1
|
Borgonetti V, Roberts AJ, Bajo M, Galeotti N, Roberto M. Chronic alcohol induced mechanical allodynia by promoting neuroinflammation: A mouse model of alcohol-evoked neuropathic pain. Br J Pharmacol 2023; 180:2377-2392. [PMID: 37050867 PMCID: PMC10898491 DOI: 10.1111/bph.16091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain is considered a key factor contributing to alcohol use disorder (AUD). The mechanisms responsible for chronic pain associated with chronic alcohol consumption are unknown. We evaluated the development of chronic pain in a mouse model of alcohol dependence and investigate the role of neuroinflammation. EXPERIMENTAL APPROACH The chronic-intermittent ethanol two-bottle choice CIE-2BC paradigm generates three groups: alcohol-dependent with escalating alcohol intake, nondependent (moderate drinking) and alcohol-naïve control male and female mice. We measured mechanical allodynia during withdrawal and after the last voluntary drinking. Immunoblotting was used to evaluate the protein levels of IBA-1, CSFR, IL-6, p38 and ERK2/1 in spinal cord tissue of dependent and non-dependent animals. KEY RESULTS We found significant escalation of drinking in the dependent group in male and female compared with the non-dependent group. The dependent group developed mechanical allodynia during 72 h of withdrawal, which was completely reversed after voluntary drinking. We observed an increased pain hypersensitivity compared with the naïve in 50% of non-dependent group. Increased IBA-1 and CSFR expression was observed in spinal cord tissue of both hypersensitivity-abstinence related and neuropathy-alcohol mice, and increased IL-6 expression and ERK1/2 activation in mice with hypersensitivity-related to abstinence, but not in mice with alcohol-evoked neuropathic pain. CONCLUSIONS AND IMPLICATIONS The CIE-2BC model induces two distinct pain conditions specific to the type of ethanol exposure: abstinence-related hypersensitivity in dependent mice and alcohol-evoked neuropathic pain in about a half of the non-dependent mice.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, Florence, 50139, Italy
- Department of Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michal Bajo
- Department of Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, Florence, 50139, Italy
| | - Marisa Roberto
- Department of Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Hoffman JL, Faccidomo SP, Taylor SM, DeMiceli KG, May AM, Smith EN, Whindleton CM, Hodge CW. Negative modulation of AMPA receptors bound to transmembrane AMPA receptor regulatory protein γ-8 blunts the positive reinforcing properties of alcohol and sucrose in a brain region-dependent manner in male mice. Psychopharmacology (Berl) 2023; 240:1261-1273. [PMID: 37055596 PMCID: PMC10698495 DOI: 10.1007/s00213-023-06365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
RATIONALE The development and progression of alcohol use disorder (AUD) are widely viewed as maladaptive neuroplasticity. The transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory protein γ8 (TARP γ-8) is a molecular mechanism of neuroplasticity that has not been evaluated in AUD or other addictions. OBJECTIVE To address this gap in knowledge, we evaluated the mechanistic role of TARP γ-8 bound AMPAR activity in the basolateral amygdala (BLA) and ventral hippocampus (vHPC) in the positive reinforcing effects of alcohol, which drive repetitive alcohol use throughout the course of AUD, in male C57BL/6 J mice. These brain regions were selected because they exhibit high levels of TARP γ-8 expression and send glutamate projections to the nucleus accumbens (NAc), which is a key nucleus in the brain reward pathway. METHODS AND RESULTS Site-specific pharmacological inhibition of AMPARs bound to TARP γ-8 in the BLA via bilateral infusion of the selective negative modulator JNJ-55511118 (0-2 µg/µl/side) significantly decreased operant alcohol self-administration with no effect on sucrose self-administration in behavior-matched controls. Temporal analysis showed that reductions in alcohol-reinforced response rate occurred > 25 min after the onset of responding, consistent with a blunting of the positive reinforcing effects of alcohol in the absence of nonspecific behavioral effects. In contrast, inhibition of TARP γ-8 bound AMPARs in the vHPC selectively decreased sucrose self-administration with no effect on alcohol. CONCLUSIONS This study reveals a novel brain region-specific role of TARP γ-8 bound AMPARs as a molecular mechanism of the positive reinforcing effects of alcohol and non-drug rewards.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Sara P Faccidomo
