant strides toward discovering causal relationships and biological pathways between maternal immune activation and neuropsychiatric phenotypes. Incorporating these risk factors in reverse translational animal models of maternal immune activation has yielded a wealth of data supporting the predictive potential of epidemiologic studies. To further enhance the translatability between epidemiology and basic science, the authors propose a complementary approach that includes deconstructing neuropsychiatric outcomes of maternal immune activation into key pathophysiologically defined phenotypes that are identifiable in humans and animals and that evaluate the interspecies concordance regarding interactions between maternal immune activation and genetic and epigenetic factors, including processes involving intergenerational disease transmission. [AJP AT 175: Remembering Our Past As We Envision Our Future October 1857: The Pathology of Insanity J.C. Bucknill: "In the brain the state of inflammation itself either very quickly ceases or very soon causes death; but when it does cease it leaves behind it consequences which are frequently the causes of insanity, and the conditions of cerebral atrophy." (Am J Psychiatry 1857; 14:172-193 )].
Collapse
Affiliation(s)
- Alan S. Brown
- New York State Psychiatric Institute, Columbia University Medical Center, New York, NY
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Maternal Immune Activation Alters Adult Behavior, Gut Microbiome and Juvenile Brain Oscillations in Ferrets. eNeuro 2018; 5:eN-NWR-0313-18. [PMID: 30406186 PMCID: PMC6220580 DOI: 10.1523/eneuro.0313-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Maternal immune activation (MIA) has been identified as a causal factor in psychiatric disorders by epidemiological studies in humans and mechanistic studies in rodent models. Addressing this gap in species between mice and human will accelerate the understanding of the role of MIA in the etiology of psychiatric disorders. Here, we provide the first study of MIA in the ferret (Mustela putorius furo), an animal model with a rich history of developmental investigations due to the similarities in developmental programs and cortical organization with primates. We found that after MIA by injection of PolyIC in the pregnant mother animal, the adult offspring exhibited reduced social behavior, less eye contact with humans, decreased recognition memory, a sex-specific increase in amphetamine-induced hyperlocomotion, and altered gut microbiome. We also studied the neurophysiological properties of the MIA ferrets in development by in-vivo recordings of the local field potential (LFP) from visual cortex in five- to six-week-old animals, and found that the spontaneous and sensory-evoked LFP had decreased power, especially in the gamma frequency band. Overall, our results provide the first evidence for the detrimental effect of MIA in ferrets and support the use of the ferret as an intermediate model species for the study of disorders with neurodevelopmental origin.
Collapse
|
25
|
Gustafsson HC, Sullivan EL, Nousen EK, Sullivan CA, Huang E, Rincon M, Nigg JT, Loftis JM. Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels. Brain Behav Immun 2018; 73:470-481. [PMID: 29920327 PMCID: PMC6129422 DOI: 10.1016/j.bbi.2018.06.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Maternal depressive symptoms during pregnancy are associated with risk for offspring emotional and behavioral problems, but the mechanisms by which this association occurs are not known. Infant elevated negative affect (increased crying, irritability, fearfulness, etc.) is a key risk factor for future psychopathology, so understanding its determinants has prevention and early intervention potential. An understudied yet promising hypothesis is that maternal mood affects infant mood via maternal prenatal inflammatory mechanisms, but this has not been prospectively examined in humans. Using data from a pilot study of women followed from the second trimester of pregnancy through six months postpartum (N = 68) our goal was to initiate a prospective study as to whether maternal inflammatory cytokines mediate the association between maternal depressive symptoms and infant offspring negative affect. The study sample was designed to examine a broad range of likely self-regulation and mood-regulation problems in offspring; to that end we over-selected women with a family history or their own history of elevated symptoms of attention-deficit/hyperactivity disorder. Results supported the hypothesis: maternal pro-inflammatory cytokines during the third trimester (indexed using a latent variable that included plasma interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1 concentrations as indicators) mediated the effect, such that higher maternal depressive symptoms were associated with higher maternal inflammation, and this mediated the effect on maternal report of infant negative affect (controlling for maternal affect during the infant period). This is the first human study to demonstrate that maternal inflammatory cytokines mediate the association between prenatal depression and infant outcomes, and the first to demonstrate a biological mechanism through which depressive symptoms impact infant temperament.
