1
|
Weber SM, Carroll SL. The Role of R-Ras Proteins in Normal and Pathologic Migration and Morphologic Change. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1499-1510. [PMID: 34111428 PMCID: PMC8420862 DOI: 10.1016/j.ajpath.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems. These changes include regulating the migration and homing of mature and immature immune cells, vascular stabilization, clotting, and axonal and dendritic outgrowth during nervous system development. Dysregulated R-Ras signaling has also been linked to the pathogenesis of cardiovascular disease, intellectual disabilities, and human cancers. This review discusses the structure and regulation of R-Ras proteins and our current understanding of the signaling pathways that they regulate. It explores the phenotype of NS patients and their implications for the R-Ras subfamily functions. Next, it covers recent discoveries regarding physiological and pathologic R-Ras functions in key organ systems. Finally, it discusses how R-Ras signaling is dysregulated in cancers and mechanisms by which this may promote neoplasia.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
2
|
Arora PD, He T, Ng K, McCulloch CA. The leucine-rich region of Flightless I interacts with R-ras to regulate cell extension formation. Mol Biol Cell 2018; 29:2481-2493. [PMID: 30091651 PMCID: PMC6233052 DOI: 10.1091/mbc.e18-03-0147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Flightless I (FliI) is a calcium-dependent, actin severing and capping protein that localizes to cell matrix adhesions, contributes to the generation of cell extensions, and colocalizes with Ras. Currently, the mechanism by which FliI interacts with Ras to enable assembly of actin-based cell protrusions is not defined. R-Ras, but not K-ras, H-ras, or N-ras, associated with the leucine-rich region (LRR) of FliI. Mutations of the proline-rich region of R-ras (P202A, P203A) prevented this association. Knockdown of Ras GTPase-activating SH3 domain-binding protein (G3BP1) or Rasgap120 by small interfering RNA inhibited the formation of cell extensions and prevented interaction of R-ras and G3BP1 in FliI wild-type (WT) cells. Pull-down assays using G3BP1 fusion proteins showed a strong association of R-ras with the C-terminus of G3BP1 (amino acids 236-466), which also required the LRR of FliI. In cells that expressed the truncated N-terminus or C-terminus of G3BP1, the formation of cell extensions was blocked. Endogenous Rasgap120 interacted with the N-terminus of G3BP1 (amino acids 1-230). We conclude that in cells plated on collagen FliI-LRR interacts with R-ras to promote cell extension formation and that FliI is required for the interaction of Rasgap120 with G3BP1 to regulate R-ras activity and growth of cell extensions.
Collapse
Affiliation(s)
- P D Arora
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - T He
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - K Ng
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - C A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
3
|
Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting. Semin Cancer Biol 2017; 54:121-130. [PMID: 29203271 DOI: 10.1016/j.semcancer.2017.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
For decades oncogenic RAS proteins were considered undruggable due to a lack of accessible binding pockets on the protein surfaces. Seminal early research in RAS biology uncovered the basic paradigm of post-translational isoprenylation of RAS polypeptides, typically with covalent attachment of a farnesyl group, leading to isoprenyl-mediated RAS anchorage at the plasma membrane and signal initiation at those sites. However, the failure of farnesyltransferase inhibitors to translate to the clinic stymied anti-RAS therapy development. Over the past ten years, a more complete picture has emerged of RAS protein maturation, intracellular trafficking, and location, positioning and retention in subdomains at the plasma membrane, with a corresponding expansion in our understanding of how these properties of RAS contribute to signal outputs. Each of these aspects of RAS regulation presents a potential vulnerability in RAS function that may be exploited for therapeutic targeting, and inhibitors have been identified or developed that interfere with RAS for nearly all of them. This review will summarize current understanding of RAS membrane targeting with a focus on highlighting development and outcomes of inhibitors at each step.