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Seth M Taylor
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Kristina G DeMiceli
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Ashley M May
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Evan N Smith
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Ciarra M Whindleton
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Interoception and alcohol: Mechanisms, networks, and implications. Neuropharmacology 2021; 200:108807. [PMID: 34562442 DOI: 10.1016/j.neuropharm.2021.108807] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023]
Abstract
Interoception refers to the perception of the internal state of the body and is increasingly being recognized as an important factor in mental health disorders. Drugs of abuse produce powerful interoceptive states that are upstream of behaviors that drive and influence drug intake, and addiction pathology is impacted by interoceptive processes. The goal of the present review is to discuss interoceptive processes related to alcohol. We will cover physiological responses to alcohol, how interoceptive states can impact drinking, and the recruitment of brain networks as informed by clinical research. We also review the molecular and brain circuitry mechanisms of alcohol interoceptive effects as informed by preclinical studies. Finally, we will discuss emerging treatments with consideration of interoception processes. As our understanding of the role of interoception in drug and alcohol use grows, we suggest that the convergence of information provided by clinical and preclinical studies will be increasingly important. Given the complexity of interoceptive processing and the multitude of brain regions involved, an overarching network-based framework can provide context for how focused manipulations modulate interoceptive processing as a whole. In turn, preclinical studies can systematically determine the roles of individual nodes and their molecular underpinnings in a given network, potentially suggesting new therapeutic targets and directions. As interoceptive processing drives and influences motivation, emotion, and subsequent behavior, consideration of interoception is important for our understanding of processes that drive ongoing drinking and relapse.
Collapse
|
4
|
Makhijani VH, Irukulapati P, Van Voorhies K, Fortino B, Besheer J. Central amygdala mineralocorticoid receptors modulate alcohol self-administration. Neuropharmacology 2020; 181:108337. [PMID: 33007359 PMCID: PMC7657087 DOI: 10.1016/j.neuropharm.2020.108337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The mineralocorticoid receptor (MR) is an emerging target in the field of alcohol research. The MR is a steroid receptor in the same family as the glucocorticoid receptor, with which it shares the ligand corticosterone in addition to the MR selective ligand aldosterone. Recent studies have shown correlations between central amygdala (CeA) MR expression and alcohol drinking in rats and macaques, as well as correlations between aldosterone and alcohol craving in individuals with alcohol use disorder (AUD). Additionally, our previous work demonstrated that systemic treatment with the MR antagonist spironolactone reduced alcohol self-administration and response persistence in both male and female rats. This study examined if reductions in self-administration following MR antagonist treatment were related to dysregulation of MR-mediated corticosterone negative feedback. Female rats treated with spironolactone (50 mg/kg; IP) showed increased plasma corticosterone following self-administration, which correlated with reduced alcohol self-administration. Next, local microinjection of the MR-selective antagonist eplerenone was used to identify the brain-regional locus of MR action on alcohol self-administration. Eplerenone infusion produced dose-dependent reductions in alcohol self-administration in the CeA, but had no effect in the dorsal hippocampus. Finally, to assay the functional role of CeA MR expression in alcohol self-administration, CeA MR was knocked down by antisense oligonucleotide (ASO) infusion prior to alcohol self-administration. Rats showed a transient reduction in alcohol self-administration 1 day after ASO infusion. Together these studies demonstrate a functional role of CeA MR in modulating alcohol self-administration and make a case for studying MR antagonists as a novel treatment for AUD.