Collapse
Affiliation(s)
- Hanna C Gustafsson
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elinor L Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, USA; University of Oregon, 1585 E 13th Ave, Eugene, OR, USA.
| | - Elizabeth K Nousen
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Ceri A Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elaine Huang
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| | - Monica Rincon
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Joel T Nigg
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Jennifer M Loftis
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| |
Collapse
|
26
|
Mueller FS, Polesel M, Richetto J, Meyer U, Weber-Stadlbauer U. Mouse models of maternal immune activation: Mind your caging system! Brain Behav Immun 2018; 73:643-660. [PMID: 30026057 DOI: 10.1016/j.bbi.2018.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools to study neuronal and behavioral dysfunctions in relation to infection-mediated neurodevelopmental disorders. One of the most widely used MIA models is based on gestational administration of poly(I:C) (= polyriboinosinic-polyribocytdilic acid), a synthetic analog of double-stranded RNA that induces a cytokine-associated viral-like acute phase response. The effects of poly(I:C)-induced MIA on phenotypic changes in the offspring are known to be influenced by various factors, including the precise prenatal timing, genetic background, and immune stimulus intensity. Thus far, however, it has been largely ignored whether differences in the basic type of laboratory housing can similarly affect the outcomes of MIA models. Here, we examined this possibility by comparing the poly(I:C)-based MIA model in two housing systems that are commonly used in preclinical mouse research, namely the open cage (OC) and individually ventilated cage (IVC) systems. Pregnant C57BL6/N mice were kept in OCs or IVCs and treated with a low (1 mg/kg, i.v.) or high (5 mg/kg, i.v.) dose of poly(I:C), or with control vehicle solution. MIA or control treatment was induced on gestation day (GD) 9 or 12, and the resulting offspring were raised and maintained in OCs or IVCs until adulthood for behavioral testing. An additional cohort of dams was used to assess the influence of the different caging systems on poly(I:C)-induced cytokine and stress responses in the maternal plasma. Maternal poly(I:C) administration on GD9 caused a dose-dependent increase in spontaneous abortion in IVCs but not in OCs, whereas MIA in IVC systems during a later gestational time-point (GD12) did not affect pregnancy outcomes. Moreover, the precise type of caging system markedly affected maternal cytokines and chemokines at basal states and in response to poly(I:C) and further influenced the maternal levels of the stress hormone, corticosterone. The efficacy of MIA to induce deficits in working memory, social interaction, and sensorimotor gating in the adult offspring was influenced by the different housing conditions, the dosing of poly(I:C), and the precise prenatal timing. Taken together, the present study identifies the basic type of caging system as a novel factor that can confound the outcomes of MIA in mice. Our findings thus urge the need to consider and report the kind of laboratory housing systems used to implement MIA models. Providing this information seems pivotal to yield reproducible results in these models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | | | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
27
|
Wu Y, Qi F, Song D, He Z, Zuo Z, Yang Y, Liu Q, Hu S, Wang X, Zheng X, Yang J, Yuan Q, Zou J, Guo K, Yao Z. Prenatal influenza vaccination rescues impairments of social behavior and lamination in a mouse model of autism. J Neuroinflammation 2018; 15:228. [PMID: 30103815 PMCID: PMC6090662 DOI: 10.1186/s12974-018-1252-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background Prenatal infection is a substantial risk factor for neurodevelopmental disorders such as autism in offspring. We have previously reported that influenza vaccination (VAC) during early pregnancy contributes to neurogenesis and behavioral function in offspring. Results Here, we probe the efficacy of VAC pretreatment on autism-like behaviors in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) mouse model. We show that VAC improves abnormal fetal brain cytoarchitecture and lamination, an effect associated with promotion of intermediate progenitor cell differentiation in MIA fetal brain. These beneficial effects are sufficient to prevent social deficits in adult MIA offspring. Furthermore, whole-genome analysis suggests a strong interaction between Ikzf1 (IKAROS family zinc-finger 1) and neuronal differentiation. Intriguingly, VAC rescues excessive microglial Ikzf1 expression and attenuates microglial inflammatory responses in the MIA fetal brain. Conclusions Our study implies that a preprocessed influenza vaccination prevents maternal bacterial infection from causing neocortical lamination impairments and autism-related behaviors in offspring. Electronic supplementary material The online version of this article (10.1186/s12974-018-1252-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Dan Song
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Yunjie Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Qiongliang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Saisai Hu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xiaona Zheng
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Junhua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Qunfang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.
| |
Collapse
|
28
|
McLimans KE, Willette AA. Autotaxin is Related to Metabolic Dysfunction and Predicts Alzheimer's Disease Outcomes. J Alzheimers Dis 2018; 56:403-413. [PMID: 27911319 DOI: 10.3233/jad-160891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity and insulin resistance are associated with neuropathology and cognitive decline in Alzheimer's disease (AD). OBJECTIVE Ecto-nucleotide pyrophosphatase/phosphodiesterase 2, also called autotaxin, is produced by beige adipose tissue, regulates metabolism, and is higher in AD prefrontal cortex (PFC). Autotaxin may be a novel biomarker of dysmetabolism and AD. METHODS We studied Alzheimer's Disease Neuroimaging Initiative participants who were cognitively normal (CN; n = 86) or had mild cognitive impairment (MCI; n = 135) or AD (n = 66). Statistical analyses were conducted using SPSS software. Multinomial regression analyses tested if higher autotaxin was associated with higher relative risk for MCI or AD diagnosis, compared to the CN group. Linear mixed model analyses were used to regress autotaxin against MRI, FDG-PET, and cognitive outcomes. Spearman correlations were used to associate autotaxin and CSF biomarkers due to non-normality. FreeSurfer 4.3 derived mean cortical thickness in medial temporal lobe and prefrontal regions of interest. RESULTS Autotaxin levels were significantly higher in MCI and AD. Each point increase in log-based autotaxin corresponded to a 3.5 to 5 times higher likelihood of having MCI and AD, respectively. Higher autotaxin in AD predicted hypometabolism in the medial temporal lobe [R2 = 0.343, p < 0.001] and PFC [R2 = 0.294, p < 0.001], and worse performance on executive function and memory factors. Autotaxin was associated with less cortical thickness in PFC areas like orbitofrontal cortex [R2 = 0.272, p < 0.001], as well as levels of total tau, p-tau181, and total tau/Aβ1-42. CONCLUSIONS These results are comparable to previous reports using insulin resistance. CSF autotaxin may be a useful dysmetabolism biomarker for examining AD outcomes and risk.