Collapse
|
4
|
R-Ras-Akt axis induces endothelial lumenogenesis and regulates the patency of regenerating vasculature. Nat Commun 2017; 8:1720. [PMID: 29170374 PMCID: PMC5700916 DOI: 10.1038/s41467-017-01865-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
The formation of endothelial lumen is fundamental to angiogenesis and essential to the oxygenation of hypoxic tissues. The molecular mechanism underlying this important process remains obscure. Here, we show that Akt activation by a Ras homolog, R-Ras, stabilizes the microtubule cytoskeleton in endothelial cells leading to endothelial lumenogenesis. The activation of Akt by the potent angiogenic factor VEGF-A does not strongly stabilize microtubules or sufficiently promote lumen formation, hence demonstrating a distinct role for the R-Ras-Akt axis. We show in mice that this pathway is important for the lumenization of new capillaries and microvessels developing in ischemic muscles to allow sufficient tissue reperfusion after ischemic injury. Our work identifies a role for Akt in lumenogenesis and the significance of the R-Ras-Akt signaling for the patency of regenerating blood vessels. Formation of the vascular lumen initiates the blood flow and it is crucial for tissue homeostasis. Here, Li et. al show that the R-Ras-Akt signaling axis is crucial for reparative angiogenesis in mice because it stabilizes the microtubule cytoskeleton in endothelial cells to promote endothelial lumen formation.
Collapse
|
5
|
Goldfinger LE, Michael JV. Regulation of Ras signaling and function by plasma membrane microdomains. Biosci Trends 2017; 11:23-40. [PMID: 28179601 DOI: 10.5582/bst.2016.01220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.
Collapse
Affiliation(s)
- Lawrence E Goldfinger
- Department of Anatomy & Cell Biology and The Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, and Cancer Biology Program, Fox Chase Cancer Center
| | | |
Collapse
|
6
|
Ras Proteolipid Nanoassemblies on the Plasma Membrane Sort Lipids With High Selectivity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.abl.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains. Oncogenesis 2016; 5:e228. [PMID: 27239960 PMCID: PMC4945753 DOI: 10.1038/oncsis.2016.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/17/2016] [Indexed: 12/16/2022] Open
Abstract
In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition markedly suppressed tumor growth by H-Ras and H-Ras-tR, indicating that sustained PI3K signaling is a critical pathway for H-Ras-driven tumor progression, independent of microdomains.
Collapse
|
8
|
Ogita Y, Egami S, Ebihara A, Ueda N, Katada T, Kontani K. Di-Ras2 Protein Forms a Complex with SmgGDS Protein in Brain Cytosol in Order to Be in a Low Affinity State for Guanine Nucleotides. J Biol Chem 2015; 290:20245-56. [PMID: 26149690 DOI: 10.1074/jbc.m115.637769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
The Ras family of small GTPases function in a wide variety of biological processes as "molecular switches" by cycling between inactive GDP-bound and active GTP-bound forms. Di-Ras1 and Di-Ras2 were originally identified as small GTPases forming a distinct subgroup of the Ras family. Di-Ras1/Di-Ras2 mRNAs are detected predominantly in brain and heart tissues. Biochemical analysis of Di-Ras1/Di-Ras2 has revealed that they have little GTPase activity and that their intrinsic guanine-nucleotide exchange rates are much faster than that of H-Ras. Yet little is known about the biological role(s) of Di-Ras1/Di-Ras2 or of how their activities are regulated. In the present study we found that endogenous Di-Ras2 co-purifies with SmgGDS from rat brain cytosol. Size-exclusion chromatography of purified recombinant proteins showed that Di-Ras2 forms a high affinity complex with SmgGDS. SmgGDS is a guanine nucleotide exchange factor with multiple armadillo repeats and has recently been shown to specifically activate RhoA and RhoC. In contrast to the effect on RhoA, SmgGDS does not act as a guanine nucleotide exchange factor for Di-Ras2 but instead tightly associates with Di-Ras2 to reduce its binding affinity for guanine nucleotides. Finally, pulse-chase analysis revealed that Di-Ras2 binds, in a C-terminal CAAX motif-dependent manner, to SmgGDS immediately after its synthesis. This leads to increased Di-Ras2 stability. We thus propose that isoprenylated Di-Ras2 forms a tight complex with SmgGDS in cytosol immediately after its synthesis, which lowers its affinity for guanine nucleotides.