Collapse
Affiliation(s)
- Viren H Makhijani
- Bowles Center for Alcohol Studies, USA; Neuroscience Curriculum, USA
| | | | | | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Neuroscience Curriculum, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Hoffman JL, Faccidomo S, Kim M, Taylor SM, Agoglia AE, May AM, Smith EN, Wong LC, Hodge CW. Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:169-230. [PMID: 31733664 PMCID: PMC6939615 DOI: 10.1016/bs.irn.2019.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that represents the most common cause of dementia in the United States. Although the link between alcohol use and AD has been studied, preclinical research has potential to elucidate neurobiological mechanisms that underlie this interaction. This study was designed to test the hypothesis that nondependent alcohol drinking exacerbates the onset and magnitude of AD-like neural and behavioral pathology. We first evaluated the impact of voluntary 24-h, two-bottle choice home-cage alcohol drinking on the prefrontal cortex and amygdala neuroproteome in C57BL/6J mice and found a striking association between alcohol drinking and AD-like pathology. Bioinformatics identified the AD-associated proteins MAPT (Tau), amyloid beta precursor protein (APP), and presenilin-1 (PSEN-1) as the main modulators of alcohol-sensitive protein networks that included AD-related proteins that regulate energy metabolism (ATP5D, HK1, AK1, PGAM1, CKB), cytoskeletal development (BASP1, CAP1, DPYSL2 [CRMP2], ALDOA, TUBA1A, CFL2, ACTG1), cellular/oxidative stress (HSPA5, HSPA8, ENO1, ENO2), and DNA regulation (PURA, YWHAZ). To address the impact of alcohol drinking on AD, studies were conducted using 3xTg-AD mice that express human MAPT, APP, and PSEN-1 transgenes and develop AD-like brain and behavioral pathology. 3xTg-AD and wild-type mice consumed alcohol or saccharin for 4 months. Behavioral tests were administered during a 1-month alcohol-free period. Alcohol intake induced AD-like behavioral pathologies in 3xTg-AD mice including impaired spatial memory in the Morris Water Maze, diminished sensorimotor gating as measured by prepulse inhibition, and exacerbated conditioned fear. Multiplex immunoassay conducted on brain lysates showed that alcohol drinking upregulated primary markers of AD pathology in 3xTg-AD mice: Aβ 42/40 ratio in the lateral entorhinal and prefrontal cortex and total Tau expression in the lateral entorhinal cortex, medial prefrontal cortex, and amygdala at 1-month post alcohol exposure. Immunocytochemistry showed that alcohol use upregulated expression of pTau (Ser199/Ser202) in the hippocampus, which is consistent with late-stage AD. According to the NIA-AA Research Framework, these results suggest that alcohol use is associated with Alzheimer's pathology. Results also showed that alcohol use was associated with a general reduction in Akt/mTOR signaling via several phosphoproteins (IR, IRS1, IGF1R, PTEN, ERK, mTOR, p70S6K, RPS6) in multiple brain regions including hippocampus and entorhinal cortex. Dysregulation of Akt/mTOR phosphoproteins suggests alcohol may target this pathway in AD progression. These results suggest that nondependent alcohol drinking increases the onset and magnitude of AD-like neural and behavioral pathology in 3xTg-AD mice.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sara Faccidomo
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle Kim
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M Taylor
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Abigail E Agoglia
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley M May
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Evan N Smith
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - L C Wong
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clyde W Hodge
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
6
|
Stevenson RA, Hoffman JL, Maldonado-Devincci AM, Faccidomo S, Hodge CW. MGluR5 activity is required for the induction of ethanol behavioral sensitization and associated changes in ERK MAP kinase phosphorylation in the nucleus accumbens shell and lateral habenula. Behav Brain Res 2019; 367:19-27. [PMID: 30914307 DOI: 10.1016/j.bbr.2019.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/26/2022]
Abstract
Metabotropic glutamate receptor subtype-5 (mGluR5) activity regulates a variety of behavioral pathologies associated with alcohol addiction. The main goal of this study was to determine if mGluR5 regulates the induction of ethanol-induced locomotor sensitization, which is a model of experience-dependent plasticity following initial exposure to drugs of abuse. The extracellular signal-regulated kinase (ERK1/2) pathway is downstream of mGluR5 and implicated in alcohol addiction; however, its role in sensitization remains unexplored. We sought to determine if mGluR5-mediated changes in ethanol-induced sensitization are associated with changes in ERK1/2 phosphorylation (pERK1/2) in specific brain regions. Adult male DBA/2 J mice were tested for acute locomotor response to ethanol (0 or 2 g/kg, IP) followed by a 9-day induction period in which the mGluR5 antagonist MPEP (0 or 30 mg/kg, IP) was administered prior to ethanol (0 or 2.5 g/kg, IP). One day later, ethanol (2 g/kg) produced a robust within- and between-group increase in locomotor activity, indicating sensitization in mice that received MPEP (0 mg/kg) during induction. MPEP (30 mg/kg) treatment during induction resulted in locomotor response to ethanol (2 g/kg) challenge that was equivalent to an acute response, indicating full blockade of sensitization. Sensitization was associated with increased pERK1/2 immunoreactivity (IR) in nucleus accumbens shell (AcbSh) and a reduction in lateral habenula (LHb), both of which were blocked by MPEP treatment during induction. Sensitization was also associated with mGluR5-independent increases in pERK1/2 IR in the nucleus accumbens core and decreases in the dentate gyrus and lateral septum. These data indicate that mGluR5 activity is required for the induction of ethanol locomotor sensitization and associated changes in ERK1/2 phosphorylation in the AcbSh and LHb, which raises the hypothesis that mGluR5-mediated cell signaling in these brain regions may mediate the induction of sensitization. Elucidating mechanisms of sensitization may increase understanding of how ethanol hijacks behavioral functions during the development of addiction.
