1
|
Cheng K, Chen C, Zhou Q, Chen X, Xie P. Deficit of neuronal EAAT2 impairs hippocampus CA3 neuron's activity and may induce depressive like behaviors. J Adv Res 2025:S2090-1232(25)00176-6. [PMID: 40096942 DOI: 10.1016/j.jare.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a severe neuropsychiatric disease that is accompanied by hippocampal dysfunction. Currently, the complex neuronal types and molecules involved in the various hippocampal subfields in patients with depression remain unclear. OBJECTIVES We focused on the role of hippocampal excitatory amino acid transporter 2 (EAAT2) in chronic stress. METHODS We studied two chronic stress models, the chronic unpredictable mild stress (CUMS) and the chronic social defeat stress (CSDS) models, and performed pharmacological inhibition, genetic manipulations to examine overexpression of neuron-specific solute carrier family 1 member 2 (SLC1A2), the gene encoding EAAT2, in the dorsal CA3 and conditional Slc1a2 knockout in CA3, whole-cell recording, and behavioral tests. RESULTS Our results indicated that decreased EAAT2 expression and specific inhibition were associated with depression-like behavior and enhanced CA3 pyramidal neuron activity. In addition, neuron-specific EAAT2 overexpression in the CA3 yielded antidepressant-like effects and inhibited CA3 pyramidal neuron hyperactivity, whereas conditional CA3 EAAT2 knockout showed opposite effects at both behavioral and functional levels. We also found that the single-nucleotide polymorphism, rs77619780, in the SLCA1A2 gene was associated with lower MDD risk. CONCLUSION Our findings revealed that EAAT2 deficit in the CA3 induces depression-like behavior, which offers novel insight into MDD pathophysiology.
Collapse
Affiliation(s)
- Ke Cheng
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing 402160, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160,China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qinji Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Eszlari N, Hullam G, Gal Z, Torok D, Nagy T, Millinghoffer A, Baksa D, Gonda X, Antal P, Bagdy G, Juhasz G. Olfactory genes affect major depression in highly educated, emotionally stable, lean women: a bridge between animal models and precision medicine. Transl Psychiatry 2024; 14:182. [PMID: 38589364 PMCID: PMC11002013 DOI: 10.1038/s41398-024-02867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Most current approaches to establish subgroups of depressed patients for precision medicine aim to rely on biomarkers that require highly specialized assessment. Our present aim was to stratify participants of the UK Biobank cohort based on three readily measurable common independent risk factors, and to investigate depression genomics in each group to discover common and separate biological etiology. Two-step cluster analysis was run separately in males (n = 149,879) and females (n = 174,572), with neuroticism (a tendency to experience negative emotions), body fat percentage, and years spent in education as input variables. Genome-wide association analyses were implemented within each of the resulting clusters, for the lifetime occurrence of either a depressive episode or recurrent depressive disorder as the outcome. Variant-based, gene-based, gene set-based, and tissue-specific gene expression test were applied. Phenotypically distinct clusters with high genetic intercorrelations in depression genomics were found. A two-cluster solution was the best model in each sex with some differences including the less important role of neuroticism in males. In females, in case of a protective pattern of low neuroticism, low body fat percentage, and high level of education, depression was associated with pathways related to olfactory function. While also in females but in a risk pattern of high neuroticism, high body fat percentage, and less years spent in education, depression showed association with complement system genes. Our results, on one hand, indicate that alteration of olfactory pathways, that can be paralleled to the well-known rodent depression models of olfactory bulbectomy, might be a novel target towards precision psychiatry in females with less other risk factors for depression. On the other hand, our results in multi-risk females may provide a special case of immunometabolic depression.
Collapse
Grants
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 143391 and PD 146014, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. N. E. was supported by the ÚNKP-22-4-II-SE-1, and D. B. by the ÚNKP-22-4-I-SE-10 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. N. E. is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 143391, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme.
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 143391, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. N. E. was supported by the ÚNKP-22-4-II-SE-1, and D. B. by the ÚNKP-23-4-II-SE-2 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 139330, K 143391, and PD 146014, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. It was also supported by the National Research, Development, and Innovation Fund of Hungary under Grant TKP2021-EGA-02 and the European Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence National Laboratory.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Gabor Hullam
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Tamas Nagy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andras Millinghoffer
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Budapest, Hungary
| | - Xenia Gonda
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Lv H, Gao Z, Wang Y, Chen S, Liu P, Xie Y, Guan M, Cong J, Xu Y. Metformin Improves Comorbid Depressive Symptoms in Mice with Allergic Rhinitis by Reducing Olfactory Bulb Damage. Neurochem Res 2023; 48:3639-3651. [PMID: 37574530 DOI: 10.1007/s11064-023-04012-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Allergic rhinitis (AR) is a widespread disease that is frequently comorbid with depression. However, the mechanisms and treatments for depression in AR remain underexplored. Metformin, a widely used antidiabetic drug, has shown antidepressant effects. The aim of this study was to explore the effects and potential mechanisms of metformin on depression-like behaviors in an AR mouse model. In the present study, mice were sensitized and challenged with ovalbumin (OVA) to induce AR. Results showed that mice with AR exhibited significant depression-like behavior which was attenuated by metformin. In addition, the levels of expression of synaptic plasticity markers (anti-microtubule-associated protein 2, synaptophysin, postsynaptic density protein 95), neurogenesis markers (doublecortin and Ki-67), and brain-derived neurotrophic factor were decreased in the olfactory bulb (OB) of mice with AR, while metformin ameliorated all these alterations and reduced apoptosis in the OB of these mice. Furthermore, it enhanced the phosphorylation of AMP-activated kinase (AMPK) and the levels of ten-eleven translocation 2 (TET2) and 5-hydroxymethylcytosine in the OB. In conclusion, our findings suggest that metformin might be a viable strategy for treating AR-related depression, possibly by modulating neuroplasticity, neurogenesis, apoptosis, and BDNF signaling in the OB via the AMPK/TET2 pathway.
