1
|
Wu Y, Shi A, Li W, Zhang J, Lu Y, Zhang Y, Wang S. The metabolism and transformation of casein-bound lactulosyllysine in vivo: Promoting dicarbonyl stress and the formation of advanced glycation end products accompanied by systemic inflammation. Food Chem 2024; 444:138681. [PMID: 38335684 DOI: 10.1016/j.foodchem.2024.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lactulosyllysine (LL) widely exists in thermally processed dairy products, while the metabolism and transformation of LL remain poorly understood. We aimed to elucidate the metabolic pathways of LL and its impact on body health by subjecting C57BL/6 mice to a short-term ll-fortified casein diet. Our findings indicated that casein-bound LL might be metabolized and transformed into 3-deoxyglucosone through fructosamine-3-kinase (FN3K) in vivo, which promoted α-dicarbonyl stress, ultimately leading to the formation of advanced glycation end products (AGEs) in various tissues/organs, accompanied by systemic inflammation. The levels of AGEs formation in tissues/organs at various stages of casein-bound LL intake exhibited dynamic changes, correlating with alterations in the expression of FN3K and α-dicarbonyl compounds metabolic detoxification enzymes. The negative effects induced by casein-bound LL cannot be fully reversed by switching to a standard diet for equal periods. Consumption of dairy products rich in LL raises concerns as a potential risk factor for healthy individuals.
Collapse
Affiliation(s)
- Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Novel targets for delaying aging: The importance of the liver and advances in drug delivery. Adv Drug Deliv Rev 2018; 135:39-49. [PMID: 30248361 DOI: 10.1016/j.addr.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Age-related changes in liver function have a significant impact on systemic aging and susceptibility to age-related diseases. Nutrient sensing pathways have emerged as important targets for the development of drugs that delay aging and the onset age-related diseases. This supports a central role for the hepatic regulation of metabolism in the association between nutrition and aging. Recently, a role for liver sinusoidal endothelial cells (LSECs) in the relationship between aging and metabolism has also been proposed. Age-related loss of fenestrations within LSECs impairs the transfer of substrates (such as lipoproteins and insulin) between sinusoidal blood and hepatocytes, resulting in post-prandial hyperlipidemia and insulin resistance. Targeted drug delivery methods such as nanoparticles and quantum dots will facilitate the direct delivery of drugs that regulate fenestrations in LSECs, providing an innovative approach to ameliorating age-related diseases and increasing healthspan.
Collapse
|
3
|
Li M, Zeng M, He Z, Zheng Z, Qin F, Tao G, Zhang S, Chen J. Increased accumulation of protein-bound N(ε)-(carboxymethyl)lysine in tissues of healthy rats after chronic oral N(ε)-(carboxymethyl)lysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1658-1663. [PMID: 25611617 DOI: 10.1021/jf505063t] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, chronic diseases related to advanced glycation end products (AGEs) have attracted more attention. Because diet is an important exogenous source of AGEs, this study aimed to investigate the effects of chronic oral administration of pure N(ε)-(carboxymethyl)lysine (CML) (a major AGE) at 60 mg kg(-1) per day on healthy Sprague-Dawley rats. After administration for 12 weeks, the levels of protein-bound CML were increased to 202 ± 17, 167 ± 47, 217 ± 44, 107 ± 4, 144 ± 23, and 33 ± 7 μg/g dry matter in the kidneys, heart, liver, lungs, spleen, and pancreas, respectively, in comparison with control values of 98 ± 1, 90 ± 15, 140 ± 42, 76 ± 18, 115 ± 15, and 30 ± 4 μg/g dry matter. The difference was significant (p < 0.05) for the kidneys, heart, liver, and lungs, whereas no significant increase was seen in the spleen and pancreas. Furthermore, serum blood urea nitrogen (BUN), creatinine (CREA), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values increased significantly (p < 0.05), as evidence of impaired kidney and liver function. Additionally, the rats' fasting blood glucose (FBG) levels remained within the normal range, indicating that chronic intake of CML does not promote a rise in blood glucose. These results clearly indicate that a CML-rich diet might be a potential health risk in humans, particularly with respect to kidney and liver function.