1
|
Chen J, Zhang T, Wang C, Niu P, Huang L, Guo R, Wu C, Zhang H, Wu Z, Qi S, Liu Y. Therapeutic Potential of Growth Hormone in Peripheral Nerve Injury: Enhancing Schwann Cell Proliferation and Migration Through IGF-1R-AKT and ERK Signaling Pathways. Glia 2025; 73:805-821. [PMID: 39610064 DOI: 10.1002/glia.24653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/28/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
Peripheral nerve injury (PNI) represents a prevalent condition characterized by the demyelination of affected nerves. The challenge of remyelinating these nerves and achieving satisfactory functional recovery has long been a persistent issue. The specific contributions of growth hormone (GH) in the aftermath of PNI have remained ambiguous. Our investigations have demonstrated that GH not only enhances neurological function scores but also promotes remyelination within a three-week period. Further in vivo studies corroborated that GH facilitates nerve function improvement by mitigating neuronal apoptosis. In vitro, the ideal concentration of GH for exerting effects on Schwann cells (SCs) has been identified as 80 ng/mL. Subsequent research uncovered GH's profound impact on SCs proliferation, cell cycle progression, and migration. Through RNA sequencing and additional experiments, it was discovered that GH treatment elevates the phosphorylation levels of IGF-1R, AKT, and ERK. Moreover, the GH-induced proliferation and migration of SCs were significantly diminished by the inhibition of the IGF-1R pathway, achieved through pre-treatment with Linsitinib. The outcomes of this investigation suggest that GH can significantly enhance the proliferation and migration of SCs, presenting it as a viable option for PNI repair.
Collapse
Affiliation(s)
- Jiaqian Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingcheng Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaohu Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peirong Niu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liehao Huang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongrong Guo
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengdong Wu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huarong Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyong Wu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Berends E, Pencheva MG, van de Waarenburg MPH, Scheijen JLJM, Hermes DJHP, Wouters K, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Glyoxalase 1 overexpression improves neurovascular coupling and limits development of mild cognitive impairment in a mouse model of type 1 diabetes. J Physiol 2024; 602:6209-6223. [PMID: 39316027 DOI: 10.1113/jp286723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment. Diabetes was induced with streptozotocin. Fasting blood glucose, cognitive function, cerebral blood flow, neurovascular coupling (NVC), Glo1 activity, MGO and AGEs were assessed. In diabetes, MGO-derived hydroimidazolone-1 increased in the cortex, and was decreased in Glo1-overexpressing mice compared to controls. Visuospatial memory was decreased in diabetes, but not in Glo1/diabetes. NVC response time was slightly increased in diabetes, and normalised in the Glo1-overexpressing group. No impact of diabetes or Glo1 overexpression on blood-brain barrier integrity or vascular density was observed. Diabetes induced a mild visuospatial memory impairment and slightly reduced NVC response speed and these effects were mitigated by Glo1. This study shows a link between MGO-related AGE accumulation and cerebrovascular/cognitive functions in diabetes. Modulation of the MGO-Glo1 pathway may be a novel intervention strategy in patients with diabetes who have cerebrovascular complications. KEY POINTS: Diabetes is associated with an increased risk of stroke, cognitive decline, depression and Alzheimer's disease, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a highly reactive by-product of glycolysis, plays an important role in the development of diabetes-associated microvascular dysfunction in the periphery and is detoxified by the enzyme glyoxalase 1. Diabetes reduced visuospatial memory in mice and slowed the neurovascular coupling response speed, which was improved by overexpression of glyoxalase 1. MGO formation and MGO-derived advanced glycation endproduct (AGE) accumulation in the brain of diabetic mice are associated with a slight reduction in neurovascular coupling and mild cognitive impairment. The endogenous formation of MGO, and the accumulation of MGO-derived AGEs, might be a potential target in reducing the risk of vascular cognitive impairment in people with diabetes.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Margarita G Pencheva
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Denise J H P Hermes
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Sébastien Foulquier
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Li GY, Wu QZ, Song TJ, Zhen XC, Yu X. Dynamic regulation of excitatory and inhibitory synaptic transmission by growth hormone in the developing mouse brain. Acta Pharmacol Sin 2023; 44:1109-1121. [PMID: 36476808 PMCID: PMC10202927 DOI: 10.1038/s41401-022-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022]
Abstract
Normal sensory and cognitive function of the brain relies on its intricate and complex neural network. Synaptogenesis and synaptic plasticity are critical to neural circuit formation and maintenance, which are regulated by coordinated intracellular and extracellular signaling. Growth hormone (GH) is the most abundant anterior pituitary hormone. Its deficiencies could alter brain development and impair learning and memory, while GH replacement therapy in human patients and animal models has been shown to ameliorate cognitive deficits caused by GH deficiency. However, the underlying mechanism remains largely unknown. In this study, we investigated the neuromodulatory function of GH in young (pre-weaning) mice at two developmental time points and in two different brain regions. Neonatal mice were subcutaneously injected with recombinant human growth hormone (rhGH) on postnatal day (P) 14 or 21. Excitatory and inhibitory synaptic transmission was measured using whole-cell recordings in acute cortical slices 2 h after the injection. We showed that injection of rhGH (2 mg/kg) in P14 mice significantly increased the frequency of mEPSCs, but not that of mIPSCs, in both hippocampal CA1 pyramidal neurons and L2/3 pyramidal neurons of the barrel field of the primary somatosensory cortex (S1BF). Injection of rhGH (2 mg/kg) in P21 mice significantly increased the frequency of mEPSCs and mIPSCs in both brain regions. Perfusion of rhGH (1 μM) onto acute brain slices in P14 mice had similar effects. Consistent with the electrophysiological results, the dendritic spine density of CA1 pyramidal neurons and S1BF L2/3 pyramidal neurons increased following in vivo injection of rhGH. Furthermore, NMDA receptors and postsynaptic calcium-dependent signaling contributed to rhGH-dependent regulation of both excitatory and inhibitory synaptic transmission. Together, these results demonstrate that regulation of excitatory and inhibitory synaptic transmission by rhGH occurs in a developmentally dynamic manner, and have important implication for identifying GH treatment strategies without disturbing excitation/inhibition balance.