Collapse
Affiliation(s)
- Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Siyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yulie Xie
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Mengting Guan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, 430060, China.
| |
Collapse
|
4
|
Cheng K, Wang Y, He Y, Tian Y, Li J, Chen C, Xu X, Wu Z, Yu H, Chen X, Wu Y, Song W, Dong Z, Xu H, Xie P. Upregulation of carbonic anhydrase 1 beneficial for depressive disorder. Acta Neuropathol Commun 2023; 11:59. [PMID: 37013604 PMCID: PMC10071615 DOI: 10.1186/s40478-023-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Carbonic Anhydrase 1 (CAR1) is a zinc-metalloenzyme that catalyzes the hydration of carbon dioxide, and the alteration of CAR1 has been implicated in neuropsychiatric disorders. However, the mechanism underlying the role of CAR1 in major depressive disorder (MDD) remains largely unknown. In this study, we report the decreased level of CAR1 in MDD patients and depression-like model rodents. We found that CAR1 is expressed in hippocampal astrocytes and CAR1 regulates extracellular bicarbonate concentration and pH value in the partial hilus. Ablation of the CAR1 gene increased the activity of granule cells via decreasing their miniature inhibitory postsynaptic currents (mIPSC), and caused depression-like behaviors in CAR1-knockout mice. Astrocytic CAR1 expression rescued the deficits in mIPSCs of granule cells and reduced depression-like behaviors in CAR1 deficient mice. Furthermore, pharmacological activation of CAR1 and overexpression of CAR1 in the ventral hippocampus of mice improved depressive behaviors. These findings uncover a critical role of CAR1 in the MDD pathogenesis and its therapeutic potential.
Collapse
Affiliation(s)
- Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingzhe Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Huatai Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Tian JS, Zhao YH, Ling-Hu T, Wu WZ, Wang XX, Ji C, Zhao WD, Han YM, Qin XM. A novel insight for high-rate and low-efficiency glucose metabolism in depression through stable isotope-resolved metabolomics in CUMS-induced rats. J Affect Disord 2023; 331:121-129. [PMID: 36948469 DOI: 10.1016/j.jad.2023.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Existing research has suggested that depression results in disorders of glucose metabolism in the organism which causing insufficient energy supply. However, the overall changes in glucose metabolism that arise from depression have not been clarified. METHODS In this study, the depression-like behavior in chronically unpredictable mild stressed rats was investigated, and the fate of glucose was tracked through isotope tracing and mass spectrometry, with a focus on metabolite changes in cecal contents. RESULTS As indicated by the results, the isotopic results of cecal contents can indicate the metabolic end of the organism. Moreover, the TCA cycle activity was notably reduced, and the gluconeogenesis pathway was abnormally up-regulated in the CUMS-induced rats. The organism expedited other glucose metabolism pathways to make up for the insufficiency of energy. As a result, the activity of the inefficient glycolysis pathway was increased. LIMITATIONS Existing research has only investigated the metabolism of 13C-glucose, and lipids and proteins have been rarely explored. CONCLUSIONS The chronic unpredictable mild stress can inhibit the entry of pyruvate into mitochondria in SD rats, such that the activity of TCA is reduced, and insufficient energy supply is caused. The organism is capable of expediting other glucose metabolism rate pathways to make up for the insufficiency of energy, whereas it still cannot compensate for the loss of energy. As a result, CUMS-induced rats exhibited high-rate and low-efficiency glucose metabolism.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yun-Hao Zhao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China
| | - Ting Ling-Hu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China
| | - Wen-Ze Wu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China
| | - Xian-Xian Wang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China
| | - Cui Ji
- School of Physical Education, Shanxi University, Taiyuan 030006, China
| | - Wei-di Zhao
- School of Physical Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Mei Han
- School of Physical Education, Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Chen G, Zhou S, Chen Q, Liu M, Dong M, Hou J, Zhou B. Tryptophan-5-HT pathway disorder was uncovered in the olfactory bulb of a depression mice model by metabolomic analysis. Front Mol Neurosci 2022; 15:965697. [PMID: 36299862 PMCID: PMC9589483 DOI: 10.3389/fnmol.2022.965697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Major depression (MD) is a severe mental illness that creates a heavy social burden, and the potential molecular mechanisms remain largely unknown. Lots of research demonstrate that the olfactory bulb is associated with MD. Recently, gas chromatography-mass spectrometry-based metabolomic studies on depressive rats indicated that metabolisms of purine and lipids were disordered in the olfactory bulb. With various physicochemical properties and extensive concentration ranges, a single analytical technique could not completely cover all metabolites, hence it is necessary to adopt another metabolomic technique to seek new biomarkers or molecular mechanisms for depression. Therefore, we adopted a liquid chromatography-mass spectrometry metabonomic technique in the chronic mild stress (CMS) model to investigate significant metabolic changes in the olfactory bulb of the mice. We discovered and identified 16 differential metabolites in the olfactory bulb of the CMS treatments. Metabolic pathway analysis by MetaboAnalyst 5.0 was generated according to the differential metabolites, which indicated that the tryptophan metabolism pathway was the core pathogenesis in the olfactory bulb of the CMS depression model. Further, the expressions of tryptophan hydroxylase (TpH) and aromatic amino acid decarboxylase (AAAD) were detected by western blotting and immunofluorescence staining. The expression of TpH was increased after CMS treatment, and the level of AAAD was unaltered. These results revealed that abnormal metabolism of the tryptophan pathway in the olfactory bulb mediated the occurrence of MD.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Meixue Dong
