1
|
Martinez Barrera S, Hatchell E, Byrum SD, Mackintosh SG, Kozubowski L. Quantitative analysis of septin Cdc10 & Cdc3-associated proteome during stress response in the fungal pathogen Cryptococcus neoformans. PLoS One 2024; 19:e0313444. [PMID: 39689097 DOI: 10.1371/journal.pone.0313444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. Fatal outcome of cryptococcosis depends on the ability of C. neoformans to sense and adapt to 37°C. A complex of conserved filament forming GTPases, called septins, composed of Cdc3, Cdc10, Cdc11, and Cdc12, assembles at the mother-bud neck in C. neoformans. Septins Cdc3 and Cdc12 are essential for proliferation of C. neoformans at 37°C and for virulence in the Galleria mellonella model of infection, presumably due to their requirement for septin complex formation, and the involvement in cytokinesis. However, how exactly Cdc3, and Cdc12 contribute to C. neoformans growth at 37°C remains unknown. Based on studies investigating roles of septins in Saccharomyces cerevisiae, septin complex at the mother-bud neck of C. neoformans is predicted to interact with proteins involved in cell cycle control, morphogenesis, and cytokinesis, but the septin-associated proteome in C. neoformans has not been investigated. Here, we utilized tandem mass spectrometry to define C. neoformans proteins that associate with either Cdc3 or Cdc10 at ∼25°C or after the shift to 37°C. Our findings unveil a diverse array of septin-associated proteins, highlighting potential roles of septins in cell division, and stress response. Two proteins, identified as associated with both Cdc3 and Cdc10, the actin-binding protein profilin, which was detected at both temperatures, and ATP-binding multi-drug transporter Afr1, which was detected exclusively at 37°C, were further confirmed by co-immunoprecipitation. We also confirmed that association of Cdc3 with Afr1 was enhanced at 37°C. Upon shift to 37°C, septins Cdc3 and Cdc10 exhibited altered localization and Cdc3 partially co-localized with Afr1. In addition, we also investigated changes to levels of individual C. neoformans proteins upon shift from ∼25 to 37°C in exponentially grown culture and when cells entered stationary phase at ∼25°C. Our study reveals changes to C. neoformans proteome associated with heat and nutrient deprivation stresses and provides a landscape of septin-associated C. neoformans proteome, which will facilitate elucidating the biology of septins and mechanisms of stress response in this fungal pathogen.
Collapse
Affiliation(s)
- Stephani Martinez Barrera
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Emma Hatchell
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
2
|
Fission Yeast Rho1p-GEFs: From Polarity and Cell Wall Synthesis to Genome Stability. Int J Mol Sci 2022; 23:ijms232213888. [PMID: 36430366 PMCID: PMC9697909 DOI: 10.3390/ijms232213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Rho1p is a membrane-associated protein that belongs to the Rho family of small GTPases. These proteins coordinate processes such as actin remodelling and polarised secretion to maintain the shape and homeostasis of yeast cells. In response to extracellular stimuli, Rho1p undergoes conformational switching between a guanosine triphosphate (GTP)-bound active state and a guanosine diphosphate (GDP)-bound inactive state. Cycling is improved with guanine nucleotide exchange factor (GEF) activity necessary to activate signalling and GTPase activating protein (GAP) activity required for subsequent signal depletion. This review focuses on fission yeast Rho1p GEFs, Rgf1p, Rgf2p, and Rgf3p that belong to the family of DH-PH domain-containing Dbl-related GEFs. They are multi-domain proteins that detect biological signals that induce or inhibit their catalytic activity over Rho1p. Each of them activates Rho1p in different places and times. Rgf1p acts preferentially during polarised growth. Rgf2p is required for sporulation, and Rgf3p plays an essential function in septum synthesis. In addition, we outline the noncanonical roles of Rho1p-GEFs in genomic instability.
