1
|
Lyons S, Beck I, Depue BE. Depression is marked by differences in structural covariance between deep-brain nuclei and sensorimotor cortex. Neuroimage 2025; 310:121127. [PMID: 40057289 DOI: 10.1016/j.neuroimage.2025.121127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Depression impacts nearly 3% of the global adult population. Symptomatology is likely related to regions encompassing frontoparietal, somatosensory, and salience networks. Questions regarding deep brain nuclei (DBN), including the substantia nigra (STN), subthalamic nucleus (STN), and red nucleus (RN) remain unanswered. METHODS Using an existing structural neuroimaging dataset including 86 individuals (Baranger et al., 2021; nDEP = 39), frequentist and Bayesian logistic regressions assessed whether DBN volumes predict diagnosis, then structural covariance analyses in FreeSurfer tested diagnostic differences in deep brain volume and cortical morphometry covariance. Exploratory correlations tested relationships between implicated cortical regions and Hamilton Depression Rating Scale (HAM-D) scores. RESULTS Group differences emerged in deep brain/cortical covariance. Right RN volume covaried with left parietal operculum volume and central sulcus thickness, while left RN and right STN volumes covaried with right occipital pole volume. Positive relationships were observed within the unaffected group and negative relationships among those with depression. These cortical areas did not correlate with HAM-D scores. Simple DBN volumes did not predict diagnostic group. CONCLUSION Structural codependence between DBN and cortical regions may be important in depression, potentially for sensorimotor features. Future work should focus on causal mechanisms of DBN involvement with sensory integration.
Collapse
Affiliation(s)
- Siraj Lyons
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States.
| | - Isak Beck
- Human Systems Engineering, Arizona State University, Mesa, AZ, United States
| | - Brendan E Depue
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
2
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
3
|
Takeuchi E, Hatanaka T, Iijima T, Kimura M, Katoh A. The effects of corticotropin-releasing factor on motor learning. Sci Rep 2024; 14:17056. [PMID: 39048594 PMCID: PMC11269602 DOI: 10.1038/s41598-024-66736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is mainly secreted from the hypothalamic paraventricular nuclei and plays a crucial role in stress-related responses. Recent studies have reported that CRF is a neuromodulator in the central nervous system. In the cerebellum, CRF is essential for the induction of long-term depression (LTD) at the parallel fiber-Purkinje cell synapses. Given that LTD is thought to be one of the fundamental mechanisms of motor learning, CRF may affect motor learning. However, the role of CRF in motor learning in vivo remains unclear. In this study, we aimed to examine the role of CRF in motor learning. This was achieved through a series of behavioral experiments involving the in vivo administration of CRF and its antagonists. Rats injected with CRF directly into the cerebellum exhibited superior performance on the rotarod test, especially during initial training phases, compared to control subjects. Conversely, rats receiving a CRF receptor antagonist demonstrated reduced endurance on the rotating rod compared to controls. Notably, CRF mRNA expression levels in the cerebellum did not show significant variance between the CRF-injected and control groups. These findings imply a critical role of endogenous CRF in cerebellar motor learning and suggest that exogenous CRF can augment this process. (199 words).
Collapse
Affiliation(s)
- Eri Takeuchi
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Tomomi Hatanaka
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Course of Pharmacy, Graduated School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takatoshi Iijima
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Minoru Kimura
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akira Katoh
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
4
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
5
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
6
|
Acute Hypobaric Hypoxia Exposure Causes Neurobehavioral Impairments in Rats: Role of Brain Catecholamines and Tetrahydrobiopterin Alterations. Neurochem Res 2023; 48:471-486. [PMID: 36205808 DOI: 10.1007/s11064-022-03767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a state in which the body or a specific part of the body is deprived of adequate oxygen supply at the tissue level. Sojourners involved in different activities at high altitudes (> 2500 m) face hypobaric hypoxia (HH) due to low oxygen in the atmosphere. HH is an example of generalized hypoxia, where the homeostasis of the entire body of an organism is affected and results in neurochemical changes. It is known that lower O2 levels affect catecholamines (CA), severely impairing cognitive and locomotor behavior. However, there is less evidence on the effect of HH-mediated alteration in brain Tetrahydrobiopterin (BH4) levels and its role in neurobehavioral impairments. Hence, this study aimed to shed light on the effect of acute HH on CA and BH4 levels with its neurobehavioral impact on Wistar rat models. After HH exposure, significant alteration of the CA levels in the discrete brain regions, viz., frontal cortex, hippocampus, midbrain, and cerebellum was observed. HH exposure significantly reduced spontaneous motor activity, motor coordination, and spatial memory. The present study suggests that the HH-induced behavioral changes might be related to the alteration of the expression pattern of CA and BH4-related genes and proteins in different rat brain regions. Overall, this study provides novel insights into the role of BH4 and CA in HH-induced neurobehavioral impairments.