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Jiabao Hou
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
- Benhong Zhou
| |
Collapse
|
7
|
Lin CC, Su H, Shiea J, Huang TL. Isobaric Tags for Relative and Absolute Quantitation Identification of Blood Proteins Relevant to Paroxetine Response in Patients With Major Depressive Disorder. Front Psychiatry 2022; 13:577857. [PMID: 35509884 PMCID: PMC9058070 DOI: 10.3389/fpsyt.2022.577857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Isobaric tags for relative and absolute quantitation (iTRAQ) is a proteomic investigation that could be utilized for rapid identification and quantification of proteins, which we would use to identify differentially expressed proteins in treatment responsive patients with major depressive disorder (MDD). METHODS Six treatment responsive patients of MDD were recruited, and their peripheral blood mononuclear cell (PBMC) were collected before and after 4 weeks of paroxetine treatment. iTRAQ and Mascot search engine were used to detect differentially expressed proteins, which were then validated by Western blot. RESULTS Two thousand one hundred and fifty three proteins were screened, and seven proteins showed differences of more than two-fold and 62 proteins with a differences of less than two-fold. Six proteins with commercially available antibodies were identified, and were validated by Western blot in 10 paroxetine responsive MDD patients. Putative hydroxypyruvate isomerase (HYI), eukaryotic translation initiation factor 4H (eIF4H), and RNA binding motif 8A (RBM8A) had statistically significant differences before and after treatment in the validation. Data are available via ProteomeXchange with identifier PXD028947. CONCLUSIONS By using iTRAQ and Western blot, we were able to identify HYI, eIF4H, and RAM8a to be the potential predictors of paroxetine treatment response in patients with MDD. This finding could help establish future individualized medicine.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Liu D, Cai X, Wang L, Yi F, Liao W, Huang R, Fang C, Chen J, Zhou J. Comparative Proteomics of Rat Olfactory Bulb Reveal Insights into Susceptibility and Resiliency to Chronic-stress-induced Depression or Anxiety. Neuroscience 2021; 473:29-43. [PMID: 34425157 DOI: 10.1016/j.neuroscience.2021.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023]
Abstract
Chronic stress causes the abnormality of olfactory bulb (OB) in both anxiety and depression, however, the unique and common neurobiological underpinnings are still poorly understood. Previously, we built the three groups by chronic mild stress (CMS), depression-susceptible (Dep-Sus): with depression-like behavior, anxiety-susceptible (Anx-Sus): with anxiety-like behavior and insusceptible (Insus): without depression- and anxiety-like behaviors. To continuously explore the protein expression changes in these three groups, comparative quantitative proteomics analysis was conducted on the rat OB as crucial part of the olfactory system. Next, bioinformatics analyses were implemented whereas protein expressions were independently analyzed by parallel reaction monitoring (PRM) or Western blot (WB). The OB-proteome analysis identified totally 133 differentially expressed proteins as a CMS response. These deregulated proteins were involved in multiple functions and significant pathways potentially correlated with phenotypes of maladaptive behavior of depression or anxiety as well as adaptive behavior, and hence might act as potential candidate protein targets. The subsequent PRM-based or WB-based analyses showed that changes in Nefl, Mtmr7 and Tk2; Prkaca, Coa3, Cox6c2, Lamc1 and Tubal3; and Pabpn1, Nme3, Sos1 and Lum were uniquely associated with Dep-Sus, Anx-Sus, and Insus groups, respectively. These phenotype-specific deregulated proteins were primarily involved in multiple metabolic and signaling pathways, suggesting that the identical CMS differently impacted the olfactory protein regulation system and biological processes. To sum up, our present data as a useful proteomics underpinning provided the common and distinct molecular insights into the biochemical understanding of OB dysfunction underlying susceptibility and resiliency to chronic-stress-induced anxiety or depression.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Cai
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Lixiang Wang
- Shenzhen Wininnovate Bio-Tech Co., Ltd, Shenzhen 410034, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Wei Liao
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Rongzhong Huang
- ChuangXu Institute of Life Science, Chongqing 400016, China; Chongqing Institute of Life Science, Chongqing 400016, China
| | - Chui Fang
- Shenzhen Wininnovate Bio-Tech Co., Ltd, Shenzhen 410034, China.