Collapse
Affiliation(s)
- Guang-Ying Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China.
| | - Qiu-Zi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Jia Song
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Juárez-Aguilar E, Olivares-Hernández JD, Regalado-Santiago C, García-García F. The role of growth hormone in hippocampal function. VITAMINS AND HORMONES 2021; 118:289-313. [PMID: 35180930 DOI: 10.1016/bs.vh.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growth hormone is a multifunctional molecule with broad cellular targets. This pituitary hormone is currently used as a therapeutic agent against several brain injuries due to its neurotrophic activity. The hippocampus is one of the brain regions where the growth hormone plays a role in normal and pathologic conditions. This brain structure is associated with several cognitive functions such as learning, memory, and mood, which are frequently affected by brain traumatism. The present chapter describes the experimental and clinical evidence that supports a central role of growth hormone in the hippocampus functionality.
Collapse
Affiliation(s)
- Enrique Juárez-Aguilar
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico.
| | - Juan David Olivares-Hernández
- Laboratorio D-01, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Fabio García-García
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
5
|
Zaky DA, Eldehna WM, El Kerdawy AM, Abdallah DM, El Abhar HS, Wadie W. Recombinant human growth hormone improves the immune status of rats with septic encephalopathy: The role of VEGFR2 in the prevalence of endoplasmic reticulum stress repair module. Int Immunopharmacol 2021; 101:108370. [PMID: 34794887 DOI: 10.1016/j.intimp.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Septic encephalopathy results from the intense reaction of the immune system to infection. The role of growth hormone (GH) signaling in maintaining brain function is well established; however, the involvement of the vascular endothelial growth factor receptor-2 (VEGFR2) in the potential modulatory effect of GH on septic encephalopathy-associated endoplasmic reticulum stress (ERS) and blood-brain barrier (BBB) permeability is not well-understood. Therefore, after the induction of mid-grade sepsis by cecal ligation/perforation, rats were subcutaneously injected with recombinant human GH (rhGH)/somatropin alone or preceded by the VEGFR2 antagonist WAG-4S for 7 days. rhGH/somatropin reduced bodyweight loss and plasma endotoxin, maintained the hyperthermic state, and improved motor/memory functions. Additionally, rhGH/somatropin increased the junctional E-cadherin and β-catenin pool in the cerebral cortex to enhance the BBB competency, effects that were abolished by VEGFR2 blockade. Also, it activated cortical VEGFR2/mammalian target of the Rapamycin (mTOR) axis to mitigate ERS. The latter was reflected by the deactivation of the inositol-requiring enzyme-1α (IRE1α)/spliced X-box binding protein-1 (XBP1s) trajectory and the reduction in the protein levels of the death markers, C/EBP homologous protein (CHOP)/growth arrest and DNA damage-153 (GADD153), c-jun-N-terminal kinase (JNK), and caspase-3 with the simultaneous augmentation of expression of the unfolded protein response transducer proteinkinaseR-like ERkinase (PERK). Furthermore, rhGH/somatropin suppressed the phosphorylation of eukaryotic initiation factor-2α (eIF2α), upregulated the gene expression of activating transcription factor-4 (ATF4), GADD34, and glucose-regulated protein-78/binding immunoglobulin (GRP78/Bip). Moreover, it increased the glutathione level and reduced lipid peroxidation in the cerebral cortex. The VEGFR2 antagonist reversed the effect of rhGH/somatropin on PERK and IRE1α and boosted the apoptotic markers but neither affected p-eIF2α nor GADD34. Hence, we conclude that VEGFR2 activation by rhGH/somatropin plays a crucial role in assembling the BBB adherens junctions via its antioxidant capacity, ERS relief, and reducing endotoxemia in septic encephalopathy.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Hanan S El Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
6
|
Momeni Z, Neapetung J, Pacholko A, Kiir TAB, Yamamoto Y, Bekar LK, Campanucci VA. Hyperglycemia induces RAGE-dependent hippocampal spatial memory impairments. Physiol Behav 2020; 229:113287. [PMID: 33316294 DOI: 10.1016/j.physbeh.2020.113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Diabetes is a prevalent metabolic disorder that has long been associated with changes in different regions of the brain, including the hippocampus. Changes in hippocampal synaptic plasticity and subsequent impairment in cognitive functions such as learning and memory, are well documented in animal models of type 1 and type 2 diabetes. It is known that RAGE contributes to peripheral micro- and macro-vascular complications of diabetes. However, it is still unknown if RAGE plays a similar role in the development of CNS complications of diabetes. Therefore, we hypothesize that RAGE contributes to cognitive dysfunction, such as learning and memory impairments, in a mouse model of STZ-induced hyperglycemia. Control and STZ-induced hyperglycemic mice from WT and RAGE-KO groups were used for the behavioral experiments. While STZ-induced hyperglycemia decreased locomotor activity in the open field (OF) test, it did not affect the recognition memory in the novel object recognition (NOR) test in either genotype. Spatial memory, however, was impaired in STZ-induced hyperglycemic mice in WT but not in RAGE-KO group in both the Barnes maze (BM) and the Morris water maze (MWM) tests. Consistently, the RAGE antagonist FPS-ZM1 protected WT STZ-induced hyperglycemic mice from spatial memory impairment in the BM test. Our findings indicate that the parameters associated with locomotor activity and recognition memory were independent of RAGE in STZ-induced hyperglycemic mice. In contrast, the parameters associated with hippocampal-dependent spatial memory were dependent on RAGE expression.