Collapse
Affiliation(s)
- Yoshitaka Ogita
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sachiko Egami
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Arisa Ebihara
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nami Ueda
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Kontani
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Abstract
Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM.
Collapse
|
10
|
The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 2012; 22:1479-501. [PMID: 22825554 PMCID: PMC3463263 DOI: 10.1038/cr.2012.110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.
Collapse
|
11
|
Wurtzel JGT, Kumar P, Goldfinger LE. Palmitoylation regulates vesicular trafficking of R-Ras to membrane ruffles and effects on ruffling and cell spreading. Small GTPases 2012; 3:139-53. [PMID: 22751447 PMCID: PMC3442799 DOI: 10.4161/sgtp.21084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In this study we investigated the dynamics of R-Ras intracellular trafficking and its contributions to the unique roles of R-Ras in membrane ruffling and cell spreading. Wild type and constitutively active R-Ras localized to membranes of both Rab11- and transferrin-positive and -negative vesicles, which trafficked anterograde to the leading edge in migrating cells. H-Ras also co-localized with R-Ras in many of these vesicles in the vicinity of the Golgi, but R-Ras and H-Ras vesicles segregated proximal to the leading edge, in a manner dictated by the C-terminal membrane-targeting sequences. These segregated vesicle trafficking patterns corresponded to distinct modes of targeting to membrane ruffles at the leading edge. Geranylgeranylation was required for membrane anchorage of R-Ras, whereas palmitoylation was required for exit from the Golgi in post-Golgi vesicle membranes and trafficking to the plasma membrane. R-Ras vesicle membranes did not contain phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), whereas R-Ras co-localized with PtdIns(3,4,5)P3 in membrane ruffles. Finally, palmitoylation-deficient R-Ras blocked membrane ruffling, R-Ras/PI3-kinase interaction, enrichment of PtdIns(3,4,5)P3 at the plasma membrane, and R-Ras-dependent cell spreading. Thus, lipid modification of R-Ras dictates its vesicle trafficking, targeting to membrane ruffles, and its unique roles in localizing PtdIns(3,4,5)P3 to ruffles and promoting cell spreading.
Collapse
Affiliation(s)
- Jeremy G T Wurtzel
- Department of Anatomy & Cell Biology, The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
12
|
Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells. Neoplasia 2011; 13:98-107. [PMID: 21403836 DOI: 10.1593/neo.101088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/05/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR), consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.
Collapse
|
13
|
Abstract
Ephrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors. Activation of the receptors by ephrin binding results in the phosphorylation of the receptor tyrosine residues. These phosphorylated residues serve as docking sites for many of the downstream signaling pathways. However, the relative contributions of different phosphotyrosine residues remain undefined. In the present study, we mutated each individual tyrosine residues in the cytoplasmic domain of EphA3 receptor and studied the effects using cell migration, process retraction, and growth cone collapse assays. Stimulation of the EphA3 receptor with ephrin-A5 inhibits 293A cell migration, reduces NG108-15 cell neurite outgrowth, and induces growth cone collapse in hippocampal neurons. Mutation of either Y602 or Y779 alone partially decreases EphA3-induced responses. Full abrogation can only be achieved with mutations of both Y602 and Y779. These observations suggest a collaborative model of different downstream pathways.