Collapse
Affiliation(s)
- Kelsey E McLimans
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Department of Psychology, Iowa State University, Ames, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA.,Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
29
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet B Neuropsychiatr Genet 2017; 174:651-660. [PMID: 28691768 PMCID: PMC9586840 DOI: 10.1002/ajmg.b.32567] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Reza Alam
- Nutrition/Metabolism Laboratory; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Hamid M. Abdolmaleky
- Nutrition/Metabolism Laboratory; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
31
|
Zhang J, Li A, Song Z. Systemic LPS resulted in a transient hippocampus malfunction but a prolonged corpus callosum injury. BMC Anesthesiol 2017; 17:105. [PMID: 28806918 PMCID: PMC5557561 DOI: 10.1186/s12871-017-0396-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/06/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To investigate the effect of systemic lipopolysaccharide (LPS) on function of hippocampus and corpus callosum (CC) in adult rats. METHODS Adult rats with mature white matter tract were divided into systemic LPS and saline injection groups. Animal were euthanized following 3 daily injections (day 3) and 3-day after cessation of injections (day 6). At both time points, hippocampal long term potentiation (LTP) and CC compound action potentials (CAP) were recorded, beta amyloid precursor protein (β-APP) level in CC tissue was measured by Western blot, and microglia activation was examined by immunostaining and proportional area analysis. RESULTS Systemic LPS significantly decreased amplitude of both post tetanic potentiation (PTP) and LTP at day 3, but PTP and LTP turned to be normal at day 6. CAP was significantly declined at day 3 but was further declined at day 6. The β-APP levels in CC tissues of LPS injected rats were significantly higher than that of saline group at both time-points. Interestingly, proportional area measurement disclosed that microglial areas in both hippocampus and CC significantly expanded at day3, but at the day 6, microglial area decreased in hippocampus but further increased in CC. CONCLUSION Systemic LPS resulted in a transient hippocampus malfunction but a prolonged CC injury. Microglia activation may correlate with such LPS induced white matter injury.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, 410008, China
| | - Aiyuan Li
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
32
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
33
|
Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol Dis 2017; 106:291-300. [PMID: 28751257 DOI: 10.1016/j.nbd.2017.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Maternal inflammation during pregnancy can have detrimental effects on embryonic development that persist during adulthood. However, the underlying mechanisms and insights in the responsible cell types are still largely unknown. Here we report the effect of maternal inflammation on fetal microglia, the innate immune cells of the central nervous system (CNS). In mice, a challenge with LPS during late gestation stages (days 15-16-17) induced a pro-inflammatory response in fetal microglia. Adult whole brain microglia of mice that were exposed to LPS during embryonic development displayed a persistent reduction in pro-inflammatory activation in response to a re-challenge with LPS. In contrast, hippocampal microglia of these mice displayed an increased inflammatory response to an LPS re-challenge. In addition, a reduced expression of brain-derived neurotrophic factor (BDNF) was observed in hippocampal microglia of LPS-offspring. Microglia-derived BDNF has been shown to be important for learning and memory processes. In line with these observations, behavioral- and learning tasks with mice that were exposed to maternal inflammation revealed reduced home cage activity, reduced anxiety and reduced learning performance in a T-maze. These data show that exposure to maternal inflammation during late gestation results in long term changes in microglia responsiveness during adulthood, which is different in nature in hippocampus compared to total brain microglia.