Collapse
Affiliation(s)
- Zeinab Momeni
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph Neapetung
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Pacholko
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tabitha Achan Bol Kiir
- College of Arts and Science, 9 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Verónica A Campanucci
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
7
|
Recombinant Human Growth Hormone Ameliorates Cognitive Impairment in Stroke Patients. J Comput Assist Tomogr 2020; 44:255-261. [PMID: 32195805 DOI: 10.1097/rct.0000000000000990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We aimed to determine the effects of recombinant human growth hormone (rhGH) replacement on cognitive function in subjects with poststroke cognitive impairment using resting-state functional magnetic resonance imaging. METHODS We included 60 patients with a first-ever stroke for 3 months and a diagnosis of cognitive impairment who were randomized 1:1 to receive either rhGH subcutaneously or placebo injection for 6 months. All subjects were required to receive the same rehabilitative therapy program. Both groups were subjected to pretreatment and posttreatment neuropsychological assessment using the Montreal Cognitive Assessment, serum neurotrophic factors, biomarkers of glucose and lipid metabolism, and functional magnetic resonance imaging during 6 months of the study period. The pattern of brain activity was determined by examining the functional connectivity and amplitude of low-frequency fluctuations (ALFF) of blood oxygen level dependent signal. RESULTS Forty-three (82.7%) completed the study. Treatment with rhGH reduced levels of triglycerides and low-density lipoprotein cholesterol but did not significantly altered plasma concentrations of glucose and glycated hemoglobin. We found a significant increase in serum insulin-like growth factor 1 levels (32.6%; P < 0.001) in the rhGH-treated group compared with that in the controls. After 6 months of rhGH treatment, mean Montreal Cognitive Assessment score improved from 16.31 (5.32) to 21.19 (6.54) (P < 0.001). The rhGH group showed significant increased area of activation with increased ALFF values in the regions of the frontal lobe, putamen, temporal lobe, and thalamus (P < 0.05), relative to the baseline conditions. The correlation analysis revealed that the ALFF and functional connectivity of default mode network was positively correlated with the ΔMoCA score and ΔIGF-1 levels; that is, the more the scale score increased, the higher the functional connection strength. No undesirable adverse effects were observed. CONCLUSIONS The rhGH replacement has a significant impact on global and domain cognitive functions in poststroke cognitive impairment.
Collapse
|
8
|
Nylander E, Zelleroth S, Stam F, Nyberg F, Grönbladh A, Hallberg M. Growth hormone increases dendritic spine density in primary hippocampal cell cultures. Growth Horm IGF Res 2020; 50:42-47. [PMID: 31862540 DOI: 10.1016/j.ghir.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Growth hormone (GH) is widely known for its peripheral effects during growth and development. However, numerous reports also suggest that GH exert pro-cognitive, restorative, and protective properties in the brain. In in vitro studies, the detection of dendritic spines, small protrusions extending from axons, can act as a marker for cognition-related function as spine formation is considered to be associated with learning and memory. Here we show that an acute 24-hour treatment of GH can increase dendritic spine density in primary hippocampal cell cultures. DESIGN Primary hippocampal cells were harvested from embryonic Wistar rats and cultured for 14 days. Cells were treated with supra-physiological doses of GH (10-1000 nM) and subjected to a high-throughput screening protocol. Images were acquired and analyzed using automated image analysis and the number of spines, spines per neurite length, neurite length, and mean area of spines, was reported. RESULTS GH treatment (1000 nM) increased the number of dendritic spines by 83% and spines per neurite length by 82% when compared to control. For comparison BDNF, a known inducer of spine densities, produced statistically non-significant increase in this setting. CONCLUSION The results was found significant using the highest supra-physiological dose of GH, and the present study further confirms a potential role of the hormone in the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Erik Nylander
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden.
| | - Sofia Zelleroth
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Frida Stam
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Fred Nyberg
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Alfhild Grönbladh
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Mathias Hallberg
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden.