Collapse
Affiliation(s)
- Rebekah A Stevenson
- Center for Alcohol Studies, Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Biology, Bucknell University, Lewisburg, PA, 17837, United States
| | - Jessica L Hoffman
- Center for Alcohol Studies, Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Antoniette M Maldonado-Devincci
- Center for Alcohol Studies, Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Psychology, North Carolina A&T State University, Greensboro, NC, 27411, United States
| | - Sara Faccidomo
- Center for Alcohol Studies, Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Clyde W Hodge
- Center for Alcohol Studies, Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
7
|
Faccidomo S, Swaim KS, Saunders BL, Santanam TS, Taylor SM, Kim M, Reid GT, Eastman VR, Hodge CW. Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice. Psychopharmacology (Berl) 2018; 235:1681-1696. [PMID: 29502276 PMCID: PMC5949261 DOI: 10.1007/s00213-018-4870-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/20/2018] [Indexed: 02/01/2023]
Abstract
RATIONALE There is a clear need for discovery of effective medications to treat behavioral pathologies associated with alcohol addiction, such as chronic drinking. OBJECTIVE The goal of this preclinical study was to assess effects of chronic alcohol drinking on the nucleus accumbens (NAcb) proteome to identify and validate novel targets for medications development. MATERIALS AND METHODS Two-dimensional difference in-gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption ionization tandem time-of-flight (MALDI-TOF/TOF) was used to assess effects of chronic voluntary home-cage (24-h access) alcohol drinking on the NAcb proteome of C57BL/6J mice. To extend these findings to a model of alcohol self-administration and reinforcement, we investigated potential regulation of the positive reinforcing effects of alcohol by the target protein glutathione S-transferase Pi 1 (GSTP1) using a pharmacological inhibition strategy in mice trained to self-administer alcohol or sucrose. RESULTS Expression of 52 unique proteins in the NAcb was changed by chronic alcohol drinking relative to water control (23 upregulated, 29 downregulated). Ingenuity Pathway Analysis showed that alcohol drinking altered an array of protein networks associated with neurological and psychological disorders, molecular and cellular functions, and physiological systems and development. DAVID functional annotation analysis identified 9 proteins (SNCA, GSTP1, PRDX3, PPP3R1, EIF5A, PHB, PEBP1/RKIP, GAPDH, AND SOD1) that were significantly overrepresented in a functional cluster that included the Gene Ontology categories "response to alcohol" and "aging." Immunoblots confirmed changes in Pebp1 (RKIP) and GSTP1 in NAcb with no change in amygdala or frontal cortex, suggesting anatomical specificity. Systemic inhibition of GSTP1 with Ezatiostat (0-30 mg/kg, i.p.) dose-dependently reduced the reinforcing effects of alcohol as measured by operant self-administration, in the absence of motor effects. Sucrose self-administration was also reduced but in a manner associated with nonspecific motor inhibition. CONCLUSIONS Protein expression profiling identified an array of proteins and networks in the NAcb, including GSTP1, that are novel molecular targets of chronic alcohol drinking. Pharmacological inhibition of GSTP1 significantly reduced the positive reinforcing effects of alcohol, which regulate repetitive use and abuse liability. The observation that this protein was both upregulated after chronic drinking and that its inhibition could modulate the reinforcing properties of alcohol suggests that it is a key target for alcohol-related pathologies. Proteomic strategies combined with specific preclinical models has potential to identify and validate novel targets of alcohol that may be useful in the medical management of alcohol addiction.