Collapse
|
34
|
Mouihate A, Al-Hashash H, Rakhshani-Moghadam S, Kalakh S. Impact of prenatal immune challenge on the demyelination injury during adulthood. CNS Neurosci Ther 2017; 23:724-735. [PMID: 28718218 DOI: 10.1111/cns.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
AIM Brain inflammation is associated with several brain diseases such as multiple sclerosis (MS), a disease characterized by demyelination. Whether prenatal immune challenge affects demyelination-induced inflammation in the white matter during adulthood is unclear. In the present study, we used a well-established experimental model of focal demyelination to assess whether prenatal immune challenge affects demyelination-induced inflammation. METHODS Pregnant rats were injected with either lipopolysaccharide (100 μg/kg, ip) or pyrogen-free saline. A 2 μL solution of the gliotoxin ethidium bromide (0.04%) was stereotaxically infused into the corpus callosum of adult male offspring. The extent of demyelination lesion was assessed using Luxol fast blue (LFB) staining. Oligodendrocyte precursor cells, mature oligodendrocytes, markers of cellular gliosis, and inflammation were monitored in the vicinity of the demyelination lesion area. RESULTS Prenatal lipopolysaccharide reduced the size of the demyelination lesion during adulthood. This reduced lesion was associated with enhanced density of mature oligodendrocytes and reduced density of microglial cells in the vicinity of the demyelination lesion. Such reduction in microglial cell density was accompanied by a reduced activation of the nuclear factor κB signaling pathway. CONCLUSION These data strongly suggest that prenatal immune challenge dampens the extent of demyelination during adulthood likely by reprogramming the local brain inflammatory response to demyelinating insults.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| | - Hessah Al-Hashash
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| | | | - Samah Kalakh
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| |
Collapse
|
35
|
Rose DR, Careaga M, Van de Water J, McAllister K, Bauman MD, Ashwood P. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun 2017; 63:60-70. [PMID: 27876552 PMCID: PMC5432383 DOI: 10.1016/j.bbi.2016.11.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 01/18/2023] Open
Abstract
Infection during pregnancy can lead to activation of the maternal immune system and has been associated with an increased risk of having an offspring later diagnosed with a neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD) or schizophrenia (SZ). Most maternal immune activation (MIA) studies to date have been in rodents and usually involve the use of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). However, since NDD are based on behavioral changes, a model of MIA in non-human primates could potentially provide data that helps illuminate complex behavioral and immune outputs in human NDD. In this study twenty-one pregnant rhesus macaques were either given three injections over 72 hours of poly I:C-LC, a double stranded RNA analog (viral mimic), or saline as a control. Injections were given near the end of the first trimester or near the end of the second trimester to determine if there were differences in immune output due to the timing of MIA.An additional three non-treated animals were used as controls. The offspring were followed until 4 years of age, with blood collected at the end of their first (year 1) and fourth (year 4) years to assess dynamic cellular immune function. Induced responses from peripheral immune cells were measured using multiplex assays.At one year of age, MIA exposed offspring displayed elevated production of innate inflammatory cytokines including: interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor (TNF)α at baseline and following stimulation. At four years of age, the MIA exposed offspring continued to display elevated IL-1β, and there was also a pattern of an increased production of T-cell helper type (TH)-2 cytokines, IL-4 and IL-13. Throughout this time period, the offspring of MIA treated dams exhibited altered behavioral phenotypes including increased stereotyped behaviors. During the first two years, stereotyped behaviors were associated with innate cytokine production. Self-directed behaviors were associated with TH2 cytokine production at year 4. Data from this study suggests long-term behavioral and immune activation was present in offspring following MIA. This novel non-human primate model of MIA may provide a relevant clinically translational model to help further elucidate the role between immune dysfunction and complex behavioral outputs following MIA.
Collapse
Affiliation(s)
- Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, CA, USA,MIND Institute, University of California Davis, University of California, Davis, CA, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, CA, USA,MIND Institute, University of California Davis, University of California, Davis, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California Davis, University of California, Davis, CA, USA,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, University of California, Davis, CA, USA
| | - Kim McAllister
- MIND Institute, University of California Davis, University of California, Davis, CA, USA,Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California Davis, University of California, Davis, CA, USA
| | - Melissa D. Bauman
- MIND Institute, University of California Davis, University of California, Davis, CA, USA,Department of Psychiatry and Behavioral Sciences, University of California Davis, University of California, Davis, CA, USA,California National Primate Research Center, University of California Davis, University of California, Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis; CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
36
|
Lee AS, Azmitia EC, Whitaker-Azmitia PM. Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain Behav Immun 2017; 62:193-202. [PMID: 28159644 DOI: 10.1016/j.bbi.2017.01.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022] Open
Abstract
Microglia can shift into different complex morphologies depending on the microenvironment of the central nervous system (CNS). The distinct morphologies correlate with specific functions and can indicate the pathophysiological state of the CNS. Previous postmortem studies of autism spectrum disorder (ASD) showed neuroinflammation in ASD indicated by increased microglial density. These changes in the microglia density can be accompanied by changes in microglia phenotype but the individual contribution of different microglia phenotypes to the pathophysiology of ASD remains unclear. Here, we used an unbiased stereological approach to quantify six structurally and functionally distinct microglia phenotypes in postmortem human temporal cortex, which were immuno-stained with Iba1. The total density of all microglia phenotypes did not differ between ASD donors and typically developing individual donors. However, there was a significant decrease in ramified microglia in both gray matter and white matter of ASD, and a significant increase in primed microglia in gray matter of ASD compared to typically developing individuals. This increase in primed microglia showed a positive correlation with donor age in both gray matter and white of ASD, but not in typically developing individuals. Our results provide evidence of a shift in microglial phenotype that may indicate impaired synaptic plasticity and a chronic vulnerability to exaggerated immune responses.