| |
Collapse
|
9
|
He T, Sun R, Santhanam AV, d'Uscio LV, Lu T, Katusic ZS. Impairment of amyloid precursor protein alpha-processing in cerebral microvessels of type 1 diabetic mice. J Cereb Blood Flow Metab 2019; 39:1085-1098. [PMID: 29251519 PMCID: PMC6547183 DOI: 10.1177/0271678x17746981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms underlying dysfunction of cerebral microvasculature induced by type 1 diabetes (T1D) are not fully understood. We hypothesized that in cerebral microvascular endothelium, α-processing of amyloid precursor protein (APP) is impaired by T1D. In cerebral microvessels derived from streptozotocin (STZ)-induced T1D mice protein levels of APP and its α-processing enzyme, a disintegrin and metalloprotease 10 (ADAM10) were significantly decreased, along with down-regulation of adenylate cyclase 3 (AC3) and enhanced production of thromboxane A2 (TXA2). In vitro studies in human brain microvascular endothelial cells (BMECs) revealed that knockdown of AC3 significantly suppressed ADAM10 protein levels, and that activation of TXA2 receptor decreased APP expression. Furthermore, levels of soluble APPα (sAPPα, a product of α-processing of APP) were significantly reduced in hippocampus of T1D mice. In contrast, amyloidogenic processing of APP was not affected by T1D in both cerebral microvessels and hippocampus. Most notably, studies in endothelial specific APP knockout mice established that genetic inactivation of APP in endothelium was sufficient to significantly reduce sAPPα levels in the hippocampus. In aggregate, our findings suggest that T1D impairs non-amyloidogenic processing of APP in cerebral microvessels. This may exert detrimental effect on local concentration of neuroprotective molecule, sAPPα, in the hippocampus.
Collapse
Affiliation(s)
- Tongrong He
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ruohan Sun
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.,2 Department of Neurology, First Hospital and Clinical College of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Anantha Vr Santhanam
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- 3 Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
10
|
The Protective and Restorative Effects of Growth Hormone and Insulin-Like Growth Factor-1 on Methadone-Induced Toxicity In Vitro. Int J Mol Sci 2018; 19:ijms19113627. [PMID: 30453639 PMCID: PMC6274959 DOI: 10.3390/ijms19113627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022] Open
Abstract
Evidence to date suggests that opioids such as methadone may be associated with cognitive impairment. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are suggested to be neuroprotective and procognitive in the brain and may therefore counteract these effects. This study aims to explore the protective and restorative effects of GH and IGF-1 in methadone-treated cell cultures. Primary cortical cell cultures were harvested from rat fetuses and grown for seven days in vitro. To examine the protective effects, methadone was co-treated with or without GH or IGF-1 for three consecutive days. To examine the restorative effects, methadone was added for the first 24 h, washed, and later treated with GH or IGF-1 for 48 h. At the end of each experiment, mitochondrial function and membrane integrity were evaluated. The results revealed that GH had protective effects in the membrane integrity assay and that both GH and IGF-1 effectively recovered mitochondrial function and membrane integrity in cells pretreated with methadone. The overall conclusion of the present study is that GH, but not IGF-1, protects primary cortical cells against methadone-induced toxicity, and that both GH and IGF-1 have a restorative effect on cells pretreated with methadone.
Collapse
|
11
|
Treatment with Growth Hormone (GH) Increased the Metabolic Activity of the Brain in an Elder Patient, Not GH-Deficient, Who Suffered Mild Cognitive Alterations and Had an ApoE 4/3 Genotype. Int J Mol Sci 2018; 19:ijms19082294. [PMID: 30081594 PMCID: PMC6121435 DOI: 10.3390/ijms19082294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
(1) Background: We analyzed, using PET-SCAN and cognitive tests, how growth hormone (GH) could act in the brain of an older woman, not deficient in GH, who showed mild cognitive alterations (MCI) and had a genotype of ApoE 4/3 and familial dyslipidemia. (2) Methods: After performing a first psychometric study (TAVEC verbal learning test), the metabolic activity of brain structures related to knowledge, memory, and behavior was analyzed using 18-F fluorodeoxyglucose PET-SCAN. The patient was then treated with GH (0.4 mg/day, subcutaneous) for three weeks and on the last day under this treatment, a new PET-SCAN was performed. One month after beginning treatment with GH, a new TAVEC test was performed. (3) Results: GH administration normalized the cognitive deficits observed in the first psychometric test and significantly (p < 0.025) increased the metabolic activity in practically all brain cortical areas, specifically in the left hippocampus and left amygdala, although not in the left parahippocampus. (4) Conclusions: This study demonstrates for the first time the positive effects of GH on cerebral metabolism in a patient without GH deficiency, recovering the function of affected areas related to knowledge, memory, and behavior in an elderly patient with MCI.