Collapse
Affiliation(s)
- Sara Faccidomo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Katarina S Swaim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Briana L Saunders
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Taruni S Santanam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Seth M. Taylor
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Michelle Kim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Grant T Reid
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Vallari R Eastman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, CB #7178, Thurston Bowles Building, Chapel Hill, NC, 27599, USA. .,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Cannady R, Fisher KR, Graham C, Crayle J, Besheer J, Hodge CW. Potentiation of amygdala AMPA receptor activity selectively promotes escalated alcohol self-administration in a CaMKII-dependent manner. Addict Biol 2017; 22:652-664. [PMID: 26742808 DOI: 10.1111/adb.12357] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that drugs of abuse gain control over the individual by usurping glutamate-linked mechanisms of neuroplasticity in reward-related brain regions. Accordingly, we have shown that glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activity in the amygdala is required for the positive reinforcing effects of alcohol, which underlie the initial stages of addiction. It is unknown, however, if enhanced AMPAR activity in the amygdala facilitates alcohol self-administration, which is a kernel premise of glutamate hypotheses of addiction. Here, we show that low-dose alcohol (0.6 g/kg/30 minutes) self-administration increases phosphorylation (activation) of AMPAR subtype GluA1 S831 (pGluA1 S831) in the central amygdala (CeA), basolateral amygdala and nucleus accumbens core (AcbC) of selectively bred alcohol-preferring P-rats as compared with behavior-matched (non-drug) sucrose controls. The functional role of enhanced AMPAR activity was assessed via site-specific infusion of the AMPAR positive modulator, aniracetam, in the CeA and AcbC prior to alcohol self-administration. Intra-CeA aniracetam increased alcohol-reinforced but not sucrose-reinforced responding and was ineffective following intra-AcbC infusion. Because GluA1 S831 is a Ca2+/calmodulin-dependent protein kinase II (CaMKII) substrate, we sought to determine if AMPAR regulation of enhanced alcohol self-administration is dependent on CaMKII activity. Intra-CeA infusion of the cell-permeable CaMKII peptide inhibitor myristolated autocamtide-2-related inhibitory peptide (m-AIP) dose-dependently reduced alcohol self-administration. A subthreshold dose of m-AIP also blocked the aniracetam-induced escalation of alcohol self-administration, demonstrating that AMPAR-mediated potentiation of alcohol reinforcement requires CaMKII activity in the amygdala. Enhanced activity of plasticity-linked AMPAR-CaMKII signaling in the amygdala may promote escalated alcohol use via increased positive reinforcement during the initial stages of addiction.
Collapse
Affiliation(s)
- Reginald Cannady
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Curriculum in Neurobiology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Kristen R. Fisher
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Caitlin Graham
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Jesse Crayle
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Curriculum in Neurobiology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Curriculum in Neurobiology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Department of Pharmacology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
9
|
Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Res 2017; 6:298. [PMID: 28413623 PMCID: PMC5365217 DOI: 10.12688/f1000research.9609.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.
Collapse
Affiliation(s)
- Lara Hwa
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Thomas Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Jaramillo AA, Randall PA, Frisbee S, Besheer J. Modulation of sensitivity to alcohol by cortical and thalamic brain regions. Eur J Neurosci 2016; 44:2569-2580. [PMID: 27543844 DOI: 10.1111/ejn.13374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol.