Collapse
Affiliation(s)
- Andrew S Lee
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biology, New York University, New York, NY 10003, USA; Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.
| | - Efrain C Azmitia
- Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|
37
|
Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast 2016; 2016:3597209. [PMID: 27840741 PMCID: PMC5093279 DOI: 10.1155/2016/3597209] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology.
Collapse
|
38
|
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, Hoisington AJ, Postolache TT, Kinney KA, Marciani D, Hernandez M, Hemmings SMJ, Malan-Muller S, Wright KP, Knight R, Raison CL, Rook GAW. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Environ Health Rep 2016; 3:270-86. [PMID: 27436048 PMCID: PMC5763918 DOI: 10.1007/s40572-016-0100-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hygiene or "Old Friends" hypothesis proposes that the epidemic of inflammatory disease in modern urban societies stems at least in part from reduced exposure to microbes that normally prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such diseases include but are not limited to allergies and asthma; we and others have proposed that the markedly reduced exposure to these Old Friends in modern urban societies may also increase vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as anxiety and affective disorders, where data are emerging in support of inflammation as a risk factor. Here, we review recent advances in our understanding of the potential for Old Friends, including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving bacterially derived metabolites, bacterial antigens, and helminthic antigens, through which these inputs promote immunoregulation. Though findings are encouraging, significant human subjects' research is required to evaluate the potential impact of Old Friends, including environmental microbial inputs, on biological signatures and clinically meaningful mental health prevention and intervention outcomes.
Collapse
Affiliation(s)
- Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Philip H Siebler
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Dominic Schmidt
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James E Hassell
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Paula S Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James H Fox
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081, Ulm, Germany
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine & Rehabilitation, University of Colorado, Anschutz School of Medicine, Aurora, CO, 80045, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, 80220, USA
| | - Andrew J Hoisington
- Department of Civil and Environmental Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Teodor T Postolache
- University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain MIRECC, Denver, CO, 80220, USA
- VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | | | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Kenneth P Wright
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Charles L Raison
- School of Human Ecology and School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Graham A W Rook
- Center for Clinical Microbiology, UCL (University College London), WC1E 6BT, London, UK
| |
Collapse
|
39
|
Chao MW, Chen CP, Yang YH, Chuang YC, Chu TY, Tseng CY. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain. Sci Rep 2016; 6:32373. [PMID: 27577752 PMCID: PMC5006028 DOI: 10.1038/srep32373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsiu Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Tzu-Yun Chu
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
- International Master Program of Biomedical Material and Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
- Center for Nano-Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| |
Collapse
|
40
|
Gonzales HK, O'Reilly M, Lang R, Sigafoos J, Lancioni G, Kajian M, Kuhn M, Longino D, Rojeski L, Watkins L. Research involving anxiety in non-human primates has potential implications for the assessment and treatment of anxiety in autism spectrum disorder: A translational literature review. Dev Neurorehabil 2016; 19:175-92. [PMID: 25057887 DOI: 10.3109/17518423.2014.941117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this translational review (i.e. moving from basic primate research toward possible human applications) was to summarize non-human primate literature on anxiety to inform the development of future assessments of anxiety in non-verbal individuals with autism spectrum disorder (ASD). METHODS Systematic searches of databases identified 67 studies that met inclusion criteria. Each study was analysed and summarised in terms of (a) strategies used to evoke anxiety, (b) non-verbal behavioural indicators of anxiety and (c) physiological indicators of anxiety. RESULTS Eighteen strategies were used to evoke anxiety, 48 non-verbal behavioural indicators and 17 physiological indicators of anxiety were measured. CONCLUSIONS A number of the strategies used with non-human primates, if modified carefully, could be considered in the ongoing effort to study anxiety in individuals with ASD. Potential applications to the assessment of anxiety in humans with ASD are discussed.