Collapse
|
12
|
Ong LK, Chow WZ, TeBay C, Kluge M, Pietrogrande G, Zalewska K, Crock P, Åberg ND, Bivard A, Johnson SJ, Walker FR, Nilsson M, Isgaard J. Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke 2018; 49:1257-1266. [PMID: 29636425 DOI: 10.1161/strokeaha.117.020557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is a common outcome for stroke survivors. Growth hormone (GH) could represent a potential therapeutic option as this peptide hormone has been shown to improve cognition in various clinical conditions. In this study, we evaluated the effects of peripheral administration of GH at 48 hours poststroke for 28 days on cognitive function and the underlying mechanisms. METHODS Experimental stroke was induced by photothrombotic occlusion in young adult mice. We assessed the associative memory cognitive domain using mouse touchscreen platform for paired-associate learning task. We also evaluated neural tissue loss, neurotrophic factors, and markers of neuroplasticity and cerebrovascular remodeling using biochemical and histology analyses. RESULTS Our results show that GH-treated stroked mice made a significant improvement on the paired-associate learning task relative to non-GH-treated mice at the end of the study. Furthermore, we observed reduction of neural tissue loss in GH-treated stroked mice. We identified that GH treatment resulted in significantly higher levels of neurotrophic factors (IGF-1 [insulin-like growth factor-1] and VEGF [vascular endothelial growth factor]) in both the circulatory and peri-infarct regions. GH treatment in stroked mice not only promoted protein levels and density of presynaptic marker (SYN-1 [synapsin-1]) and marker of myelination (MBP [myelin basic protein]) but also increased the density and area coverage of 2 major vasculature markers (CD31 and collagen-IV), within the peri-infarct region. CONCLUSIONS These findings provide compelling preclinical evidence for the usage of GH as a potential therapeutic tool in the recovery phase of patients after stroke.
Collapse
Affiliation(s)
- Lin Kooi Ong
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Wei Zhen Chow
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Patricia Crock
- Department of Paediatric Endocrinology and Diabetes, Priority Research Centre Grow Up Well, John Hunter Children's Hospital (P.C.)
| | - N David Åberg
- Sahlgrenska University Hospital, University of Gothenburg, Sweden (N.D.A.)
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital (A.B.), University of Newcastle, Australia.,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Sarah J Johnson
- School of Electrical Engineering and Computing (S.J.J.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Frederick R Walker
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Michael Nilsson
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Jörgen Isgaard
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology and Department of Internal Medicine (J.I.)
| |
Collapse
|
13
|
Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci (Lond) 2018; 132:111-125. [PMID: 29212786 DOI: 10.1042/cs20171432] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a significant global public health problem depicting a rising prevalence worldwide. As a serious complication of diabetes, diabetes-associated cognitive decline is attracting increasing attention. However, the underlying mechanisms are yet to be fully determined. Both endoplasmic reticulum (ER) stress and autophagy have been reported to modulate neuronal survival and death and be associated with several neurodegenerative diseases. Here, a streptozotocin-induced diabetic mouse model and primary cultured mouse hippocampal neurons were employed to investigate the possible role of ER stress and autophagy in diabetes-induced neuronal apoptosis and cognitive impairments, and further explore the potential molecular mechanisms. ER stress markers GRP78 and CHOP were both enhanced in diabetic mice, as was phosphorylation of PERK, IRE1α, and JNK. In addition, the results indicated an elevated level of autophagy in diabetic mice, as demonstrated by up-regulated expressions of autophagy markers LC3-II, beclin 1 and down-regulated level of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. Meanwhile, we found that these effects could be abolished by ER stress inhibitor 4-phenylbutyrate or JNK inhibitor SP600125 in vitro. Furthermore, neuronal apoptosis of diabetic mice was attenuated by pretreatment with 4-phenylbutyrate, while aggravated by application of inhibitor of autophagy bafilomycin A1 in vitro. These results suggest that ER stress pathway may be involved in diabetes-mediated neurotoxicity and promote the following cognitive impairments. More important, autophagy was induced by diabetes possibly through ER stress-mediated JNK pathway, which may protect neurons against ER stress-associated cell damages.
Collapse
|
14
|
Pei B, Sun J. Pinocembrin alleviates cognition deficits by inhibiting inflammation in diabetic mice. J Neuroimmunol 2017; 314:42-49. [PMID: 29150085 DOI: 10.1016/j.jneuroim.2017.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Diabetic encephalopathy (DE) is one of the most common diabetic complications in diabetes mellitus and is characterized by cognitive impairment and neuroinflammation. It has been reported that hyperglycemia can induce hippocampal and cortical neuronal damage, which can result in severe spatial learning and memory impairment. Pinocembrin (Pino) has been widely used in the therapy of cancer and other diseases due to its anti-inflammatory, anti-allergic, anti-oxidant, anti-carcinogenic, and anti-viral activities. However, the effects of Pino on DE-induced cognition deficits and its precise mechanisms remain largely unknown. Therefore, the aim of this study was to investigate the neuroprotective effects of Pino on cognition and its potential mechanisms in a DE mouse model induced by streptozotocin (STZ, 150mg/kg). Here, we demonstrated that Pino significantly improved the behavior and cognitive deficits of DE mice in open field tasks and the Morris water maze. Pino also markedly increased neuronal survival in the frontal cortex and hippocampal CA3 region. Furthermore, western blotting was performed to measure nuclear translocation of nuclear factor-kappaB (NF-κB) and the expression of tumor necrosis factor-α (TNF-α) in the frontal cortex and hippocampus. The results demonstrated that Pino could suppress the nuclear translocation of NF-κB and decrease TNF-α expression in the cerebral cortex and the hippocampus of DE mice. Taken together, the results suggest that Pino alleviates cognition deficits by protecting neurons from inflammation injury in diabetic mice.