| | - Jin Chen
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Almohaimeed HM, Batawi AH, Mohammedsaleh ZM, Al Jaouni S, Mutlq Alsawat SA, Abd El Wahab MG, AbdElfattah AA, Ayuob NN. Musk ( Moschus moschiferus) Attenuates Changes in Main Olfactory Bulb of Depressed Mice: Behavioral, Biochemical, and Histopathological Evidence. Front Behav Neurosci 2021; 15:704180. [PMID: 34512285 PMCID: PMC8430345 DOI: 10.3389/fnbeh.2021.704180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musk (Moschus moschiferus) has been described to have a significant impact on the central nervous system, as well as anticonvulsion and antidepressant effects. This study was designed to evaluate the efficacy of musk in alleviating alterations induced in olfactory bulb of depressed mice exposed to chronic stress and identify the mechanism behind it. METHODS Fifty male albino mice were divided into five groups (n = 10 each): control, musk, chronic unpredictable mild stress (CUMS), fluoxetine-treated, and musk-treated groups were included in this study. Behavioral changes and serum levels of corticosterone and proinflammatory cytokines included tumor necrosis factor α, interleukin 6, and oxidant/antioxidant profile were assessed at the end of the experiment. Main olfactory bulb (MOB) has been processed for histopathological examination. Gene expression of caspase-3, glial fibrillary acidic protein, and Ki67 were assessed in the MOB using quantitative real-time polymerase chain reaction. RESULTS The study showed that musk inhalation significantly reduced (p < 0.001) corticosterone level, immobility time, inflammatory cytokines, and oxidative stress markers in CUMS-exposed mice compared to the untreated CUMS group. Musk lessened CUMS-associated neuronal alterations in the MOB and significantly reduced apoptosis and enhanced neural cell proliferation (p < 0.001) comparable to fluoxetine. Musk significantly enhanced the level of antioxidants in the serum and significantly reduced inflammatory cytokines. The anti-inflammatory and antioxidant activity of musk and its constituents seemed to be behind its neuroprotective effect observed in this study. CONCLUSION Musk effectively ameliorated the chronic stress-induced behavioral, biochemical, and neuronal structural changes in MOB mostly through its antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Hailah M. Almohaimeed
- Department of Basic Science, Medical College, Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Saudi Arabia
| | - Ashwaq H. Batawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdullatif Jameel Chair of Prophetic Medical Applications, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Manal G. Abd El Wahab
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
- Faculty of Nurses, National Gard, King Saud University, Jeddah, Saudi Arabia
| | - Amany A. AbdElfattah
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nasra N. Ayuob
- Department of Medical Histology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
10
|
Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, Yang L, Zhou M. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother 2021; 141:111869. [PMID: 34225015 DOI: 10.1016/j.biopha.2021.111869] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that associated with high rate of disability and increasing suicide rate, and the pathogenesis is still unclear. Many researches showed that the energy metabolism of patients with depression is impaired, which may be the direction of depression treatment. In this review, we focus on the "omics" technologies such as genomics, proteomics, transcriptomics and metabolomics, as well as imaging, and the progress on energy metabolism of MDD. These findings indicate that abnormal energy metabolism is one of the important mechanisms for the occurrence and development of depression. Although the research on various mechanisms of depression is still ongoing, the rapid development of new technologies and the joint use of various technologies will help to clarify the pathogenesis of depression and explore efficient diagnosis and treatment methods.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ke
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Cao H, Zuo C, Huang Y, Zhu L, Zhao J, Yang Y, Jiang Y, Wang F. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression. Behav Brain Res 2021; 407:113261. [PMID: 33775778 DOI: 10.1016/j.bbr.2021.113261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Neuronal loss has been identified in depression, but its mechanisms are not fully understood. Proteomic analyses provide a novel insight to explore the potential mechanisms of such pathological alterations. In this study, mice were treated with chronic unpredictable mild stress (CUMS) for 2 months to establish depression models. The hippocampus was analyzed for proteomic patterns by mass spectrometry followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Behavioral tests showed that mice receiving CUMS showed depression-like symptoms such as anhedonia in the sucrose preference test (SPT) and behavioral despair in the forced swimming test (FST). CUMS induced anxiety-like behaviors in the open field test (OFT), but did not impair spatial learning and memory ability in the Morris water maze (MWM) test. Out of 4046 quantified proteins, 47 differentially expressed proteins were obtained between the CUMS and control groups. These proteins were functionally enriched in a series of biological processes. Among the notably enriched pathways, necroptosis and ferroptosis were significantly activated. Western blot and biochemical assay analyses identified changes in receptor-interacting protein kinase 3 (RIP3), phosphorylated mixed lineage kinase domain-like protein (p-MLKL), ferritin light chain 1 (Ftl1) and lipid peroxidation that were related to necroptosis and ferroptosis. Further, we found reduced levels of alpha-crystallin B (Cryab) and brain-derived neurotrophic factor (BDNF), which were also associated with neuronal survival. Our study highlighted that necroptosis and ferroptosis were involved in depression and partially account for neuronal loss, thereby providing potentially novel targets for the treatment of depression.
Collapse
Affiliation(s)
- Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Liudi Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Jianling Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Hu W, Xie G, Zhou T, Tu J, Zhang J, Lin Z, Zhang H, Gao L. Intranasal administration of white tea alleviates the olfactory function deficit induced by chronic unpredictable mild stress. PHARMACEUTICAL BIOLOGY 2020; 58:1221-1228. [PMID: 33321058 PMCID: PMC7875552 DOI: 10.1080/13880209.2020.1855213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT White tea [Camellia sinensis (L) O.Ktze. (Theaceae)] is popular in Asia, but its benefits on olfactory injury are unknown. OBJECTIVE The present study explores the effects of white tea on the olfactory injury caused by chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS C57BL/6J mice (WT) were exposed to CUMS. CUMS mice (CU) were intranasally treated with white tea extract [low tea (LT), 20 mg/kg; high tea (HT), 40 mg/kg] and fluoxetine (CF, 20 mg/kg) for 7 days. Several behavioural tests were conducted to assess depression and olfactory function. The transmission electron microscope (TEM) and semi-quantitative reverse transcription PCR were performed separately to observe the changes of related structures and genes transcription level. RESULTS The depressive behaviours of the LT and HT mice were reversed. The latency time of the buried food pellet test decreased from 280 s (CU) to 130 s (HT), while the olfactory sensitivity and olfactory avoidance test showed that the olfactory behaviours disorder of LT and HT mice were alleviated. The white tea increased the A490 nm values of the cortisol treated cells from 0.15 to 1.4. Reduced mitochondrial and synaptic damage in the olfactory bulb (OB), enhanced expression of the brain-derived neurotrophic factor (BDNF) and olfactory marker protein (OMP) were observed in the LT and HT mice. CONCLUSIONS AND DISCUSSION White tea has the potential in curing the olfactory deficiency related to chronic stress. It lays the foundation for the development of new and reliable drug to improve olfactory.