Collapse
|
7
|
Dos Santos Guilherme M, Tsoutsouli T, Todorov H, Teifel S, Nguyen VTT, Gerber S, Endres K. N 6 -Methyladenosine Modification in Chronic Stress Response Due to Social Hierarchy Positioning of Mice. Front Cell Dev Biol 2021; 9:705986. [PMID: 34490254 PMCID: PMC8417747 DOI: 10.3389/fcell.2021.705986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Appropriately responding to stressful events is essential for maintaining health and well-being of any organism. Concerning social stress, the response is not always as straightforward as reacting to physical stressors, e.g., extreme heat, and thus has to be balanced subtly. Particularly, regulatory mechanisms contributing to gaining resilience in the face of mild social stress are not fully deciphered yet. We employed an intrinsic social hierarchy stress paradigm in mice of both sexes to identify critical factors for potential coping strategies. While global transcriptomic changes could not be observed in male mice, several genes previously reported to be involved in synaptic plasticity, learning, and anxiety-like behavior were differentially regulated in female mice. Moreover, changes in N6-methyladenosine (m6A)-modification of mRNA occurred associated with corticosterone level in both sexes with, e.g., increased global amount in submissive female mice. In accordance with this, METTL14 and WTAP, subunits of the methyltransferase complex, showed elevated levels in submissive female mice. N6-adenosyl-methylation is the most prominent type of mRNA methylation and plays a crucial role in processes such as metabolism, but also response to physical stress. Our findings underpin its essential role by also providing a link to social stress evoked by hierarchy building within same-sex groups. As recently, search for small molecule modifiers for the respective class of RNA modifying enzymes has started, this might even lead to new therapeutic approaches against stress disorders.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Theodora Tsoutsouli
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sina Teifel
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Cabeza L, Ramadan B, Giustiniani J, Houdayer C, Pellequer Y, Gabriel D, Fauconnet S, Haffen E, Risold PY, Fellmann D, Belin D, Peterschmitt Y. Chronic exposure to glucocorticoids induces suboptimal decision-making in mice. Eur Neuropsychopharmacol 2021; 46:56-67. [PMID: 33531260 DOI: 10.1016/j.euroneuro.2021.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Anxio-depressive symptoms as well as severe cognitive dysfunction including aberrant decision-making (DM) are documented in neuropsychiatric patients with hypercortisolaemia. Yet, the influence of the hypothalamo-pituitary-adrenal (HPA) axis on DM processes remains poorly understood. As a tractable mean to approach this human condition, adult male C57BL/6JRj mice were chronically treated with corticosterone (CORT) prior to behavioural, physiological and neurobiological evaluation. The behavioural data indicate that chronic CORT delays the acquisition of contingencies required to orient responding towards optimal DM performance in a mouse Gambling Task (mGT). Specifically, CORT-treated animals show a longer exploration and a delayed onset of the optimal DM performance. Remarkably, the proportion of individuals performing suboptimally in the mGT is increased in the CORT condition. This variability seems to be better accounted for by variations in sensitivity to negative rather than to positive outcome. Besides, CORT-treated animals perform worse than control animals in a spatial working memory (WM) paradigm and in a motor learning task. Finally, Western blotting neurobiological analyses show that chronic CORT downregulates glucocorticoid receptor expression in the medial Prefrontal Cortex (mPFC). Besides, corticotropin-releasing factor signalling in the mPFC of CORT individuals negatively correlates with their DM performance. Collectively, this study describes how chronic exposure to glucocorticoids induces suboptimal DM under uncertainty in a mGT, hampers WM and motor learning processes, thus affecting specific emotional, motor, cognitive and neurobiological endophenotypic dimensions relevant for precision medicine in biological psychiatry.