Collapse
Affiliation(s)
- Bing Pei
- Department of Clinical Laboratory, Suqian First Hospital, Jiangu Province Hospital at Suqian, Suqian, Jiangsu 223800, PR China.
| | - Jian Sun
- Department of Clinical Laboratory, Suqian First Hospital, Jiangu Province Hospital at Suqian, Suqian, Jiangsu 223800, PR China
| |
Collapse
|
15
|
The mRNA expression of insulin-like growth factor-1 (Igf1) is decreased in the rat frontal cortex following gamma-hydroxybutyrate (GHB) administration. Neurosci Lett 2017; 646:15-20. [PMID: 28249788 DOI: 10.1016/j.neulet.2017.02.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
In recent years, growth hormone (GH), together with its secondary mediators insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2), have been highlighted for their beneficial effects in the central nervous system (CNS), in particular as cognitive enhancers. Cognitive processes, such as learning and memory, are known to be impaired in individuals suffering from substance abuse. In the present study, we investigated the effect of gamma-hydroxybuturate (GHB), an illicit drug used for its sedating and euphoric properties, on genes associated with the somatotrophic axis in regions of the brain important for cognitive function. Sprague Dawley rats (n=36) were divided into three groups and administered either saline, GHB 50mg/kg or GHB 300mg/kg orally for seven days. The levels of Ghr, Igf1 and Igf2 gene transcripts were analyzed using qPCR in brain regions involved in cognition and dependence. The levels of IGF-1 in blood plasma were also determined using ELISA. The results demonstrated a significant down-regulation of Igf1 mRNA expression in the frontal cortex in high-dose treated rats. Moreover, a significant correlation between Igf1 and Ghr mRNA expression was found in the hippocampus, the frontal cortex, and the caudate putamen, indicating local regulation of the GH/IGF-1 axis. To summarize, the current study concludes that chronic GHB treatment influences gene expression of Ghr and Igf1 in brain regions involved in cognitive function.
Collapse
|
16
|
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10:409-428. [PMID: 28276776 DOI: 10.1080/17512433.2017.1293521] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
17
|
Depression can be prevented by astaxanthin through inhibition of hippocampal inflammation in diabetic mice. Brain Res 2017; 1657:262-268. [PMID: 28017669 DOI: 10.1016/j.brainres.2016.12.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/28/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
|
18
|
Nylander E, Grönbladh A, Zelleroth S, Diwakarla S, Nyberg F, Hallberg M. Growth hormone is protective against acute methadone-induced toxicity by modulating the NMDA receptor complex. Neuroscience 2016; 339:538-547. [PMID: 27746341 DOI: 10.1016/j.neuroscience.2016.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/12/2016] [Accepted: 10/03/2016] [Indexed: 01/13/2023]
Abstract
Human growth hormone (GH) displays promising protective effects in the central nervous system after damage caused by various insults. Current evidence suggests that these effects may involve N-methyl-d-aspartate (NMDA) receptor function, a receptor that also is believed to play a role in opioid-induced neurotoxicity. The aims of the present study were to examine the acute toxic effects of methadone, an opioid receptor agonist and NMDA receptor antagonist, as well as to evaluate the protective properties of recombinant human GH (rhGH) on methadone-induced toxicity. Primary cortical cell cultures from embryonic day 17 rats were grown for 7days in vitro. Cells were treated with methadone for 24h and the 50% lethal dose was calculated and later used for protection studies with rhGH. Cellular toxicity was determined by measuring mitochondrial activity, lactate dehydrogenase release, and caspase activation. Furthermore, the mRNA expression levels of NMDA receptor subunits were investigated following methadone and rhGH treatment using quantitative PCR (qPCR) analysis. A significant protective effect was observed with rhGH treatment on methadone-induced mitochondrial dysfunction and in methadone-induced LDH release. Furthermore, methadone significantly increased caspase-3 and -7 activation but rhGH was unable to inhibit this effect. The mRNA expression of the NMDA receptor subunit GluN1, GluN2a, and GluN2b increased following methadone treatment, as assessed by qPCR, and rhGH treatment effectively normalized this expression to control levels. We have demonstrated that rhGH can rescue cells from methadone-induced toxicity by maintaining mitochondrial function, cellular integrity, and NMDA receptor complex expression.