Collapse
Affiliation(s)
- Wenhao Hu
- School of Life Science, East China Normal University, Shanghai, China
| | - Guixiang Xie
- School of Life Science, East China Normal University, Shanghai, China
| | - Tian Zhou
- School of Life Science, East China Normal University, Shanghai, China
| | - Jialu Tu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiayi Zhang
- School of Life Science, East China Normal University, Shanghai, China
| | - Zejie Lin
- School of Life Science, East China Normal University, Shanghai, China
| | - Haiyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Liangcai Gao
- School of Life Science, East China Normal University, Shanghai, China
- CONTACT Liangcai Gao
| |
Collapse
|
13
|
Colle R, El Asmar K, Verstuyft C, Lledo PM, Lazarini F, Chappell K, Deflesselle E, Ait Tayeb AEK, Falissard B, Duron E, Rotenberg S, Costemale-Lacoste JF, David DJ, Gressier F, Gardier AM, Hummel T, Becquemont L, Corruble E. The olfactory deficits of depressed patients are restored after remission with venlafaxine treatment. Psychol Med 2020; 52:1-9. [PMID: 33087184 DOI: 10.1017/s0033291720003918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND It is unclear whether olfactory deficits improve after remission in depressed patients. Therefore, we aimed to assess in drug-free patients the olfactory performance of patients with major depressive episodes (MDE) and its change after antidepressant treatment. METHODS In the DEP-ARREST-CLIN study, 69 drug-free patients with a current MDE in the context of major depressive disorder (MDD) were assessed for their olfactory performances and depression severity, before and after 1 (M1) and 3 (M3) months of venlafaxine antidepressant treatment. They were compared to 32 age- and sex-matched healthy controls (HCs). Olfaction was assessed with a psychophysical test, the Sniffin' Sticks test (Threshold: T score; Discrimination: D score; Identification: I score; total score: T + D + I = TDI score) and Pleasantness (pleasantness score: p score; neutral score: N score; unpleasantness score: U score). RESULTS As compared to HCs, depressed patients had lower TDI olfactory scores [mean (s.d.) 30.0(4.5) v. 33.3(4.2), p < 0.001], T scores [5.6(2.6) v. 7.4(2.6), p < 0.01], p scores [7.5(3.0) v. 9.8(2.8), p < 0.001)] and higher N scores [3.5(2.6) v. 2.1(1.8), p < 0.01]. T, p and N scores at baseline were independent from depression and anhedonia severity. After venlafaxine treatment, significant increases of T scores [M1: 7.0(2.6) and M3: 6.8(3.1), p < 0.01] and p scores [M1: 8.1(3.0) and M3: 8.4(3.3), p < 0.05] were evidenced, in remitters only (T: p < 0.01; P: p < 0.01). Olfaction improvement was mediated by depression improvement. CONCLUSIONS The olfactory signature of MDE is restored after venlafaxine treatment. This olfaction improvement is mediated by depression improvement.
Collapse
Affiliation(s)
- Romain Colle
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Khalil El Asmar
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Céline Verstuyft
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Pierre-Marie Lledo
- Unité Perception et Mémoire, Institut Pasteur, CNRS UMR3571, Paris, F-75015, France
| | - Françoise Lazarini
- Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Kenneth Chappell
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Eric Deflesselle
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Abd El Kader Ait Tayeb
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Falissard
- Département de Biostatistiques, Université Paris-Sud, Hôpital Paul Brousse, Assistance Publique Hôpitaux de Paris, Villejuif94400, France
| | - Emmanuelle Duron
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Samuel Rotenberg
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Jean-Francois Costemale-Lacoste
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Denis J David
- Equipe Moods, INSERM UMR-1178, CESP, Univ. Paris-Sud, Fac. Pharmacie, Inserm, Université Paris-Saclay, Chatenay Malabry92290, France
| | - Florence Gressier
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Alain M Gardier
- Equipe Moods, INSERM UMR-1178, CESP, Univ. Paris-Sud, Fac. Pharmacie, Inserm, Université Paris-Saclay, Chatenay Malabry92290, France
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Dresden, TU, Germany
| | - Laurent Becquemont
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Centre de recherche clinique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| |
Collapse
|
14
|
He Y, Wang Y, Wu Z, Lan T, Tian Y, Chen X, Li Y, Dang R, Bai M, Cheng K, Xie P. Metabolomic abnormalities of purine and lipids implicated olfactory bulb dysfunction of CUMS depressive rats. Metab Brain Dis 2020; 35:649-659. [PMID: 32152797 DOI: 10.1007/s11011-020-00557-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) is a serious mood disorder and leads to a high suicide rate as well as financial burden. The volume and function (the sensitivity and neurogenesis) of the olfactory bulb (OB) were reported to be altered among the MDD patients and rodent models of depression. In addition, the olfactory epithelium was newly reported to decrease its volume and function under chronic unpredictable mild stress (CUMS) treatment. However, the underlying molecular mechanism still remains unclear. Herein, we conducted the non-targeted metabolomics method based on gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analysis to characterize the differential metabolites in OB of CUMS rats. Our results showed that 19 metabolites were categorized into two perturbed pathways: purine metabolism and lipid metabolism, which were regarded as the vital pathways concerned with dysfunction of OB. These findings indicated that the turbulence of metabolic pathways may be partly responsible for the dysfunction of OB in MDD.
Collapse
Affiliation(s)
- Yong He
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Lan
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China
| | - Yan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruozhi Dang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengge Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China.