Collapse
Affiliation(s)
- Heather K Gonzales
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Mark O'Reilly
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Russell Lang
- b Department of Curriculum and Instruction , Clinic for Autism Research Evaluation and Support, Texas State University , San Marcos , TX , USA
| | - Jeff Sigafoos
- c Department of Special Education , Victoria University of Wellington , Wellington , New Zealand , and
| | - Giulio Lancioni
- d Department of Education , University of Bari , Bari , Italy
| | - Mandana Kajian
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Michelle Kuhn
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Deanna Longino
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laura Rojeski
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laci Watkins
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
41
|
Inflammatory biomarkers and academic performance in youth. The UP & DOWN Study. Brain Behav Immun 2016; 54:122-127. [PMID: 26778777 DOI: 10.1016/j.bbi.2016.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/14/2022] Open
Abstract
Inflammation influences cognitive development in infants and older adults, however, how inflammation may affect academic development during childhood and adolescence remains to be elucidated. This study aimed to examine the association between inflammatory biomarkers and academic performance in children and adolescents. A total of 494 youth (238 girls) aged 10.6 ± 3.4 years participated in the study. Four inflammatory biomarkers were selected: C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and white blood cell (WBC) count. An inflammatory index was created using the above mentioned biomarkers. Academic performance was assessed through schools records. Results showed that three of the four inflammatory biomarkers (CRP, IL-6 and WBC) and the inflammatory index were negatively associated with all academic indicators (β values ranging from -0.094 to -0.217, all P<0.05) independent of confounders including body fat percentage. Indeed, youth in the highest tertile of the inflammatory index had significantly lower scores in all academic indicators compared with youth in the middle tertile (scores ranging from -0.578 to -0.344) and in the lowest tertile (scores ranging from -0.678 to -0.381). In conclusion, inflammation may impair academic performance independently of body fat levels in youth. Our results are of importance because the consequences of childhood and adolescence inflammation tend to continue into adulthood. Lifestyle interventions in youth may be promising in reducing levels of inflammation beyond the reduction in body fat in order to achieve cognitive benefits.
Collapse
|
42
|
Astrocytes as Pharmacological Targets in the Treatment of Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00025-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Gottfried C, Bambini-Junior V, Francis F, Riesgo R, Savino W. The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Front Psychiatry 2015; 6:121. [PMID: 26441683 PMCID: PMC4563148 DOI: 10.3389/fpsyt.2015.00121] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) involves a complex interplay of both genetic and environmental risk factors, with immune alterations and synaptic connection deficiency in early life. In the past decade, studies of ASD have substantially increased, in both humans and animal models. Immunological imbalance (including autoimmunity) has been proposed as a major etiological component in ASD, taking into account increased levels of pro-inflammatory cytokines observed in postmortem brain from patients, as well as autoantibody production. Also, epidemiological studies have established a correlation of ASD with family history of autoimmune diseases; associations with major histocompatibility complex haplotypes and abnormal levels of immunological markers in the blood. Moreover, the use of animal models to study ASD is providing increasing information on the relationship between the immune system and the pathophysiology of ASD. Herein, we will discuss the accumulating literature for ASD, giving special attention to the relevant aspects of factors that may be related to the neuroimmune interface in the development of ASD, including changes in neuroplasticity.
Collapse
Affiliation(s)
- Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fiona Francis
- Sorbonne Université, Université Pierre et Marie Curie, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Child Neurology Unit, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res 2015; 1617:47-62. [DOI: 10.1016/j.brainres.2014.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 04/05/2014] [Indexed: 02/08/2023]
|
45
|
Weir RK, Forghany R, Smith SE, Patterson PH, McAllister AK, Schumann CM, Bauman MD. Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation. Brain Behav Immun 2015; 48:139-46. [PMID: 25816799 PMCID: PMC5671487 DOI: 10.1016/j.bbi.2015.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Maternal infection during pregnancy increases the risk for neurodevelopmental disorders in offspring. Rodent models have played a critical role in establishing maternal immune activation (MIA) as a causal factor for altered brain and behavioral development in offspring. We recently extended these findings to a species more closely related to humans by demonstrating that rhesus monkeys (Macaca mulatta) prenatally exposed to MIA also develop abnormal behaviors. Here, for the first time, we present initial evidence of underlying brain pathology in this novel nonhuman primate MIA model. Pregnant rhesus monkeys were injected with a modified form of the viral mimic polyI:C (poly ICLC) or saline at the end of the first trimester. Brain tissue was collected from the offspring at 3.5 years and blocks of dorsolateral prefrontal cortex (BA46) were used to analyze neuronal dendritic morphology and spine density using the Golgi-Cox impregnation method. For each case, 10 layer III pyramidal cells were traced in their entirety, including all apical, oblique and basal dendrites, and their spines. We further analyzed somal size and apical dendrite trunk morphology in 30 cells per case over a 30 μm section located 100±10 μm from the soma. Compared to controls, apical dendrites of MIA-treated offspring were smaller in diameter and exhibited a greater number of oblique dendrites. These data provide the first evidence that prenatal exposure to MIA alters dendritic morphology in a nonhuman primate MIA model, which may have profound implications for revealing the underlying neuropathology of neurodevelopmental disorders related to maternal infection.