Collapse
|
3
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
4
|
Pemberton GD, Childs P, Reid S, Nikukar H, Tsimbouri PM, Gadegaard N, Curtis ASG, Dalby MJ. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine (Lond) 2015; 10:547-60. [PMID: 25723089 DOI: 10.2217/nnm.14.134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction. MATERIALS & METHODS Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin (ONN), RUNX2 and Osterix, assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining. RESULTS Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries. CONCLUSION In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells in vivo.
Collapse
Affiliation(s)
- Gabriel D Pemberton
- Centre for cell Engineering, Institute for Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciencies, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pérez P, Portales E, Santos B. Rho4 interaction with exocyst and septins regulates cell separation in fission yeast. MICROBIOLOGY-SGM 2015; 161:948-959. [PMID: 25724972 DOI: 10.1099/mic.0.000062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Rho GTPases are small proteins present in all eukaryotic cells, from yeast to mammals, with a function in actin organization and morphogenetic processes. Schizosaccharomyces pombe Rho4 is not essential but it displays a role during cell separation at high temperature. In fact, Rho4 is involved in the secretion of the hydrolytic enzymes that are required for cell septum degradation during this process. In rho4Δ cells, vesicles accumulate in the septum area and the glucanases Eng1 and Agn1 are not secreted to the culture medium. The localization of Eng1 and Agn1 depends on the exocyst and the septins. The exocyst is a conserved multiprotein complex important for the targeting and fusion of Golgi-derived vesicles with the plasma membrane. Septins are a family of GTP-binding proteins conserved in eukaryotes that function during cytokinesis. Here we show that Rho4 is required for the proper localization of the exocyst and septins at high temperature. Moreover, pull-down experiments demonstrate that Rho4 can interact with exocyst subunits, such as Sec8 and Exo70, and septin proteins, such as Spn3. We observe that Sec8 preferentially binds to activated GTP-Rho4, suggesting that Sec8 could be an effector of this GTPase. We propose that the interaction of Rho4 with the exocyst and septins confers a precise regulation for the secretion of glucanases at the appropriate place and time during the cell cycle.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain
| | - Beatriz Santos
- Departamento de Microbiología y Genética, Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Zhao ZH, Tian Y, Yang JP, Zhou J, Chen KS. RhoC, vascular endothelial growth factor and microvascular density in esophageal squamous cell carcinoma. World J Gastroenterol 2015; 21:905-912. [PMID: 25624724 PMCID: PMC4299343 DOI: 10.3748/wjg.v21.i3.905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/23/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the expression of Ras homolog (Rho)C, vascular endothelial growth factor (VEGF) and CD105 in esophageal squamous cell carcinoma.
METHODS: Semi-quantitative reverse transcriptase polymerase chain reaction, in situ hybridization and immunohistochemical streptavidin-biotin- peroxidase methods were used to detect expression of RhoC mRNA and protein, and VEGF protein in 62 cases with esophageal squamous cell carcinoma, 31 cases with adjacent atypical hyperplastic tissues, and 62 cases with normal esophageal mucosa. CD105 antibody labeling was used to measure microvascular density. Expression levels were compared according to clinicopathologic and patient parameters.
RESULTS: Expression of RhoC mRNA showed a positive correlation with the protein level in esophageal squamous cell carcinoma, as well as with VEGF protein levels. RhoC mRNA expression was mainly located within the cytoplasm of the tumor cells, appearing as blue to purple particles by in situ hybridization. The differences in RhoC mRNA expression in esophageal squamous cell carcinoma, adjacent atypical hyperplasia and normal esophageal mucosa were significant (P < 0.05). The relative expression of RhoC mRNA in cancer tissues with lymph node metastasis was significantly higher than in the tissues without lymph node metastasis (P < 0.05). VEGF protein expression was consistent with microvascular density (t = 25.52, P < 0.05). Positive expression of VEGF protein in esophageal squamous cell carcinoma of different histologic gradings did not differ significantly. Positive expression of VEGF protein in carcinoma tissues with deep infiltration was significantly higher than in tissues with only superficial infiltration (P < 0.05). The positive expression of VEGF protein in cancer tissues with lymph node metastasis was significantly higher than in the tissues without lymph node metastasis (P < 0.05).