| |
Collapse
|
15
|
Ayuob NN, Balgoon MJ, Ali S, Alnoury IS, ALmohaimeed HM, AbdElfattah AA. Ocimum basilicum (Basil) Modulates Apoptosis and Neurogenesis in Olfactory Pulp of Mice Exposed to Chronic Unpredictable Mild Stress. Front Psychiatry 2020; 11:569711. [PMID: 33061923 PMCID: PMC7518217 DOI: 10.3389/fpsyt.2020.569711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ocimum basilicum (O. basilicum) was described to have antidepressant and anxiolytic activities. Although the relationship between the main olfactory bulb (MOB) and depression was recently reported, the chronic stress-induced dysfunction of the MOB is not clearly described. OBJECTIVES This study aimed to assess the efficacy of inhalation of O. basilicum essential oils in improving chronic unpredictable mild stress (CUMS)-induced changes in MOB of mice and understand the mechanism underlying such effect. MATERIALS AND METHODS Adult male mice (n=40) were assigned into four groups included the control, CUMS-exposed, CUMS + fluoxetine (FLU), CUMS + O. basilicum. Behavioral changes, serum corticosterone level, and gene expression of GFAP, Ki 67, and caspase-3 were assessed using real-time PCR (RT-PCR). Histopathological and immunochemical examination of the MOB was performed. RESULTS FLU and O. basilicum significantly down-regulated (p = 0.002, p<0.001) caspase-3 gene expression indicating reduced apoptosis and up-regulated (p = 0.002, p < 0.001) Ki67 gene expression indicating enhanced neurogenesis in MOB, respectively. FLU and O. basilicum-treated mice markedly improved MOB mitral cell layer distortion and shrinkage induced by CUMS. CONCLUSION O. basilicum relieved both biochemically and histopathological chronic stress-induced changes in the main olfactory bulb possibly through up-regulation of gene expression of GFAP and Ki67 and down-regulation of caspase-3 in the MOB.
Collapse
Affiliation(s)
- Nasra N Ayuob
- Department of Medical Histology, Faculty of Medicine, Delta University for Science and Technology, Mansoura, Egypt.,Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha J Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Ali
- Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Histology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Ibrahim S Alnoury
- Department of ENT, H&N Surgery, Faculty of Medicine, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Hailah M ALmohaimeed
- Department of Basic Science, Medical College, Princess Noruh bint Abdulrahman University (PNU), Riyadh, Saudi Arabia
| | - Amany A AbdElfattah
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Wang H, Liu L, Rao X, Chai T, Zeng B, Zhang X, Yu Y, Zhou C, Pu J, Zhou W, Li W, Zhang H, Wei H, Xie P. Commensal Microbiota Regulation of Metabolic Networks During Olfactory Dysfunction in Mice. Neuropsychiatr Dis Treat 2020; 16:761-769. [PMID: 32256072 PMCID: PMC7090175 DOI: 10.2147/ndt.s236541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Recently, an increasing number of studies have focused on commensal microbiota. These microorganisms have been suggested to impact human health and disease. However, only a small amount of data exists to support the assessment of the influences that commensal microbiota exert on olfactory function. METHODS We used a buried food pellet test (BFPT) to investigate and compare olfactory functions in adult, male, germ-free (GF) and specific-pathogen-free (SPF) mice, then examined and compared the metabolomic profiles for olfactory bulbs (OBs) isolated from GF and SPF mice to uncover the mechanisms associated with olfactory dysfunction. RESULTS We found that the absence of commensal microbiota was able to influence olfactory function and the metabolic signatures of OBs, with 38 metabolites presenting significant differences between the two groups. These metabolites were primarily associated with disturbances in glycolysis, the tricarboxylic acid (TCA) cycle, amino acid metabolism, and purine catabolism. Finally, the commensal microbiota regulation of metabolic networks during olfactory dysfunction was identified, based on an integrated analysis of metabolite, protein, and mRNA levels. CONCLUSION This study demonstrated that the absence of commensal microbiota may impair olfactory function and disrupt metabolic networks. These findings provide a new entry-point for understanding olfactory-associated disorders and their potential underlying mechanisms.
Collapse
Affiliation(s)
- Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuechen Rao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Tingjia Chai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xiaotong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chanjuan Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenxia Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
17
|
Chen B, Li J, Xie Y, Ming X, Li G, Wang J, Li M, Li X, Xiong L. Cang-ai volatile oil improves depressive-like behaviors and regulates DA and 5-HT metabolism in the brains of CUMS-induced rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112088. [PMID: 31323299 DOI: 10.1016/j.jep.2019.112088] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cang-ai volatile oil (CAVO) is a traditional Chinese medicine (TCM) inhalational preparation for the treatment of some depressive and emotive disorders. AIM OF THE STUDY This research aimed to evaluate the efficiency and possible mechanism of intranasal CAVO administration on depression in chronic unpredictable mild stress (CUMS)-induced rats compared to lavender volatile oil (LVO) treatment after CUMS exposure and bilateral olfactory bulb impairment (OBI) in rats. MATERIALS AND METHODS Forty depressive-like model rats induced by CUMS were evaluated by the forced swim test (FST), open field test (OFT), and sucrose preference test (SPT). The model rats were divided into five groups: CUMS (n = 8), CAVOh + CUMS (n = 8), CAVOl + CUMS (n = 8), LVO + CUMS (n = 8), and OBI + CAVO + CUMS (n = 8). The CUMS-induced rats were treated for a period of 4 weeks. The other healthy rats were regarded as the control (CTR, n = 8) subjects. The levels of serotonin (5-HT) and dopamine (DA) and their respective metabolites homovanillic acid (HVA) and 5-hydroxyindol acetic acid (5-HIAA) were measured in brain tissue homogenates of CUMS-induced rats using enzyme-linked immunosorbent assay (ELISA). RESULTS CAVO ameliorated depressive-like behaviors (p < 0.05). The levels of DA in the CUMS group were lower than those in the CTR and CAVOh groups (**p < 0.01 and *p < 0.05). The levels of HVA were lower in the CUMS group than in the CTR, LVO, OBI + CAVOh and CAVOh groups (**p < 0.01 and *p < 0.05) and lower in the OBI + CAVOh group than in the CAVOh group (**p < 0.01). The levels of 5-HT in the CUMS group were lower than those in the CTR and CAVOh groups (**p < 0.01). The levels of 5-HIAA were lower in the CUMS and OBI + CAVOh groups than in the CTR, LVO and CAVOh groups (**p < 0.01). CONCLUSIONS CAVO can improve depressive-like behaviors concomitant with the regulation of DA and 5-HT metabolism in the brains of CUMS-induced rats.