Collapse
Affiliation(s)
- Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden
| | - Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden
| | - Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden
| | - Fred Nyberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden
| |
Collapse
|
19
|
Devesa J, Almengló C, Devesa P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin Med Insights Endocrinol Diabetes 2016; 9:47-71. [PMID: 27773998 PMCID: PMC5063841 DOI: 10.4137/cmed.s38201] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, Teo, Spain
| | | | - Pablo Devesa
- Research and Development, Medical Center Foltra, 15886-Teo, Spain
| |
Collapse
|
20
|
Grönbladh A, Nylander E, Hallberg M. The neurobiology and addiction potential of anabolic androgenic steroids and the effects of growth hormone. Brain Res Bull 2016; 126:127-137. [DOI: 10.1016/j.brainresbull.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/30/2022]
|
21
|
Zhou X, Zhang F, Hu X, Chen J, Wen X, Sun Y, Liu Y, Tang R, Zheng K, Song Y. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice. Physiol Behav 2015; 151:412-20. [DOI: 10.1016/j.physbeh.2015.08.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/03/2015] [Accepted: 08/08/2015] [Indexed: 11/24/2022]
|
22
|
Ying CJ, Zhang F, Zhou XY, Hu XT, Chen J, Wen XR, Sun Y, Zheng KY, Tang RX, Song YJ. Anti-inflammatory Effect of Astaxanthin on the Sickness Behavior Induced by Diabetes Mellitus. Cell Mol Neurobiol 2015; 35:1027-37. [PMID: 25971983 PMCID: PMC11486272 DOI: 10.1007/s10571-015-0197-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022]
Abstract
Chronic inflammation appears to play a critical role in sickness behavior caused by diabetes mellitus. Astaxanthin has been used in treating diabetes mellitus and diabetic complications because of its neuroprotective and anti-inflammatory actions. However, whether astaxanthin can improve sickness behavior induced by diabetes and its potential mechanisms are still unknown. The aim of this study was to investigate the effects of astaxanthin on diabetes-elicited abnormal behavior in mice and its corresponding mechanisms. An experimental diabetic model was induced by streptozotocin (150 mg/kg) and astaxanthin (25 mg/kg/day) was provided orally for 10 weeks. Body weight and water consumption were measured, and the sickness behavior was evaluated by the open field test (OFT) and closed field test (CFT). The expression of glial fibrillary acidic protein (GFAP) was measured, and the frontal cortical cleaved caspase-3 positive cells, interleukin-6 (IL-6), and interleukin-1β (IL-1β) expression levels were also investigated. Furthermore, cystathionine β-synthase (CBS) in the frontal cortex was detected to determine whether the protective effect of astaxanthin on sickness behavior in diabetic mice is closely related to CBS. As expected, we observed that astaxanthin improved general symptoms and significantly increase horizontal distance and the number of crossings in the OFT and CFT. Furthermore, data showed that astaxanthin could decrease GFAP-positive cells in the brain and down-regulate the cleaved caspase-3, IL-6, and IL-1β, and up-regulate CBS in the frontal cortex. These results suggest that astaxanthin provides neuroprotection against diabetes-induced sickness behavior through inhibiting inflammation, and the protective effects may involve CBS expression in the brain.
Collapse
Affiliation(s)
- Chang-jiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Fang Zhang
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Xiao-yan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Xiao-tong Hu
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jing Chen
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Xiang-ru Wen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ying Sun
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Kui-yang Zheng
- Department of Pathogen Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ren-xian Tang
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China.
- Department of Pathogen Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Yuan-jian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China.
- Department of Genetics, Research Center for Neurobiology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Growth hormone (GH) increases cognition and expression of ionotropic glutamate receptors (AMPA and NMDA) in transgenic zebrafish (Danio rerio). Behav Brain Res 2015; 294:36-42. [PMID: 26235327 DOI: 10.1016/j.bbr.2015.07.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 11/21/2022]
Abstract
The growth hormone/insulin-like factor I (GH/IGF-I) somatotropic axis is responsible for somatic growth in vertebrates, and has important functions in the nervous system. Among these, learning and memory functions related to the neural expression of ionotropic glutamate receptors, mainly types AMPA (α-amino-3hydroxy-5methylisoxazole-4propionic) and NMDA (N-methyl-d-aspartate) can be highlighted. Studies on these mechanisms have been almost exclusively conducted on mammal models, with little information available on fish. Consequently, this study aimed at evaluating the effects of the somatotropic axis on learning and memory of a GH-transgenic zebrafish (Danio rerio) model (F0104 strain). Long-term memory (LTM) was tested in an inhibitory avoidance apparatus, and brain expression of igf-I and genes that code for the main subunits of the AMPA and NMDA receptors were evaluated. Results showed a significant increase in LTM for transgenic fish. Transgenic animals also showed a generalized pattern of increase in the expression of AMPA and NMDA genes, as well as a three-fold induction in igf-I expression in the brain. When analyzed together, these results indicate that GH, mediated by IGF-I, has important effects on the brain, with improvement in LTM as a result of increased glutamate receptors. The transgenic strain F0104 was shown to be an interesting model for elucidating the intricate mechanisms related to the effect of the somatotropic axis on learning and memory in vertebrates.
Collapse
|
24
|
Scheinman EJ, Damouni R, Caspi A, Shen-Orr Z, Tiosano D, LeRoith D. The beneficial effect of growth hormone treatment on islet mass in streptozotocin-treated mice. Diabetes Metab Res Rev 2015; 31:492-9. [PMID: 25529355 DOI: 10.1002/dmrr.2631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease, characterized by a loss of pancreatic β-cell mass and function, which results in dramatic reductions in insulin secretion and circulating insulin levels. Patients with type 1 diabetes are traditionally treated with insulin injections and insulin pumps ex vivo or undergo transplantation. Growth hormone (GH) has been shown to be involved in β-cell function and survival in culture. METHODS Twelve-week-old female C57BL/6 mice were treated with streptozotocin and monitored for their weight and blood glucose levels. Fourteen days post-initial injection, these mice were separated into two groups at random. One group was treated with GH while the other treated with vehicle for up to 3 weeks. These mice were compared with mice not treated with streptozotocin. RESULTS Under our experimental conditions, we observed that mice treated with GH had larger islets and higher serum insulin levels than streptozotocin-treated mice treated with saline (0.288 vs. 0.073 ng/mL, p < 0.01). CONCLUSIONS Our data demonstrate that GH may rescue islets and therefore may possess therapeutic potential in the treatment of type 1 diabetes, although consideration should be made regarding GH's effect on insulin resistance.