Collapse
Affiliation(s)
- Guanfang Shi
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Gang Yue
- Department of Oral Biology, New Jersey Dental School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
14
|
Conklin MW, Ada-Nguema A, Parsons M, Riching KM, Keely PJ. R-Ras regulates beta1-integrin trafficking via effects on membrane ruffling and endocytosis. BMC Cell Biol 2010; 11:14. [PMID: 20167113 PMCID: PMC2830936 DOI: 10.1186/1471-2121-11-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin-mediated cell adhesion and spreading is dramatically enhanced by activation of the small GTPase, R-Ras. Moreover, R-Ras localizes to the leading edge of migrating cells, and regulates membrane protrusion. The exact mechanisms by which R-Ras regulates integrin function are not fully known. Nor is much known about the spatiotemporal relationship between these two molecules, an understanding of which may provide insight into R-Ras regulation of integrins. RESULTS GFP-R-Ras localized to the plasma membrane, most specifically in membrane ruffles, in Cos-7 cells. GFP-R-Ras was endocytosed from these ruffles, and trafficked via multiple pathways, one of which involved large, acidic vesicles that were positive for Rab11. Cells transfected with a dominant negative form of GFP-R-Ras did not form ruffles, had decreased cell spreading, and contained numerous, non-trafficking small vesicles. Conversely, cells transfected with the constitutively active form of GFP-R-Ras contained a greater number of ruffles and large vesicles compared to wild-type transfected cells. Ruffle formation was inhibited by knock-down of endogenous R-Ras with siRNA, suggesting that activated R-Ras is not just a component of, but also an architect of ruffle formation. Importantly, beta1-integrin co-localized with endogenous R-Ras in ruffles and endocytosed vesicles. Expression of dominant negative R-Ras or knock down of R-Ras by siRNA prevented integrin accumulation into ruffles, impaired endocytosis of beta1-integrin, and decreased beta1-integrin-mediated adhesion. Knock-down of R-Ras also perturbed the dynamics of another membrane-localized protein, GFP-VSVG, suggesting a more global role for R-Ras on membrane dynamics. However, while R-Ras co-internalized with integrins, it did not traffic with VSVG, which instead moved laterally out of ruffles within the plane of the membrane, suggesting multiple levels of regulation of and by R-Ras. CONCLUSIONS Our results suggest that integrin function involves integrin trafficking via a cycle of membrane protrusion, ruffling, and endocytosis regulated by R-Ras, providing a novel mechanism by which integrins are linked to R-Ras through control of membrane dynamics.
Collapse
Affiliation(s)
- Matthew W Conklin
- Dept of Pharmacology, Laboratory for Molecular Biology and University of Wisconsin Carbone Cancer Center, University of Wisconsin, 1525 Linden Dr, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
15
|
Calvo F, Crespo P. Structural and spatial determinants regulating TC21 activation by RasGRF family nucleotide exchange factors. Mol Biol Cell 2009; 20:4289-302. [PMID: 19692568 DOI: 10.1091/mbc.e09-03-0212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RasGRF family guanine nucleotide exchange factors (GEFs) promote guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange on several Ras GTPases, including H-Ras and TC21. Although the mechanisms controlling RasGRF function as an H-Ras exchange factor are relatively well characterized, little is known about how TC21 activation is regulated. Here, we have studied the structural and spatial requirements involved in RasGRF 1/2 exchange activity on TC21. We show that RasGRF GEFs can activate TC21 in all of its sublocalizations except at the Golgi complex. We also demonstrate that TC21 susceptibility to activation by RasGRF GEFs depends on its posttranslational modifications: farnesylated TC21 can be activated by both RasGRF1 and RasGRF2, whereas geranylgeranylated TC21 is unresponsive to RasGRF2. Importantly, we show that RasGRF GEFs ability to catalyze exchange on farnesylated TC21 resides in its pleckstrin homology 1 domain, by a mechanism independent of localization and of its ability to associate to membranes. Finally, our data indicate that Cdc42-GDP can inhibit TC21 activation by RasGRF GEFs, demonstrating that Cdc42 negatively affects the functions of RasGRF GEFs irrespective of the GTPase being targeted.
Collapse
Affiliation(s)
- Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas - IDICAN - Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Santander, 39011 Cantabria, Spain
| | | |
Collapse
|
16
|
Costa MN, Radhakrishnan K, Wilson BS, Vlachos DG, Edwards JS. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction. PLoS One 2009; 4:e6316. [PMID: 19626123 PMCID: PMC2710010 DOI: 10.1371/journal.pone.0006316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/17/2009] [Indexed: 01/24/2023] Open
Abstract
Background The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. Methodology/Principal Findings Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. Conclusions/Significance Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors.