Collapse
Affiliation(s)
- Lidia Cabeza
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France.
| | - Bahrie Ramadan
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Julie Giustiniani
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Christophe Houdayer
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Yann Pellequer
- PEPITE EA-4267, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Damien Gabriel
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Sylvie Fauconnet
- Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France; Laboratoire de Carcinogenèse associée aux HPV EA-3181, Université de Bourgogne - Franche-Comté, Besançon, France; Urologie, andrologie et transplantation rénale, Hôpital Universitaire CHRU, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Dominique Fellmann
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Yvan Peterschmitt
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France.
| |
Collapse
|
9
|
Brymer KJ, Kulhaway EY, Howland JG, Caruncho HJ, Kalynchuk LE. Altered acoustic startle, prepulse facilitation, and object recognition memory produced by corticosterone withdrawal in male rats. Behav Brain Res 2021; 408:113291. [PMID: 33836169 DOI: 10.1016/j.bbr.2021.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
The symptoms of human depression often include cognitive deficits. However, cognition is not frequently included in the behavioral assessments conducted in preclinical models of depression. For example, it is well known that repeated corticosterone (CORT) injections in rodents produce depression-like behavior as measured by the forced swim test, sucrose preference test, and tail suspension test, but the cognitive impairments produced by repeated CORT have not been thoroughly examined. The purpose of this experiment was to assess the effect of repeated CORT injections on several versions of object recognition memory and modulation of the acoustic startle response by relatively low intensity prepulses, along with the more traditional assessment of depression-like behavior using the forced swim test. Rats received 21 days of CORT (40 mg/kg) or vehicle injections followed by a battery of behavioral tests. Importantly, during behavioral testing CORT treatment did not occur (CORT withdrawal). Corticosterone decreased body weight, increased immobility in the forced swim test, lowered startle amplitudes, and facilitated responding to trials with a short interval (30 ms) between the prepulse and pulse. Corticosterone also impaired both object location and object-in-place recognition memory, while sparing performance on object recognition memory. Collectively, our data suggest that CORT produces selective disruptions in prepulse facilitation, object location, and object-in-place recognition memory, and that these impairments should be considered as part of the phenotype produced by repeated CORT, and perhaps chronic stress.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| | - Erin Y Kulhaway
- Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
10
|
Karem H, Mehla J, Kolb BE, Mohajerani MH. Traffic noise exposure, cognitive decline, and amyloid-beta pathology in an AD mouse model. Synapse 2020; 75:e22192. [PMID: 33096582 DOI: 10.1002/syn.22192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/11/2022]
Abstract
Concerns are growing that exposure to environmental pollutants, such as traffic noise, might cause cognitive impairments and predispose individuals toward the development of Alzheimer's disease (AD) dementia. In this study in a knock-in mouse model of AD, we investigated how chronic traffic noise exposure (CTNE) impacts cognitive performance and amyloid-beta (Aβ) pathology. A group of APPNL-G-F/NL-G-F mice was exposed to CTNE (70 dBA , 8 hr/day for 1 month) and compared with nonexposed counterparts. Following CTNE, an increase in hypothalamic-pituitary-adrenal (HPA) axis responsivity was observed by corticosterone assay of the blood. One month after CTNE, the CTNE group demonstrated impairments in cognitive and motor functions, and indications of anxiety-like behavior, relative to the control animals. The noise-exposed group also showed elevated Aβ aggregation, as inferred by a greater number of plaques and larger average plaque size in various regions of the brain, including regions involved in stress regulation. The results support that noise-associated dysregulation of the neuroendocrine system as a potential risk factor for developing cognitive impairment and Aβ pathology, which should be further investigated in human studies.
Collapse
Affiliation(s)
- Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jogender Mehla
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
11
|
Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2020; 117:110-128. [DOI: 10.1016/j.neubiorev.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
|
12
|
Effects of corticosterone injections in mid-to-late mouse postnatal development on adult motor activity and coordination. Neurosci Res 2020; 164:22-32. [PMID: 32320709 DOI: 10.1016/j.neures.2020.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are involved in the developing brain but, in excessive amounts, may depress its growth and cause psychomotor development disorders. To test the long-term vulnerability of motor structures such as the cerebellum to supraphysiological corticosterone (CORT), the hormone was subcutaneously delivered at a dose of 20 mg/kg from postnatal day (P) 8 to P29 in C57BL/6 male mice evaluated for sensorimotor functions at P15, P22, P29, and 3 months. Relative to placebo, CORT increased motor activity in the open-field at P29 and 3 months as well as facilitating rotorod acquisition and visuomotor control necessary for swimming towards a visible goal without affecting spatial learning in the Morris water maze. CORT caused lobule-specific effects on cerebellar morphology by decreasing granule cell layer thickness in simplex lobule but increasing molecular and granule cell layer thickness in crus 2. The functional impact of these changes is indicated by significant correlations found between cerebellar size and activity levels or proficiency on the rotorod test of motor coordination.