Collapse
Affiliation(s)
- Eyal J Scheinman
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rawan Damouni
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avishay Caspi
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Zila Shen-Orr
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Dov Tiosano
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Endocrinology Unit, Meyer Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Derek LeRoith
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
25
|
van Dijk G, van Heijningen S, Reijne AC, Nyakas C, van der Zee EA, Eisel ULM. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci 2015; 9:173. [PMID: 26041981 PMCID: PMC4434977 DOI: 10.3389/fnins.2015.00173] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework.
Collapse
Affiliation(s)
- Gertjan van Dijk
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Steffen van Heijningen
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Aaffien C Reijne
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands ; Systems Biology Centre for Energy Metabolism and Ageing, University Medical Center, University of Groningen Groningen, Netherlands
| | - Csaba Nyakas
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Eddy A van der Zee
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Ulrich L M Eisel
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands ; University Centre of Psychiatry, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
26
|
Nyberg F. Structural plasticity of the brain to psychostimulant use. Neuropharmacology 2014; 87:115-24. [DOI: 10.1016/j.neuropharm.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
|
27
|
Arámburo C, Alba-Betancourt C, Luna M, Harvey S. Expression and function of growth hormone in the nervous system: a brief review. Gen Comp Endocrinol 2014; 203:35-42. [PMID: 24837495 DOI: 10.1016/j.ygcen.2014.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
There is increasing evidence that growth hormone (GH) expression is not confined exclusively to the pituitary somatotrophs as it is synthesized in many extrapituitary locations. The nervous system is one of those extrapituitary sites. In this brief review we summarize data that substantiate the expression, distribution and characterization of neural GH and detail its roles in neural function, including cellular growth, proliferation, differentiation, neuroprotection and survival, as well as its functional roles in behavior, cognition and neurotransmission. Although systemic GH may exert some of these effects, it is increasingly evident that locally expressed neural GH, acting through intracrine, autocrine or paracrine mechanisms, may also be causally involved as a neurotrophic factor.
Collapse
Affiliation(s)
- Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México.
| | - Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
28
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
29
|
Ma L, Wei Q, Deng H, Zhang Q, Li G, Tang N, Xie J, Chen Y. Growth factor receptor-bound protein 10-mediated negative regulation of the insulin-like growth factor-1 receptor-activated signalling pathway results in cognitive disorder in diabetic rats. J Neuroendocrinol 2013; 25:626-34. [PMID: 23614367 DOI: 10.1111/jne.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 03/28/2013] [Accepted: 04/20/2013] [Indexed: 11/29/2022]
Abstract
Growth factor receptor-bound protein 10 (Grb10) is a Src homology 2 domain-containing protein and one of the binding partners for several transmembrane tyrosine kinase receptors, including insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1-R). The hippocampus, which is critical for cognitive functions, is one of the main distribution areas of Grb10 in the central nervous system. In recent years, diabetic encephalopathy has been defined as a third type of diabetes and the IGF1-IR pathway was shown to be critical for the neuropathogenic process of cognitive disorder in diabetes. However, the role of endogenous Grb10 in regulating the IGF1-IR pathway and neurobehavioural changes is not explicit. The present study aimed to determine the in vivo function of endogenous Grb10 in diabetic encephalopathy and the underlying mechanisms. Using stereotaxic surgical techniques and lentiviral vectors expressing specific short hairpin RNA, we could steadily knockdown Grb10 expression in the hippocampus. More importantly, we demonstrated that hippocampus-specific modulation of Grb10 protein levels led to a prominent remission of cognitive disorder, including improvements in both ultrastructural pathology and abnormal neurobehavioural changes. Our findings indicate that endogenous overexpression of Grb10 functions as a suppressor of the IGF1-IR pathway, which may represent an important mechanism for regulating cognitive disorder in diabetes.
Collapse
Affiliation(s)
- L Ma
- Department of Gerontology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Emerging data indicate that growth hormone (GH) therapy could have a role in improving cognitive function. GH replacement therapy in experimental animals and human patients counteracts the dysfunction of many behaviours related to the central nervous system (CNS). Various behaviours, such as cognitive behaviours related to learning and memory, are known to be induced by GH; the hormone might interact with specific receptors located in areas of the CNS that are associated with the functional anatomy of these behaviours. GH is believed to affect excitatory circuits involved in synaptic plasticity, which alters cognitive capacity. GH also has a protective effect on the CNS, as indicated by its beneficial effects in patients with spinal cord injury. Data collected from animal models indicates that GH might also stimulate neurogenesis. This Review discusses the mechanisms underlying the interactions between GH and the CNS, and the data emerging from animal and human studies on the relationship between GH and cognitive function. In this article, particular emphasis is given to the role of GH as a treatment for patients with cognitive impairment resulting from deficiency of the hormone.
Collapse
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | |
Collapse
|