Collapse
Affiliation(s)
- Michelle N. Costa
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Krishnan Radhakrishnan
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Dionisios G. Vlachos
- Department of Chemical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Jeremy S. Edwards
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
17
|
Rhee JS, Lee YM, Raisuddin S, Lee JS. Expression of R-ras oncogenes in the hermaphroditic fish Kryptolebias marmoratus, exposed to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:433-9. [PMID: 19000778 DOI: 10.1016/j.cbpc.2008.10.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/25/2022]
Abstract
The hermaphroditic fish Krytolebias marmoratus is a potential fish model for study of tumour development. Recently, sequences and expression of some oncogenes and tumor suppressor gene have been studied in K. marmoratus. To get a better understanding of oncogene expression at different development stage, and in different tissues three R-ras genes were cloned and fully sequenced. Expression of these R-ras genes (R-ras1, R-ras2, R-ras3) was also studied in fish exposed to endocrine-disrupting chemicals (EDCs). Liver showed the highest level of expression compared to other tissues, even though each R-ras gene showed different expression patterns in tissues. Interestingly, in secondary male (ovary atresia stage), expression levels of three R-ras genes was lower compared to hermaphrodites. At different developmental stages, R-ras2 gene showed most pronounced expression at early embryogenesis but at stage 5 (hatchling stage) and juvenile stage, R-ras3 gene showed the highest expression. After the juvenile stage, R-ras1 gene was upregulated compared to other R-ras genes, which showed the highest expression at the hermaphroditic stage. When fish were exposed to 17-beta-estradiol (E2), a natural estrogen and tamoxifen, a nonsteroidal estrogen antagonist and three EDCs viz., 4-n-nonylphenol (NP), bisphenol A (BPA), and 4-tert-octylphenol (OP), all the three R-ras genes were induced, except in the fish exposed to tamoxifen. These results suggest that EDCs modulate the expression of R-ras genes and thus affect subsequent signal transduction and tumor development.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
18
|
Goldfinger LE. Choose your own path: specificity in Ras GTPase signaling. MOLECULAR BIOSYSTEMS 2008; 4:293-9. [PMID: 18354782 DOI: 10.1039/b716887j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Ras superfamily of small G proteins contributes importantly to numerous cellular and physiological processes (M. F. Olsen and R. Marais, Semin. Immunol., 2000, 12, 63). This family comprises a large class of proteins (more than 150) which all share a common enzymatic function: hydrolysis of the gamma-phosphate of guanosine triphosphate (GTP) to create the products guanosine diphosphate (GDP) and inorganic phosphate (Y. Takai, T. Sasaki and T. Matozaki, Physiol. Rev., 2001, 81, 153). For this reason Ras family proteins, which include the Ras, Rho, Arf/Sara, Ran and Rab subfamilies, are classified as GTPases (G. W. Reuther and C. J. Der, Curr. Opin. Cell Biol., 2000, 12, 157). Guanine nucleotide coupling is a key regulator of enzymatic function; thus, Ras family GTPases participate in signal transduction. Ras signaling depends on binding to effectors. Many of the known effectors can bind to multiple Ras isotypes, often leading to common cellular outcomes, but each Ras isotype also engages specific effector pathways to mediate unique functions. Further, each Ras isotype can propagate multiple signaling pathways, indicating the presence of cellular determinants which allow for promiscuity in Ras-effector interactions while also maintaining specificity. Small distinctions in sequence, structure, and/or cellular regulation contribute to these differences in Ras-effector binding and subsequent cellular effects. A major focus of investigation in the Ras signaling field is identifying the determinants of these individualized functions. This review will attempt to summarize the current state of understanding of this question (with a particular focus on the Ras subfamily) and the approaches being taken to address it, and will discuss prospective areas for future investigation.