CONCLUSION: RhoC protein may upregulate VEGF expression, thereby promoting tumor angiogenesis. RhoC mRNA and protein expression was correlated with metastasis.
Collapse
|
7
|
Wang N, Wang M, Zhu YH, Grosel TW, Sun D, Kudryashov DS, Wu JQ. The Rho-GEF Gef3 interacts with the septin complex and activates the GTPase Rho4 during fission yeast cytokinesis. Mol Biol Cell 2014; 26:238-55. [PMID: 25411334 PMCID: PMC4294672 DOI: 10.1091/mbc.e14-07-1196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1-Rho5) and seven Rho GEFs (Scd1, Rgf1-Rgf3, and Gef1-Gef3). The GEFs for Rho2-Rho5 have not been unequivocally assigned. In particular, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors--glucanases Eng1 and Agn1--are abnormal, and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast.
Collapse
Affiliation(s)
| | - Mo Wang
- Department of Molecular Genetics
| | | | | | | | | | - Jian-Qiu Wu
- Department of Molecular Genetics Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
8
|
Muñoz S, Manjón E, Sánchez Y. The putative exchange factor Gef3p interacts with Rho3p GTPase and the septin ring during cytokinesis in fission yeast. J Biol Chem 2014; 289:21995-2007. [PMID: 24947517 DOI: 10.1074/jbc.m114.548792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3(+) and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation.
Collapse
Affiliation(s)
- Sofía Muñoz
- From the Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, s/n. 37007 Salamanca, Spain
| | - Elvira Manjón
- From the Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, s/n. 37007 Salamanca, Spain
| | - Yolanda Sánchez
- From the Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, s/n. 37007 Salamanca, Spain
| |
Collapse
|
9
|
Mechanical Cues Direct Focal Adhesion Dynamics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:103-34. [DOI: 10.1016/b978-0-12-394624-9.00005-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Zhu YH, Ye Y, Wu Z, Wu JQ. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis. Mol Biol Cell 2013; 24:3187-204. [PMID: 23966468 PMCID: PMC3806657 DOI: 10.1091/mbc.e13-06-0301] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous results showed that putative Rho-GEF Gef2 regulates division-site positioning during early cytokinesis in fission yeast. Here Nod1 is identified as a binding partner of Gef2. The two proteins form a complex to regulate division-site positioning and contractile-ring maintenance. In addition, Gef2 binds to GTPases Rho1, Rho4, and Rho5 in vitro. Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | |
Collapse
|
11
|
Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS. Ras and Rho small G proteins: insights from the Schizophyllum commune genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 2012; 28:61-100. [PMID: 22616482 DOI: 10.5661/bger-28-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Unlike in animal cells and yeasts, the Ras and Rho small G proteins and their regulators have not received extensive research attention in the case of the filamentous fungi. In an effort to begin to rectify this deficiency, the genome sequence of the basidiomycete mushroom Schizophyllum commune was searched for all known components of the Ras and Rho signalling pathways. The results of this study should provide an impetus for further detailed investigations into their role in polarized hyphal growth, sexual reproduction and fruiting body development. These processes have long been the targets for genetic and cell biological research in this fungus.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biology, University of Turku, Biocity A, Tykistökatu 6A, FI-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
12
|
Ye Y, Lee IJ, Runge KW, Wu JQ. Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis. Mol Biol Cell 2012; 23:1181-95. [PMID: 22298427 PMCID: PMC3315812 DOI: 10.1091/mbc.e11-09-0800] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
How Rho-GEFs and Rho GTPases regulate division-site selection during cytokinesis in fission yeast is unknown. The Rho-GEF Gef2 interacts with the anillin Mid1 to regulate contractile-ring positioning and assembly in coordination with the polo kinase Plo1. In addition, Gef2 is involved in contractile-ring stability and disassembly. Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.