Collapse
Affiliation(s)
- Anel A Jaramillo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA.,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick A Randall
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Suzanne Frisbee
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA. .,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Quadir SG, Santos JRBD, Campbell RR, Wroten MG, Singh N, Holloway JJ, Bal SK, Camarini R, Szumlinski KK. Homer2 regulates alcohol and stress cross-sensitization. Addict Biol 2016; 21:613-33. [PMID: 25916683 DOI: 10.1111/adb.12252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An interaction exists between stress and alcohol in the etiology and chronicity of alcohol use disorders, yet a knowledge gap exists regarding the neurobiological underpinnings of this interaction. In this regard, we employed an 11-day unpredictable, chronic, mild stress (UCMS) procedure to examine for stress-alcohol cross-sensitization of motor activity as well as alcohol consumption/preference and intoxication. We also employed immunoblotting to relate the expression of glutamate receptor-related proteins within subregions of the nucleus accumbens (NAC) to the manifestation of behavioral cross-sensitization. UCMS mice exhibited a greater locomotor response to an acute injection of 2 g/kg alcohol than unstressed controls and this cross-sensitization extended to alcohol intake (0-20 percent), as well as to the intoxicating and sedative properties of 3 and 5 g/kg alcohol, respectively. Regardless of prior alcohol injection (2 g/kg), UCMS mice exhibited elevated NAC shell levels of mGlu1α, GluN2b and Homer2, as well as lower phospholipase Cβ within this subregion. GluN2b levels were also lower within the NAC core of UCMS mice. The expression of stress-alcohol locomotor cross-sensitization was associated with lower mGlu1α within the NAC core and lower extracellular signal-regulated kinase activity within both NAC subregions. As Homer2 regulates alcohol sensitization, we assayed also for locomotor cross-sensitization in Homer2 wild-type (WT) and knock-out (KO) mice. WT mice exhibited a very robust cross-sensitization that was absent in KO animals. These results indicate that a history of mild stress renders an animal more sensitive to the psychomotor and rewarding properties of alcohol, which may depend on neuroplasticity within NAC glutamate transmission.
Collapse
Affiliation(s)
- Sema G. Quadir
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | | | - Rianne R. Campbell
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Nimrita Singh
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - John J. Holloway
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Sukhmani K. Bal
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Rosana Camarini
- Department of Pharmacology; Institute of Biomedical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences; Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| |
Collapse
|
12
|
Faccidomo S, Salling MC, Galunas C, Hodge CW. Operant ethanol self-administration increases extracellular-signal regulated protein kinase (ERK) phosphorylation in reward-related brain regions: selective regulation of positive reinforcement in the prefrontal cortex of C57BL/6J mice. Psychopharmacology (Berl) 2015; 232:3417-30. [PMID: 26123321 PMCID: PMC4537834 DOI: 10.1007/s00213-015-3993-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
RATIONALE Extracellular-signal regulated protein kinase (ERK1/2) is activated by ethanol in reward-related brain regions. Accordingly, systemic inhibition of ERK1/2 potentiates ethanol reinforcement. However, the brain region(s) that mediate this effect are unknown. OBJECTIVE This study aims to pharmacologically inhibit ERK1/2 in the medial prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY) prior to ethanol or sucrose self-administration, and evaluate effects of operant ethanol self-administration on ERK1/2 phosphorylation (pERK1/2). METHODS Male C57BL/6J mice were trained to lever press on a fixed-ratio-4 schedule of 9% ethanol + 2% sucrose (ethanol) or 2% sucrose (sucrose) reinforcement. Mice were sacrificed immediately after the 30th self-administration session and pERK1/2 immunoreactivity was quantified in targeted brain regions. Additional groups of mice were injected with SL 327 (0-1.7 μg/side) in PFC, NAC, or AMY prior to self-administration. RESULTS pERK1/2 immunoreactivity was significantly increased by operant ethanol (g/kg = 1.21 g/kg; BAC = 54.9 mg/dl) in the PFC, NAC (core and shell), and AMY (central nucleus) as compared to sucrose. Microinjection of SL 327 (1.7 μg) into the PFC selectively increased ethanol self-administration. Intra-NAC injection of SL 327 had no effect on ethanol- but suppressed sucrose-reinforced responding. Intra-AMY microinjection of SL 327 had no effect on either ethanol- or sucrose-reinforced responding. Locomotor activity was unaffected under all conditions. CONCLUSIONS Operant ethanol self-administration increases pERK1/2 activation in the PFC, NAC, and AMY. However, ERK1/2 activity only in the PFC mechanistically regulates ethanol self-administration. These data suggest that ethanol-induced activation of ERK1/2 in the PFC is a critical pharmacological effect that mediates the reinforcing properties of the drug.