Collapse
Affiliation(s)
- Bojun Chen
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jijun Li
- Department of Integrative Medicine on Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yuhuan Xie
- Department of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xi Ming
- Department of TCM Pediatrics, Yunnan Provincail Hospital of Traditional Chinese Medicine, Kunming, 650021, China
| | - Gang Li
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jinjin Wang
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Meng Li
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Lei Xiong
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
18
|
Guo J, Sun Y, Tian Y, Zhao J. Comparative Analysis of Erythrocyte Proteomes of Water Buffalo, Dairy Cattle, and Beef Cattle by Shotgun LC-MS/MS. Front Vet Sci 2019; 6:346. [PMID: 31681806 PMCID: PMC6813539 DOI: 10.3389/fvets.2019.00346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
A number of studies have demonstrated that Babesia orientalis (B. orientalis) can only infect water buffalo (Bubalus bubalis) and not dairy cattle (Bos taurus) or beef cattle (Bos taurus), even though all three belong to the tribe Bovini and have close evolutionary relationships. In addition, Babesia species are intracellular protozoans that obligately parasitize in erythrocytes. This may indicate that the infection specificity is due to differences in erythrocyte proteins. Totals of 491, 1,143, and 1,145 proteins were identified from water buffalo, beef cattle, and dairy cattle, respectively, by searching the Uniprot and NCBI databases. The number of proteins identified for water buffalo was far lower than for beef cattle and dairy cattle, particularly in the range from 15 to 25 kDa. Remarkably, 290 identified proteins were unique to water buffalo, of which putative gamma-globin and putative epsilon-globin had a significant possibility of being relevant to the survival of B. orientalis only in water buffalo. A total of 2,222 proteins were annotated in terms of molecular function, biological process, and cellular component according to GO annotation. The number of proteins of water buffalo in oxygen binding was far higher than for beef cattle and dairy cattle. This is the first time that the protein profiles of water buffalo, beef cattle, and dairy cattle have been comparatively analyzed. The uniquely expressed proteins in water buffalo obtained in this study may provide new insights into the mechanism of B. orientalis infection exclusivity in water buffalo and may be a benefit for the development of strategies against B. orientalis.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yu Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Qin Y, Jiang X, Li W, Li J, Tian T, Zang G, Fang L, Zhou C, Xu B, Gong X, Huang C, Yang X, Bai M, Fan L, Xie P. Chronic mild stress leads to aberrant glucose energy metabolism in depressed Macaca fascicularis models. Psychoneuroendocrinology 2019; 107:59-69. [PMID: 31108306 DOI: 10.1016/j.psyneuen.2019.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a pathophysiologically uncharacterized mental illness with complex etiology and clinical manifestations. Rodent depression-like models have been widely used to mimic the morbid state of depression. However, research on emotional disorders can also benefit from the use of models in non-human primates, which share a wide range of genetic and social similarities with humans. METHODS To investigate the pathophysiological mechanisms of depression, we established two models, naturally occurring depression cynomolgus (NOD) and social plus visual isolation-induced depression cynomolgus (SVC), imitating chronic mild or acute intense stress, respectively. We used i-TRAQ (isobaric tags for relative and absolute quantitation)-based quantitative proteomics and shotgun proteomics to identify differentially expressed proteins in cerebrospinal fluid (CSF) of the two monkey models and human MDD patients. We also used DAVID and ingenuity pathway analysis (IPA) for further bioinformatic investigation. RESULTS In behavioral tests, NOD monkeys achieved higher scores in depression-like and anxiety-like behavioral measures, and spent more time on ingesting, thermoregulatory, and locomotive actions than SVC monkeys. A total of 902 proteins were identified by i-TRAQ, and 40 differentially expressed proteins were identified in each of the NOD-CON1 and SVC-CON2 groups. Application of DAVID revealed dysregulation of energy metabolism in the NOD group, whereas lipid metabolism and inflammatory response pathways were significantly altered in the SVC group. Use of IPA and Cytoscape showed that the oxygen species metabolic process glycolysis I/gluconeogenesis I, accompanied by downregulation of tubulin beta 3 class III (TUBB3), RAC-alpha serine/threonine-protein kinase (AKT1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was the most significantly affected pathway in the NOD group. Furthermore, 152 differentially expressed proteins in human MDD patients also revealed disruption of glucose energy metabolism. Significantly aberrant energy metabolism in various brain regions and the plasma and liver of chronic unpredictable mild stress rodent samples were also observed in a previous study. CONCLUSIONS Our results reveal for the first time the overall CSF protein profiles of two cynomolgus monkey models of depression. We propose that chronic mild stress may affect the disruption of glucose energy metabolism in NOD cynomolgus monkeys and rodents. These findings promote our understanding of the pathophysiology of MDD and may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Yinhua Qin
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing 400016, China
| | - XiaoFeng Jiang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Li
- Department of Neurology, Army Medical Center of PLA, Chongqing 400042, China
| | - Jie Li
- Clinical Medicine Research Center, Dazhou Central Hospital, Sichuan 635000, China
| | - Tian Tian
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guangchao Zang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center of Chongqing Medical University, Chongqing 400016, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China
| | - Bin Xu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xue Gong
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cheng Huang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xun Yang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengge Bai
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing 400016, China
| | - Li Fan
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Huang C, Yang X, Zeng B, Zeng L, Gong X, Zhou C, Xia J, Lian B, Qin Y, Yang L, Liu L, Xie P. Proteomic analysis of olfactory bulb suggests CACNA1E as a promoter of CREB signaling in microbiota-induced depression. J Proteomics 2019; 194:132-147. [DOI: 10.1016/j.jprot.2018.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
|
21
|