Collapse
|
13
|
Pregnant rats exposed to low-level methylmercury exhibit cerebellar synaptic and neuritic remodeling during the perinatal period. Arch Toxicol 2020; 94:1335-1347. [DOI: 10.1007/s00204-020-02696-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
|
14
|
Jafari Z, Okuma M, Karem H, Mehla J, Kolb BE, Mohajerani MH. Prenatal noise stress aggravates cognitive decline and the onset and progression of beta amyloid pathology in a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 77:66-86. [DOI: 10.1016/j.neurobiolaging.2019.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
|
15
|
Pettibone WD, Kam K, Chen RK, Varga AW. Necessity of Sleep for Motor Gist Learning in Mice. Front Neurosci 2019; 13:293. [PMID: 31024231 PMCID: PMC6459967 DOI: 10.3389/fnins.2019.00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
With respect to behavior, the term memory "consolidation" has canonically been used to describe increased fidelity during testing to a learned behavior shaped during training. While the sleeping brain appears to certainly aid in consolidation by this definition for a variety of memories, including motor memories, growing evidence suggests that sleep allows for much more flexible use of the information encountered during prior wakefulness. Sleep has been shown to augment the extraction of gist or patterns from wake experience in human subjects, but this has been difficult to recapitulate in animal models owing to the semantic requirements in many such tasks. Here we establish a model of motor gist learning in mice in which two bouts of exclusive forward running on the rotarod significantly augments the first experience of exclusive backward running. This augmentation does not occur if sleep is disrupted following the forward running template behavior or if a period of natural wakefulness follows one of the two bouts of exclusive forward running. This suggests that sleep is required for the extraction of the motor gist of forward running to apply to backward running.
Collapse
Affiliation(s)
| | | | | | - Andrew W. Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Jafari Z, Kolb BE, Mohajerani MH. Chronic traffic noise stress accelerates brain impairment and cognitive decline in mice. Exp Neurol 2018; 308:1-12. [PMID: 29936225 DOI: 10.1016/j.expneurol.2018.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022]
Abstract
Although traffic noise exposure is a well-known environmental pollutant whose negative health effect has been discussed in different aspects of the human life, only a few animal studies have tackled this issue as a cohort study, which is not feasible to be addressed in human studies. In addition to the deleterious impact of the daytime noise on well-being, chronic nocturnal noise can also disturb sleep and affects physical and mental health, but to date, little research has examined the neurobiological effects of light/dark cycles of traffic noise exposure. We investigated the effects of light/dark cycles and sex on the impact of chronic traffic noise exposure on mouse brain structure-function. The mice were randomly assigned to either one of two stress conditions or a control condition. Animals were exposed to traffic noise on either the light-cycle (LC) or dark-cycle (DC) for 30 days. Traffic noise exposure caused the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, anxiety-like behavior, impairments in learning and memory, dysfunction in balance and motor coordination, and a reduction in variety of brain measures including a brain volume, medial prefrontal cortex (mPFC) area, cortical thickness, hippocampal volume, amygdala area, and the neural density in mPFC and dentate gyrus. All behavioral and brain measures revealed adverse effects of the chronic noise stress irrespective of the LC/DC exposure or sex. Our findings were a re-emphasis on the significance of noise prevention and mitigation strategies for public health.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
17
|
Ngoupaye GT, Yassi FB, Bahane DAN, Bum EN. Combined corticosterone treatment and chronic restraint stress lead to depression associated with early cognitive deficits in mice. Metab Brain Dis 2018; 33:421-431. [PMID: 29199383 DOI: 10.1007/s11011-017-0148-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022]
Abstract
Many models, such as chronic mild stress, chronic stress or chronic corticosterone injections are used to induce depression associated with cognitive deficits. However, the induction period in these different models is still long and face constraints when it is short such as in the chronic mild stress done in a minimum period of 21 days. This study aimed to characterize a model of depression with early onset cognitive deficit. 14 days combined chronic injection of corticosterone followed by 2 h restraint stress using a restrainer was used to induce depression with early cognitive deficit onset. The forced swim test, sucrose test and plasma corticosterone concentration were used to assess depression-like characteristics. The Morris water maze, novel object recognition task, as well as hippocampal acetylcholinesterase activity were used to assess cognitive deficit. The combined corticosterone injection + chronic restraint stress group presented with marked depression-like behaviour and a higher plasma corticosterone concentration compared to corticosterone injection alone and restraint stress alone. It also showed an alteration in the learning process, memory deficit as well as increased acetylcholinesterase activity compared to corticosterone injection and restraint stress alone groups. These findings suggest that the combined corticosterone administration and chronic restraint stress can be used not only as an animal model for severe depression, but also for depression with early onset cognitive deficit.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
- Department of Animal Biology, University of Dschang, Dschang, 67, Cameroon.