Collapse
Affiliation(s)
- Sara Faccidomo
- Bowles Center for Alcohol Studies, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599
| | - Michael C Salling
- Bowles Center for Alcohol Studies, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina Galunas
- Bowles Center for Alcohol Studies, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599,Department of Psychiatry, University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Randall PA, Jaramillo AA, Frisbee S, Besheer J. The role of varenicline on alcohol-primed self-administration and seeking behavior in rats. Psychopharmacology (Berl) 2015; 232:2443-54. [PMID: 25656746 PMCID: PMC4482789 DOI: 10.1007/s00213-015-3878-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 12/30/2022]
Abstract
RATIONALE Varenicline, a smoking-cessation agent, may be useful in treating alcohol use disorders. An important consideration when studying factors that influence drinking/relapse is influence of the pharmacological effects of alcohol on these behaviors. Pre-exposure to alcohol (priming) can increase craving, drinking, and seeking behaviors. OBJECTIVES The primary goal of this work was to determine the effects of varenicline on alcohol-primed self-administration and seeking behavior in male Long-Evans rats. METHODS First, we assessed whether varenicline (0, 0.3, 1, 3 mg/kg, IP) has alcohol-like discriminative stimulus effects and whether varenicline alters sensitivity to alcohol in rats trained to discriminate a moderate alcohol dose (1 g/kg, IG) vs. water. Second, animals trained to self-administer alcohol underwent assessments to test the effects of: (i) varenicline (0, 0.3, 1, 3 mg/kg, IP) on self-administration, (ii) alcohol priming (0, 0.3, 1 g/kg, IG) on self-administration and seeking behavior, and (iii) varenicline (1 mg/kg) in combination with alcohol priming (1 g/kg) on these behaviors. RESULTS Varenicline did not substitute for alcohol but disrupted the expression of sensitivity to alcohol. Varenicline decreased self-administration but only at a motor-impairing dose (3 mg/kg). Alcohol priming decreased self-administration and seeking behavior. Varenicline (1 mg/kg) blocked this effect under self-administration conditions, but not seeking conditions, which effectively resulted in increased alcohol intake. CONCLUSIONS These findings suggest the importance of further behavioral and mechanistic studies to evaluate the use of varenicline in treating alcohol use disorders and its potential impact on drinking patterns in smokers using varenicline as a smoking-cessation aid.
Collapse
Affiliation(s)
- Patrick A. Randall
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Anel A. Jaramillo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Suzanne Frisbee
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| |
Collapse
|
14
|
Agoglia AE, Sharko AC, Psilos KE, Holstein SE, Reid GT, Hodge CW. Alcohol alters the activation of ERK1/2, a functional regulator of binge alcohol drinking in adult C57BL/6J mice. Alcohol Clin Exp Res 2015; 39:463-75. [PMID: 25703719 PMCID: PMC4348173 DOI: 10.1111/acer.12645] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Binge alcohol drinking is a particularly risky pattern of alcohol consumption that often precedes alcohol dependence and addiction. The transition from binge alcohol drinking to alcohol addiction likely involves mechanisms of synaptic plasticity and learning in the brain. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to be involved in learning and memory, as well as the response to drugs of abuse, but their role in binge alcohol drinking remains unclear. The present experiments were designed to determine the effects of acute alcohol on extracellular signaling-related kinases (ERK1/2) expression and activity and to determine whether ERK1/2 activity functionally regulates binge-like alcohol drinking. METHODS Adult male C57BL/6J mice were injected with ethanol (EtOH) (3.0 mg/kg, intraperitoneally) 10, 30, or 90 minutes prior to brain tissue collection. Next, mice that were brought to freely consume unsweetened EtOH in a binge-like access procedure were pretreated with the MEK1/2 inhibitor SL327 or the p38 MAPK inhibitor SB239063. RESULTS Acute EtOH increased pERK1/2 immunoreactivity relative to vehicle in brain regions known to be involved in drug reward and addiction, including the central amygdala and prefrontal cortex. However, EtOH decreased pERK1/2 immunoreactivity relative to vehicle in the nucleus accumbens core. SB239063 pretreatment significantly decreased EtOH consumption only at doses that also produced nonspecific locomotor effects. SL327 pretreatment significantly increased EtOH, but not sucrose, consumption without inducing generalized locomotor effects. CONCLUSIONS These findings indicate that ERK1/2 MAPK signaling regulates binge-like alcohol drinking. As alcohol increased pERK1/2 immunoreactivity relative to vehicle in brain regions known to regulate drug self-administration, SL327 may have blocked this direct pharmacological effect of alcohol and thereby inhibited the termination of binge-like drinking.