Collapse
Affiliation(s)
- Yanfang Ye
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
13
|
Cooperation between the septins and the actomyosin ring and role of a cell-integrity pathway during cell division in fission yeast. Genetics 2010; 186:897-915. [PMID: 20739711 DOI: 10.1534/genetics.110.119842] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A major question about cytokinesis concerns the role of the septin proteins, which localize to the division site in all animal and fungal cells but are essential for cytokinesis only in some cell types. For example, in Schizosaccharomyces pombe, four septins localize to the division site, but deletion of the four genes produces only a modest delay in cell separation. To ask if the S. pombe septins function redundantly in cytokinesis, we conducted a synthetic-lethal screen in a septin-deficient strain and identified seven mutations. One mutation affects Cdc4, a myosin light chain that is an essential component of the cytokinetic actomyosin ring. Five others cause frequent cell lysis during cell separation and map to two loci. These mutations and their dosage suppressors define a signaling pathway (including Rho1 and a novel arrestin) for repairing cell-wall damage. The seventh mutation affects the poorly understood RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutation or with a mutation affecting the septin-interacting, anillin-like protein Mid2, suggesting that Scw1 functions in a pathway parallel to that of the septins. Taken together, our results suggest that the S. pombe septins participate redundantly in one or more pathways that cooperate with the actomyosin ring during cytokinesis and that a septin defect causes septum defects that can be repaired effectively only when the cell-integrity pathway is intact.
Collapse
|
14
|
Zhao ZH, Liu YQ, Zhang L, Li SL, Gao DL, Chen KS. Significance of RhoC mRNA expression in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1885-1889. [DOI: 10.11569/wcjd.v18.i18.1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of RhoC mRNA in esophageal squamous cell carcinoma (ESCC) and to explore its correlation with the development and progression of ESCC.
METHODS: Semi-quantitative RT-PCR was used to detect the relative expression levels of RhoC mRNA in 62 ESCC specimens, 31 tumor-adjacent atypical hyperplastic epithelial specimens and 62 normal esophageal epithelial specimens. The distribution of RhoC transcripts in ESCC was determined by in situ hybridization.
RESULTS: The mRNA expression of RhoC was closely correlated with tumor grade, infiltration and lymph node metastasis in ESCC (all P < 0.05). The expression intensity of RhoC mRNA in carcinoma, adjacent atypical hyperplasia epithelium and normal esophageal epithelium were 0.902 ± 0.119, 0. 731 ± 0.065 and 0.653 ± 0.069, respectively, with a significant difference among the three groups (P < 0.01). In situ hybridization analysis demonstrated that RhoC transcripts were detected in the cytoplasm of cells. The positive rates of RhoC mRNA expression in carcinoma, tumor-adjacent atypical hyperplasia epithelium and normal esophageal epithelium were 80.6% (50/62), 32.3% (10/31) and 21.0% (13/62), respectively, with a significant difference among the three groups (P < 0.01). RT-PCR results were consistent with those obtained by in situ hybridization.
CONCLUSION: The mRNA expression of RhoC in ESCC increases significantly and is closely correlated with tumor biological behavior, which suggests that RhoC overexpression is closed associated with the pathogenesis of ESCC. RhoC may be a new auxiliary parameter for early diagnosis and prognostic prediction for ESCC.