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Food Science and Technology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , 1800 Lihu Road, Wuxi Jiangsu 214122, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Svistounov D, Oteiza A, Zykova SN, Sørensen KK, McCourt P, McLachlan AJ, McCuskey RS, Smedsrød B. Hepatic disposal of advanced glycation end products during maturation and aging. Exp Gerontol 2013; 48:549-56. [PMID: 23531498 DOI: 10.1016/j.exger.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/06/2013] [Accepted: 03/16/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Aging is characterized by progressive loss of metabolic and biochemical functions and accumulation of metabolic by-products, including advanced glycation end products (AGEs), which are observed in several pathological conditions. A number of waste macromolecules, including AGEs are taken up from the circulation by endocytosis mainly into liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs). However, AGEs still accumulate in different tissues with aging, despite the presence of this clearance mechanism. The aim of the present study was to determine whether the efficiency of LSECs and KCs for disposal of AGEs changes through aging. RESULTS After intravenous administration of (14)C-AGE-albumin in pre-pubertal, young adult, middle aged and old mice, more than 90% of total recovered (14)C-AGE was liver associated, irrespective of age. LSECs and KCs represented the main site of uptake. A fraction of the (14)C-AGE degradation products ((14)C-AGE-DPs) was stored for months in the lysosomes of these cells after uptake. The overall rate of elimination of (14)C-AGE-DPs from the liver was markedly faster in pre-pubertal than in all post-pubertal age groups. The ability to eliminate (14)C-AGE-DPs decreased to similar extents after puberty in LSECs and KCs. A rapid early removal phase was characteristic for all age groups except the old group, where this phase was absent. CONCLUSIONS Removal of AGE-DPs from the liver scavenger cells is a very slow process that changes with age. The ability of these cells to dispose of AGEs declines after puberty. Decreased AGE removal efficiency early in life may lead to AGE accumulation.
Collapse
Affiliation(s)
- Dmitri Svistounov
- Department of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li R, Oteiza A, Sørensen KK, McCourt P, Olsen R, Smedsrød B, Svistounov D. Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized low-density lipoproteins. Am J Physiol Gastrointest Liver Physiol 2011; 300:G71-81. [PMID: 21030611 PMCID: PMC3025507 DOI: 10.1152/ajpgi.00215.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Atherogenesis is associated with elevated levels of low-density lipoprotein (LDL) and its oxidized form (oxLDL) in the blood. The liver is an important scavenger organ for circulating oxLDLs. The present study aimed to examine endocytosis of mildly oxLDL (the major circulating form of oxLDLs) in liver sinusoidal endothelial cells (LSECs) and the involvement of the scavenger receptors stabilin-1 and stabilin-2 in this process. Freshly isolated LSECs, Kupffer cells (KCs), and stabilin-1- and stabilin-2-transfected human embryonic kidney cells were incubated with fluorescently labeled or radiolabeled oxLDLs [oxidized for 3 h (oxLDL(3)), 6 h, or 24 h (oxLDL(24))] to measure endocytosis. The intracellular localization of oxLDLs and stabilins in LSECs was examined by immunofluorescence and immunogold electron microscopy. Whereas oxLDL(24) was endocytosed both by LSECs and KCs, oxLDL(3) (mildly oxLDL) was taken up by LSECs only. The LSEC uptake of oxLDLs was significantly inhibited by the scavenger receptor ligand formaldehyde-treated serum albumin. Uptake of all modified LDLs was high in stabilin-1-transfected cells, whereas stabilin-2-transfected cells preferentially took up oxLDL(24), suggesting that stabilin-1 is a more important receptor for mildly oxLDLs than stabilin-2. Double immunogold labeling experiments in LSECs indicated interactions of stabilin-1 and stabilin-2 with oxLDL(3) on the cell surface, in coated pits, and endocytic vesicles. LSECs but not KCs endocytosed mildly oxLDL. Both stabilin-1 and stabilin-2 were involved in the LSEC endocytosis of oxLDLs, but experiments with stabilin-transfected cells pointed to stabilin-1 as the most important receptor for mildly oxLDL.