Collapse
Affiliation(s)
- Abigail E. Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Amanda C. Sharko
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kelly E. Psilos
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sarah E. Holstein
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Grant T. Reid
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
15
|
Stress hormone exposure reduces mGluR5 expression in the nucleus accumbens: functional implications for interoceptive sensitivity to alcohol. Neuropsychopharmacology 2014; 39:2376-86. [PMID: 24713611 PMCID: PMC4138747 DOI: 10.1038/npp.2014.85] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
Escalations in alcohol drinking associated with experiencing stressful life events and chronic life stressors may be related to altered sensitivity to the interoceptive/subjective effects of alcohol. Indeed, through the use of drug discrimination methods, rats show decreased sensitivity to the discriminative stimulus (interoceptive) effects of alcohol following exposure to the stress hormone corticosterone (CORT). This exposure produces heightened elevations in plasma CORT levels (eg, as may be experienced by an individual during stressful episodes). We hypothesized that decreased sensitivity to alcohol may be related, in part, to changes in metabotropic glutamate receptors-subtype 5 (mGluR5) in the nucleus accumbens, as these receptors in this brain region are known to regulate the discriminative stimulus effects of alcohol. In the accumbens, we found reduced mGluR5 expression (immunohistochemistry and Western blot) and decreased neural activation (as measured by c-Fos immunohistochemistry) in response to a moderate alcohol dose (1 g/kg) following CORT exposure (7 days). The functional role of these CORT-induced adaptations in relation to the discriminative stimulus effects of alcohol was confirmed, as both the systemic administration of 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) an mGluR5 positive allosteric modulator and the intra-accumbens administration of (R,S)-2-Amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt (CHPG) an mGluR5 agonist restored sensitivity to alcohol in discrimination-trained rats. These results suggest that activation of mGluR5 may alleviate the functional impact of the CORT-induced downregulation of mGluR5 in relation to sensitivity to alcohol. Understanding the contribution of such neuroadaptations to the interoceptive effects of alcohol may enrich our understanding of potential changes in subjective sensitivity to alcohol during stressful episodes.
Collapse
|
16
|
Zamora-Martinez ER, Edwards S. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence. Front Integr Neurosci 2014; 8:24. [PMID: 24653683 PMCID: PMC3949304 DOI: 10.3389/fnint.2014.00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK) to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence) is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.
Collapse
Affiliation(s)
- Eva R Zamora-Martinez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
17
|
Besheer J, Fisher KR, Durant B. Assessment of the interoceptive effects of alcohol in rats using short-term training procedures. Alcohol 2012; 46:747-55. [PMID: 22944614 DOI: 10.1016/j.alcohol.2012.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/26/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
In the present study, we sought to determine whether the interoceptive effects of alcohol (1 g/kg, IG) could be assessed using a Pavlovian discrimination method, in which the alcohol drug state sets the occasion for which an environmental stimulus (e.g., light) will be followed by a sucrose reward. This procedure takes advantage of a naturally occurring behavior (i.e., food-seeking) which can be trained rapidly prior to the initiation of discrimination training. Given that the interoceptive effects of alcohol are routinely assessed using operant drug discrimination methods, another group of rats was trained using standard two-lever operant drug discrimination procedures in an effort to compare the Pavlovian procedure to a known behavioral benchmark. The results from this work show that, in addition to operant discrimination procedures, a Pavlovian discrimination task can be used to evaluate the interoceptive effects of alcohol. In addition to the brief behavioral sucrose access training (3 days) required prior to the initiation of the Pavlovian discrimination, the alcohol discrimination was acquired relatively rapidly (i.e., 8 training sessions), shortening the overall duration of the experiment. These features of the Pavlovian procedure make it a valuable method by which to assess the interoceptive effects of alcohol if a short experimental time frame is required, such as assessing the interoceptive effects of alcohol during a brief developmental window (e.g., adolescence) or determining the effects of a pretreatment (i.e., chronic stress, chronic drug pretreatment) on the acquisition of the alcohol discrimination. As such, this initial characterization confirms the feasibility of using this Pavlovian discrimination training method as an additional tool by which to assess the interoceptive effects of alcohol, as there may be experimental situations that necessitate short term discrimination training.
Collapse
|