| | - Francis Bray Yassi
- Department of Biological Science, University of Ngaoundéré, Ngaoundéré, 454, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Science, University of Ngaoundéré, Ngaoundéré, 454, Cameroon
- Institute of Mines and Petroleum Industries, University of Maroua, Maroua, 46, Cameroon
| |
Collapse
|
18
|
Andiarena A, Balluerka N, Murcia M, Ibarluzea J, Glover V, Vegas O. Evening salivary cortisol and alpha-amylase at 14months and neurodevelopment at 4years: Sex differences. Horm Behav 2017; 94:135-144. [PMID: 28750755 DOI: 10.1016/j.yhbeh.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022]
Abstract
Stress system activity in early life can have long-term effects on neurodevelopment. The main aim of this study was to assess the association of child evening salivary cortisol and alpha-amylase basal levels at 14months of age with longer-term neuropsychological development at 4years in a low-risk population-based birth cohort derived from the INMA (Environment and Childhood) project in Spain. We included 186 parent-children pairs with information on both stress system activity and neurodevelopment. Both stress markers at 14months of age showed an association with neuropsychological development at 4years. Salivary cortisol showed a sex-specific pattern of association. In girls, cortisol levels at 14months were negatively associated with cognitive development [long-term declarative memory (β=-17.8, p=0.028; 95% CI=-33.2 to -2.5); executive function (β=-9.8, p=0.08; 95% CI=-21 to 1)] and gross motor development (β=-13; p=0.022; 95% CI=-24 to -2), whereas in boys cortisol levels were negatively associated with socioemotional development [autistic-like behaviours: Incidence Rate Ratio (IRR)=1.6, p=0.039; 95% CI=1.01 to 2.41]. Salivary alpha-amylase was positively associated with socioemotional development in boys only [social competence (β=2.11, p=0.013; 95% CI=0.47 to 3.72), autistic-like behaviours (IRR=0.93, p=0.042; 95% CI=0.87 to 0.99) and hyperactivity symptoms (IRR=0.81, p=0.021; 95% CI=0.69 to 0.97)]. These results suggest that stress system activity in early life is associated with longer-term neurodevelopment and that sex is an important factor in this relationship.
Collapse
Affiliation(s)
- Ainara Andiarena
- University of the Basque Country (UPV/EHU), San Sebastian, Spain; Biodonostia Health Research Institute, San Sebastian, Spain.
| | - Nekane Balluerka
- University of the Basque Country (UPV/EHU), San Sebastian, Spain; Biodonostia Health Research Institute, San Sebastian, Spain
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; FISABIO, Universitat Jaume I, Universitat de València Epidemiology and Environmental Health Joint Research Unit, Valencia, Spain
| | - Jesús Ibarluzea
- University of the Basque Country (UPV/EHU), San Sebastian, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Departamento de Sanidad Gobierno Vasco, Subdirección de Salud Pública de Gipuzkoa, San Sebastián, Spain
| | - Vivette Glover
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Oscar Vegas
- University of the Basque Country (UPV/EHU), San Sebastian, Spain; Biodonostia Health Research Institute, San Sebastian, Spain
| |
Collapse
|