Collapse
Affiliation(s)
- Ruomei Li
- Faculty of Health Sciences, 1Vascular Biology Research Group and
| | - Ana Oteiza
- Faculty of Health Sciences, 1Vascular Biology Research Group and
| | | | - Peter McCourt
- Faculty of Health Sciences, 1Vascular Biology Research Group and
| | - Randi Olsen
- 2Department of Electron Microscopy, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Bård Smedsrød
- Faculty of Health Sciences, 1Vascular Biology Research Group and
| | | |
Collapse
|
6
|
Butscheid M, Schäfer C, Brenner S, Alscher D, Mürdter T, Niwa T, Frischmann M, Pischetsrieder M, Klotz U. Unchanged serum levels of advanced glycation endproducts in patients with liver disease. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:401-6. [PMID: 17571253 DOI: 10.1007/s00210-007-0171-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 05/16/2007] [Indexed: 11/28/2022]
Abstract
Advanced glycation end products (AGEs), e.g., carboxymethyllysine (CML) or imidazolone are involved in several age-related disorders. Concerning their accumulation, the importance of hepatic and renal function is controversially discussed. To test whether impairment of hepatic or renal function will affect their accumulation, both AGEs have been measured in various populations, such as 52 patients with liver disease [viral hepatitis C without (n = 19) and with (n = 10) fatty liver; nonalcoholic fatty liver (n = 13), nonalcoholic steatohepatitis (n = 10)]. Serum concentrations of both AGEs have been compared to those in 20 healthy controls and 24 patients with moderate renal impairment (creatinine clearance 23-55 ml/min). Concerning CML (95% C.I. 803-1200 ng/ml), no differences between the various groups could be observed. Likewise, serum levels of imidazolone (95% C.I. 1.3-5.6 units) were similar in all populations. In conclusion, moderate impairment in hepatic or in renal function did not affect serum levels of CML and imidazolone. Apparently, any increase observed in severe cirrhosis or renal failure seems to be rather a consequence than a cause of both disorders.
Collapse
Affiliation(s)
- Moritz Butscheid
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Glycation is a major cause of spontaneous damage to proteins in physiological systems. This is exacerbated in diabetes as a consequence of the increase in glucose and other saccharides derivatives in plasma and at the sites of vascular complications. Protein damage by the formation of early glycation adducts is limited to lysine side chain and N-terminal amino groups whereas later stage adducts, advanced glycation endproducts (AGEs), modify these and also arginine and cysteine residues. Metabolic dysfunction in vascular cells leads to the increased formation of methylglyoxal which adds disproportionately to the glycation damage in hyperglycaemia. AGE-modified proteins undergo cellular proteolysis leading to the formation and urinary excretion of glycation free adducts. AGEs may potentiate the development of diabetic complications by activation of cell responses by AGE-modified proteins interacting with specific cell surface receptors, activation of cell responses by AGE free adducts, impairment of protein-protein and enzyme-substrate interactions by AGE residue formation, and increasing resistance to proteolysis of extracellular matrix proteins. The formation of AGEs is suppressed by intensive glycaemic control, and may in future be suppressed by thiamine and pyridoxamine supplementation, and several other pharmacological agents. Increasing expression of enzymes of the enzymatic defence against glycation provides a novel and potentially effective future therapeutic strategy to suppress protein glycation.
Collapse
Affiliation(s)
- N Ahmed
- Department of Biological Sciences, University of Essex, Central Campus, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | | |
Collapse
|
8
|
Ahmed N, Lüthen R, Häussinger D, Sebeková K, Schinzel R, Voelker W, Heidland A, Thornalley PJ. Increased protein glycation in cirrhosis and therapeutic strategies to prevent it. Ann N Y Acad Sci 2005; 1043:718-24. [PMID: 16037298 DOI: 10.1196/annals.1333.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycation of liver proteins by reactive aldehydes formed from the metabolism of ethanol and lipid peroxidation has been implicated in the development of both alcoholic and nonalcoholic liver cirrhosis. Modified proteins are targeted to the proteasome for proteolysis. Release of glycation-free adducts into the circulation may provide a diagnostic "signature" of hepatic protein damage. We quantitatively screened protein glycation, oxidation, and nitrosation adduct residues and free adducts in portal, hepatic, and peripheral venous blood plasma of cirrhotic patients; we also screened the hepatic and peripheral venous blood plasma of control subjects by liquid chromatography-mass spectrometry. There was a remarkable 14-16-fold increase of glyoxal-derived, hydroimidazolone-free adduct in portal and hepatic venous plasma of cirrhotic patients with respect to normal controls. There was only a twofold increase of glycation adduct residues in plasma proteins in cirrhotic patients, which was attributed mainly to decreased albumin turnover. Therapeutic strategies to decrease dicarbonyl compounds may be beneficial, such as dicarbonyl scavengers, glutathione repleting agents, and high-dose thiamine therapy.
Collapse
Affiliation(s)
- Naila Ahmed
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | | | | | | | | | | | | | | |
Collapse
|