Collapse
|
15
|
Nishimura S, Arita Y, Honda M, Iwamoto K, Matsuyama A, Shirai A, Kawasaki H, Kakeya H, Kobayashi T, Matsunaga S, Yoshida M. Marine antifungal theonellamides target 3beta-hydroxysterol to activate Rho1 signaling. Nat Chem Biol 2010; 6:519-26. [PMID: 20543850 DOI: 10.1038/nchembio.387] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 03/23/2010] [Indexed: 11/09/2022]
Abstract
Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Here we report the mode of action of theonellamides, bicyclic peptides derived from marine sponges. We generated a chemical-genomic profile of theonellamide F using a collection of fission yeast strains in which each open reading frame (ORF) is expressed under the control of an inducible promoter. Clustering analysis of the Gene Ontology (GO) terms associated with the genes that alter drug sensitivity suggested a mechanistic link between theonellamide and 1,3-beta-D-glucan synthesis. Indeed, theonellamide F induced overproduction of 1,3-beta-D-glucan in a Rho1-dependent manner. Subcellular localization and in vitro binding assays using a fluorescent theonellamide derivative revealed that theonellamides specifically bind to 3beta-hydroxysterols, including ergosterol, and cause membrane damage. The biological activity of theonellamides was alleviated in mutants defective in ergosterol biosynthesis. Theonellamides thus represent a new class of sterol-binding molecules that induce membrane damage and activate Rho1-mediated 1,3-beta-D-glucan synthesis.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fission yeast rgf2p is a rho1p guanine nucleotide exchange factor required for spore wall maturation and for the maintenance of cell integrity in the absence of rgf1p. Genetics 2009; 181:1321-34. [PMID: 19189958 DOI: 10.1534/genetics.108.094839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Schizosaccharomyces pombe Rho1p is essential, directly activates beta-1,3-glucan synthase, and participates in the regulation of morphogenesis. In S. pombe, Rho1p is activated by at least three guanine nucleotide exchange factors (GEFs): Rgf1p, Rgf2p, and Rgf3p. In this study we show that Rgf2p is a Rho1p GEF required for sporulation. The rgf2+ deletion did not affect forespore membrane formation and the nuclei were encapsulated properly. However, the mutant ascospores appeared dark and immature. The rgf2Delta zygotes were not able to release the ascospores spontaneously, and the germination efficiency was greatly reduced compared to wild-type (wt) spores. This phenotype resembles that of the mutants in bgs2+, which encodes a sporulation-specific glucan synthase subunit. In fact, glucan synthase activity was diminished in sporulating rgf2Delta diploids. Rgf2p also plays a role in beta-glucan biosynthesis during vegetative growth. Overexpression of rgf2+ specifically increased GTP-bound Rho1p, caused changes in cell morphology, and elicited an increase in beta-1,3-glucan synthase activity. Moreover, the simultaneous disruption of rgf1+ and rgf2+ was lethal and both Rgf1p and Rgf2p were able to partially substitute for each other. Our results suggest that Rgf1p and Rgf2p are alternative GEFs with an essential overlapping function in Rho1p activation during vegetative growth.
Collapse
|
17
|
García P, Tajadura V, García I, Sánchez Y. Role of Rho GTPases and Rho-GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 2007; 23:1031-43. [PMID: 17072882 DOI: 10.1002/yea.1409] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Rho family of GTPases are highly conserved molecular switches that control some of the most fundamental processes of cell biology, including morphogenesis, vesicular transport, cell division and motility. Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to extracellular stimuli. In fission yeast, there are seven Dbl-related GEFs and they activate six Rho-type GTPases within a particular spatio-temporal context. The failure to do so might have consequences reflected in aberrant phenotypes and in some cases lead to cell death. In this review, we briefly summarize the role of Rho GTPases and Rho-GEFs in the establishment and maintenance of cell polarity and cell integrity in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
18
|
Mutoh T, Nakano K, Mabuchi I. Rho1-GEFs Rgf1 and Rgf2 are involved in formation of cell wall and septum, while Rgf3 is involved in cytokinesis in fission yeast. Genes Cells 2006; 10:1189-202. [PMID: 16324155 DOI: 10.1111/j.1365-2443.2005.00908.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wall synthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, and involved in contractile ring formation and/or maintenance and septation.