Collapse
Affiliation(s)
- Ruth K. Weir
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA,Corresponding author (for editorial process), Ruth Weir Ph.D. Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA, USA ; The MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA. 916-703-0341
| | - Reihaneh Forghany
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA
| | - Stephen E.P. Smith
- Dept. of Immunology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | | | | | - Cynthia M. Schumann
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA
| | - Melissa D. Bauman
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA
| |
Collapse
|
46
|
Machado CJ, Whitaker AM, Smith SE, Patterson PH, Bauman MD. Maternal immune activation in nonhuman primates alters social attention in juvenile offspring. Biol Psychiatry 2015; 77:823-32. [PMID: 25442006 PMCID: PMC7010413 DOI: 10.1016/j.biopsych.2014.07.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/04/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Sickness during pregnancy is associated with an increased risk of offspring neurodevelopmental disorders. Rodent models have played a critical role in establishing causal relationships and identifying mechanisms of altered brain and behavior development in pups prenatally exposed to maternal immune activation (MIA). We recently developed a novel nonhuman primate model to bridge the gap between human epidemiological studies and rodent models of prenatal immune challenge. Our initial results demonstrated that rhesus monkeys given the viral mimic synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-l-lysine) during pregnancy produce offspring with abnormal repetitive behaviors, altered communication, and atypical social interactions. METHODS We utilized noninvasive infrared eye tracking to further evaluate social processing capabilities in a subset of the first trimester MIA-exposed offspring (n = 4) and control animals (n = 4) from our previous study. RESULTS As juveniles, the MIA offspring differed from control animals on several measures of social attention, particularly when viewing macaque faces depicting the fear grimace facial expression. Compared with control animals, MIA offspring had a longer latency before fixating on the eyes, had fewer fixations directed at the eyes, and spent less total time fixating on the eyes of the fear grimace images. CONCLUSIONS In the rhesus monkey model, exposure to MIA at the end of the first trimester results in abnormal gaze patterns to salient social information. The use of noninvasive eye tracking extends the findings from rodent MIA models to more human-like behaviors resembling those in both autism spectrum disorder and schizophrenia.
Collapse
|
47
|
Rook GAW, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends and psychiatric disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:319-56. [PMID: 24997041 DOI: 10.1007/978-1-4939-0897-4_15] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of the immune system is an important function of the gut microbiota. Increasing evidence suggests that modern living conditions cause the gut microbiota to deviate from the form it took during human evolution. Contributing factors include loss of helminth infections, encountering less microbial biodiversity, and modulation of the microbiota composition by diet and antibiotic use. Thus the gut microbiota is a major mediator of the hygiene hypothesis (or as we prefer, "Old Friends" mechanism), which describes the role of organisms with which we co-evolved, and that needed to be tolerated, as crucial inducers of immunoregulation. At least partly as a consequence of reduced exposure to immunoregulatory Old Friends, many but not all of which resided in the gut, high-income countries are undergoing large increases in a wide range of chronic inflammatory disorders including allergies, autoimmunity and inflammatory bowel diseases. Depression, anxiety and reduced stress resilience are comorbid with these conditions, or can occur in individuals with persistently raised circulating levels of biomarkers of inflammation in the absence of clinically apparent peripheral inflammatory disease. Moreover poorly regulated inflammation during pregnancy might contribute to brain developmental abnormalities that underlie some cases of autism spectrum disorders and schizophrenia. In this chapter we explain how the gut microbiota drives immunoregulation, how faulty immunoregulation and inflammation predispose to psychiatric disease, and how psychological stress drives further inflammation via pathways that involve the gut and microbiota. We also outline how this two-way relationship between the brain and inflammation implicates the microbiota, Old Friends and immunoregulation in the control of stress resilience.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, UCL (University College London), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
48
|
Córdova-Palomera A, Alemany S, Falcón C, Bargalló N, Goldberg X, Crespo-Facorro B, Nenadic I, Fañanás L. Cortical thickness correlates of psychotic experiences: examining the effect of season of birth using a genetically informative design. J Psychiatr Res 2014; 56:144-9. [PMID: 24923523 DOI: 10.1016/j.jpsychires.2014.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022]
Abstract
Season of birth has been shown to influence risk for several neuropsychiatric diseases. Furthermore, it has been suggested that season of birth modifies a number of brain morphological traits. Since cortical thickness alterations have been reported across some levels of the psychosis-spectrum, this study was aimed at i) assessing the scarcely explored relationship between cortical thickness and severity of subclinical psychotic experiences (PEs) in healthy subjects, and ii) evaluating the potential impact of season of birth in the preceding thickness-PEs relationship. As both PEs and brain cortical features are heritable, the current work used monozygotic twins to separately evaluate familial and unique environmental factors. High-resolution structural MRI scans of 48 twins (24 monozygotic pairs) were analyzed to estimate cortical thickness using FreeSurfer. They were then examined in relation to PEs, accounting for the effects of birth season; putative differential relationships between PEs and cortical thickness depending on season of birth were also tested. Current results support previous findings indicative of cortical thickening in healthy individuals with high psychometrically assessed psychosis scores, probably in line with theories of compensatory aspects of brain features in non-clinical populations. Additionally, they suggest distinct patterns of cortical thickness-PEs relationships depending on birth seasonality. Familial factors underlying the presence of PEs may drive these effects.