Qi X, Xu H, Wang L, Zhang Z. Comparison of Therapeutic Effects of TREK1 Blockers and Fluoxetine on Chronic Unpredicted Mild Stress Sensitive Rats. ACS Chem Neurosci 2018; 9:2824-2831. [PMID: 29952548 DOI: 10.1021/acschemneuro.8b00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The animal model for depressive behavior due to chronic unpredicted mild stress (CUMS) is commonly used to evaluate antidepressant treatments. The CUMS model has faced some criticism because of the heterogeneity of behavioral effects. Spadin and SID1900 are TREK1 blockers with a quick antidepressant effect. However, to date, their effectiveness and the long-term therapeutic mechanisms are not known. We hypothesize that early intervention with TREK1 blockers can fully reverse depressive-like behaviors, that the chronic administration of TREK1 blockers has a more pronounced effect than the SSRI fluoxetine, and that its long-term therapeutic effects may be mediated by improvement of impaired neurogenesis. Furthermore, we optimized the use of the CUMS model for increased homogeneity by screening the rats after the CUMS induction procedure. Depressive-like behavior was assessed by a forced swimming test, sucrose preference, and open field tests. To evaluate neurogenesis, cell proliferation and newly generated cell apoptosis were measured in the hippocampal dentate gyrus. Of 32 rats that underwent the CUMS procedure, 26 rats that exhibited depressive-like behaviors were grouped as CUMS sensitive rats (CUMSS), while six that did not were grouped as CUMS resistant ones (CUMSR). The CUMSR rats exhibited minor neurogenesis impairments, while the CUMSS rats had a more pronounced effect. Treatment with TREK1 blockers could reverse depressive-like behaviors at least 1 week earlier than that of fluoxetine. Chronic administration of both the TREK1 blockers and fluoxetine could restore neurogenesis impairments. This study underlines the importance of model validation by determination of CUMS sensitivity. The TREK1 blockers were found to have an effect that was more rapid and more pronounced than that of fluoxetine. Therapeutic benefits after chronic administration were associated with a restoration of impaired neurogenesis.
Collapse
Affiliation(s)
- Xinyang Qi
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hua Xu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS, and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS, and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
22
|
Li C, Xu X, Zhang X, Cheng K, Guo Y, Jie J, Guo H, He Y, Zhou C, Gui S, Zhong X, Wang H, Xie P. Activation of ERK/CREB/BDNF pathway involved in abnormal behavior of neonatally Borna virus-infected rats. Neuropsychiatr Dis Treat 2018; 14:3121-3132. [PMID: 30532543 PMCID: PMC6247968 DOI: 10.2147/ndt.s176399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are devastating illnesses worldwide; however, the potential involvement of viruses in the pathophysiological mechanisms of psychiatric diseases have not been clearly elucidated. Borna disease virus (BDV) is a neurotropic, noncytopathic RNA virus. MATERIALS AND METHODS In this study, we infected neonatal rats intracranially with BDV Hu-H1 and Strain V within 24 hours of birth. Psychological phenotypes were assessed using sucrose preference test, open field test, elevated plus maze test, and forced swim test. The protein expression of ERK/CREB/BDNF pathway was assessed by Western blotting of in vitro and in vivo samples. RESULTS Hu-H1-infected rats showed anxiety-like behavior 8 weeks postinfection while Strain V-infected rats demonstrated a certain abnormal behavior. Phosphorylated ERK1/2 was significantly upregulated in the hippocampi of Strain V- and Hu-H1-infected rats compared with control rats, indicating that Raf/MEK/ERK signaling was activated. CONCLUSION The data suggested that infection of neonatal rats with BDV Hu-H1 and Strain V caused behavioral abnormalities that shared common molecular pathways, providing preliminary evidences to investigate the underlying mechanisms of psychiatric disorders caused by BDV.
Collapse
Affiliation(s)
- Chenmeng Li
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Xiaoyan Xu
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Xiong Zhang
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Ke Cheng
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Jie Jie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Hua Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Yong He
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Chanjuan Zhou
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Siwen Gui
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Xiaogang Zhong
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Haiyang Wang
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| |
Collapse
|
23
|
Yang C, Zhou C, Li J, Chen Z, Shi H, Yang W, Qin Y, Lü L, Zhao L, Fang L, Wang H, Hu Z, Xie P. Quantitative proteomic study of the plasma reveals acute phase response and LXR/RXR and FXR/RXR activation in the chronic unpredictable mild stress mouse model of depression. Mol Med Rep 2017; 17:93-102. [PMID: 29115597 PMCID: PMC5780173 DOI: 10.3892/mmr.2017.7855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder is a severe neuropsychiatric disease that negatively impacts the quality of life of a large portion of the population. However, the molecular mechanisms underlying depression are still unclear. The pathogenesis of depression involves several brain regions. However, most previous studies have focused only on one specific brain region. Plasma and brain tissues exchange numerous components through the blood-brain barrier. Therefore, in the present study, plasma samples from control (CON) mice and mice subjected to chronic unpredictable mild stress (CUMS) were used to investigate the molecular pathogenesis of depression, and the association between the peripheral circulation and the central nervous system. A total of 47 significant differentially expressed proteins were identified between the CUMS and CON group by an isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry approach. These 47 differentially expressed proteins were analyzed with ingenuity pathway analysis (IPA) software. This revealed that the acute phase response, LXR/RXR and FXR/RXR activation, the complement system and the intrinsic prothrombin activation pathway were significantly changed. Four of the significant differentially expressed proteins (lipopolysaccharide binding protein, fibrinogen β chain, α-1 antitrypsin, and complement factor H) were validated by western blotting. the present findings provide a novel insight into the molecular pathogenesis of depression.
Collapse
Affiliation(s)
- Chuangchuang Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| | - Jie Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiyang Shi
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| | - Wensong Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| | - Yinhua Qin
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Lü
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| | - Haiyang Wang
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zicheng Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|