Collapse
Affiliation(s)
- Lawrence E Goldfinger
- Department of Medicine, Division of Rheumatology, University of California, San Diego, CA 92093-0726, USA.
| |
Collapse
|
19
|
Goldfinger LE, Ptak C, Jeffery ED, Shabanowitz J, Hunt DF, Ginsberg MH. RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. ACTA ACUST UNITED AC 2006; 174:877-88. [PMID: 16966426 PMCID: PMC2064341 DOI: 10.1083/jcb.200603111] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.
Collapse
Affiliation(s)
- Lawrence E Goldfinger
- Division of Rheumatology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. J Cell Sci 2006; 119:1307-19. [PMID: 16537651 DOI: 10.1242/jcs.02835] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
R-Ras, an atypical member of the Ras subfamily of small GTPases, enhances integrin-mediated adhesion and signaling through a poorly understood mechanism. Dynamic analysis of cell spreading by total internal reflection fluorescence (TIRF) microscopy demonstrated that active R-Ras lengthened the duration of initial membrane protrusion, and promoted the formation of a ruffling lamellipod, rich in branched actin structures and devoid of filopodia. By contrast, dominant-negative R-Ras enhanced filopodia formation. Moreover, RNA interference (RNAi) approaches demonstrated that endogenous R-Ras contributed to cell spreading. These observations suggest that R-Ras regulates membrane protrusions through organization of the actin cytoskeleton. Our results suggest that phospholipase Cepsilon (PLCepsilon) is a novel R-Ras effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion, because R-Ras was co-precipitated with PLCepsilon and increased its activity. Knockdown of PLCepsilon with siRNA reduced the formation of the ruffling lamellipod in R-Ras cells. Consistent with this pathway, inhibitors of PLC activity, or chelating intracellular Ca2+ abolished the ability of R-Ras to promote membrane protrusions and spreading. Overall, these data suggest that R-Ras signaling regulates the organization of the actin cytoskeleton to sustain membrane protrusion through the activity of PLCepsilon.
Collapse
Affiliation(s)
- Aude S Ada-Nguema
- Department of Pharmacology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sharma R, Sud N, Chattopadhyay TK, Ralhan R. TC21/R-Ras2 Upregulation in Esophageal Tumorigenesis: Potential Diagnostic Implications. Oncology 2005; 69:10-8. [PMID: 16088230 DOI: 10.1159/000087283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 10/24/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Early detection of esophageal cancer is hampered by paucity of molecular markers for diagnosis of this aggressive gastrointestinal malignancy in early stages. We recently identified TC21/R-Ras2, a small GTP-binding protein (SMG) in esophageal squamous cell carcinomas (ESCCs) by differential display. This study was designed to test the hypothesis that differential expression of TC21 in normal, dysplastic and malignant esophageal tissues may be of clinical relevance in esophageal tumorigenesis. METHODS Immunohistochemical analysis of TC21 was carried out in 83 ESCCs, 37 dysplasias and 29 matched histologically normal esophageal tissues and correlated with clinicopathological parameters. The cellular localization of TC21 was determined by confocal microscopy. RESULTS Expression of TC21 protein was observed in 60/83 (73%) ESCCs predominantly localized in tumor nuclei. Intriguingly, intense TC21 immunoreactivity was observed in all endoscopic biopsies with histological evidence of dysplasia (16 cases) as well as in dysplastic areas distant to ESCCs (21 cases), while matched distant histologically normal epithelia did not show detectable TC21 expression. Immunoblotting and semi-quantitative RT-PCR confirmed TC21 expression in dysplastias and ESCCs. Confocal microscopy showed nuclear as well as cytoplasmic TC21 expression in ESCCs and TE13 cells. CONCLUSIONS To our knowledge, this is the first report demonstrating differential expression of TC21 in normal, dysplastic and ESCC tissues, suggesting that TC21 expression is associated with early stages of esophageal tumorigenesis. Nuclear localization of TC21 makes it the third of over 100 small SMGs identified to be localized in the nucleus.
Collapse
Affiliation(s)
- Rinu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|