Collapse
Affiliation(s)
- A Córdova-Palomera
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), C/Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - S Alemany
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), C/Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - C Falcón
- Medical Image Core Facility, the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, 149-153, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
| | - N Bargalló
- Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), C/Doctor Esquerdo, 46, 28007 Madrid, Spain; Medical Image Core Facility, the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, 149-153, 08036 Barcelona, Spain; Centro de Diagnóstico por Imagen, Hospital Clínico, C/Villarroel, 170, 08036 Barcelona, Spain
| | - X Goldberg
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), C/Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - B Crespo-Facorro
- Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), C/Doctor Esquerdo, 46, 28007 Madrid, Spain; University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Av. Valdecilla, s/n, 39008 Santander, Cantabria, Spain; IFIMAV, Instituto de Formación e Investigación Marqués de Valdecilla, Av. Valdecilla, s/n, 39008 Santander, Cantabria, Spain
| | - I Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743 Jena, Germany
| | - L Fañanás
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), C/Doctor Esquerdo, 46, 28007 Madrid, Spain.
| |
Collapse
|
49
|
Rook GAW, Raison CL, Lowry CA. Microbial 'old friends', immunoregulation and socioeconomic status. Clin Exp Immunol 2014; 177:1-12. [PMID: 24401109 PMCID: PMC4089149 DOI: 10.1111/cei.12269] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/13/2022] Open
Abstract
The immune system evolved to require input from at least three sources that we collectively term the ‘old friends’: (i) the commensal microbiotas transmitted by mothers and other family members; (ii) organisms from the natural environment that modulate and diversify the commensal microbiotas; and (iii) the ‘old’ infections that could persist in small isolated hunter-gatherer groups as relatively harmless subclinical infections or carrier states. These categories of organism had to be tolerated and co-evolved roles in the development and regulation of the immune system. By contrast, the ‘crowd infections’ (such as childhood virus infections) evolved later, when urbanization led to large communities. They did not evolve immunoregulatory roles because they either killed the host or induced solid immunity, and could not persist in hunter-gatherer groups. Because the western lifestyle and medical practice deplete the ‘old’ infections (for example helminths), immunoregulatory disorders have increased, and the immune system has become more dependent upon microbiotas and the natural environment. However, urbanization maintains exposure to the crowd infections that lack immunoregulatory roles, while accelerating loss of exposure to the natural environment. This effect is most pronounced in individuals of low socioeconomic status (SES) who lack rural second homes and rural holidays. Interestingly, large epidemiological studies indicate that the health benefits of living close to green spaces are most pronounced for individuals of low SES. Here we discuss the immunoregulatory role of the natural environment, and how this may interact with, and modulate, the proinflammatory effects of psychosocial stressors in low SES individuals.
Collapse
Affiliation(s)
- G A W Rook
- Centre for Clinical Microbiology, Department of Infection, University College London (UCL), London, UK
| | | | | |
Collapse
|
50
|
Bauman MD, Iosif AM, Smith SE, Bregere C, Amaral DG, Patterson PH. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 2014; 75:332-41. [PMID: 24011823 PMCID: PMC6782053 DOI: 10.1016/j.biopsych.2013.06.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring. Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical populations and rodent models of maternal immune activation (MIA). METHODS A modified form of the viral mimic, synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-L-lysine) was delivered to two separate groups of pregnant rhesus monkeys to induce MIA: 1) late first trimester MIA (n = 6), and 2) late second trimester MIA (n = 7). Control animals (n = 11) received saline injections at the same first or second trimester time points or were untreated. Sickness behavior, temperature, and cytokine profiles of the pregnant monkeys confirmed a strong inflammatory response to MIA. RESULTS Behavioral development of the offspring was studied for 24 months. Following weaning at 6 months of age, MIA offspring exhibited abnormal responses to separation from their mothers. As the animals matured, MIA offspring displayed increased repetitive behaviors and decreased affiliative vocalizations. When evaluated with unfamiliar conspecifics, first trimester MIA offspring deviated from species-typical macaque social behavior by inappropriately approaching and remaining in immediate proximity of an unfamiliar animal. CONCLUSIONS In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism and schizophrenia.
Collapse
Affiliation(s)
- Melissa D. Bauman
- Department of Psychiatry and Behavioral Sciences, California National Primate Research Center, University of California, Davis, Davis; The M.I.N.D. Institute, University of California, Davis, Sacramento, Center for Neuroscience, University of California, Davis, Davis, California
| | - Ana-Maria Iosif
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, Davis
| | | | | | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, California National Primate Research Center, University of California, Davis, Davis; The M.I.N.D. Institute, University of California, Davis, Sacramento; Center for Neuroscience, University of California, Davis, Davis, California
| | | |
Collapse
|