Collapse
Affiliation(s)
- Tadashi Mutoh
- Graduate Program in Biophysics and Biochemistry, School of Science, University of Tokyo, Hongo, Bunkyo-ku, Japan
| | | | | |
Collapse
|
19
|
García P, Tajadura V, García I, Sánchez Y. Rgf1p is a specific Rho1-GEF that coordinates cell polarization with cell wall biogenesis in fission yeast. Mol Biol Cell 2006; 17:1620-31. [PMID: 16421249 PMCID: PMC1415308 DOI: 10.1091/mbc.e05-10-0933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
20
|
Morrell-Falvey JL, Ren L, Feoktistova A, Haese GD, Gould KL. Cell wall remodeling at the fission yeast cell division site requires the Rho-GEF Rgf3p. J Cell Sci 2005; 118:5563-73. [PMID: 16291723 DOI: 10.1242/jcs.02664] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytokinesis in Schizosaccharomyces pombe is accompanied by several stages of cell wall remodeling at the division site. Coincident with actomyosin ring constriction, primary and secondary septa are deposited and then the primary septum is degraded to release daughter cells from one another. These steps require the activities of glucan synthases and glucanases, respectively, which must be coordinated with one another to prevent cell lysis. The lad1-1 mutation undergoes cell lysis specifically at cell division owing to the absence of the Rgf3p Rho1-guanine nucleotide exchange factor (GEF) at the division site. Electron microscopic analysis indicates that lysis occurs only as the primary septum begins to be degraded. Overproduction of either Rho1p or the previously uncharacterized Rab-GTPase-activating protein (GAP) involved in secretion, Gyp10p, suppresses lad1-1 lethality. Rgf3p is periodically produced in an Ace2p-dependent manner and localizes to the medial region of the cell early in mitosis, a pattern of expression distinct from the highly related Rho-GEF, Rgf1p. Although rgf1+ is not an essential gene, it is synthetically lethal with rgf2-deleted cells whereas no negative genetic interactions were detected between rgf2-deleted cells and lad1-1. Our data suggest that the three closely related fission yeast Rho-GEF molecules perform two distinct essential functions. Rgf3p appears necessary to stimulate Rho1p-mediated activation of a glucan synthase crucial after septation for proper new cell-end formation.
Collapse
Affiliation(s)
- Jennifer L Morrell-Falvey
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
21
|
Palmer CP, Aydar E, Djamgoz MBA. A microbial TRP-like polycystic-kidney-disease-related ion channel gene. Biochem J 2005; 387:211-9. [PMID: 15537393 PMCID: PMC1134949 DOI: 10.1042/bj20041710] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ion channel genes have been discovered in many microbial organisms. We have investigated a microbial TRP (transient receptor potential) ion channel gene which has most similarity to polycystic-kidney-disease-related ion channel genes. We have shown that this gene (pkd2) is essential for cellular viability, and is involved in cell growth and cell wall synthesis. Expression of this gene increases following damage to the cell wall. This fission yeast pkd2 gene, orthologues of which are found in all eukaryotic cells, appears to be a key signalling component in the regulation of cell shape and cell wall synthesis in yeast through an interaction with a Rho1-GTPase. A model for the mode of action of this Schizosaccharomyces pombe protein in a Ca2+ signalling pathway is hypothesized.
Collapse
Affiliation(s)
- Christopher P Palmer
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College, London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | |
Collapse
|
22
|
Tajadura V, García B, García I, García P, Sánchez Y. Schizosaccharomyces pombe Rgf3p is a specific Rho1 GEF that regulates cell wall beta-glucan biosynthesis through the GTPase Rho1p. J Cell Sci 2004; 117:6163-74. [PMID: 15546915 DOI: 10.1242/jcs.01530] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell-wall synthesis. Here, we describe the cloning and characterization of rgf3+, a member of the Rho family of guanine nucleotide exchange factors (Rho GEFs). The rgf3+ gene was cloned by complementation of a mutant (ehs2-1) hypersensitive to drugs that interfere with cell-wall biosynthesis. The rgf3+ gene was found to be essential for cell viability and depletion of Rgf3p afforded phenotypes similar to those obtained following depletion of Rho1p. However, the cell death caused by Rgf3p depletion could be rescued by the presence of 1.2 M sorbitol, whereas depletion of Rho1 was lethal under the same conditions. We show that Rgf3p is a specific Rho1-GEF. The hypersensitivity to drugs affecting the cell wall of the ehs2-1 mutant was suppressed by overexpression of rho1+ but not by any of the other GTPases of the Rho family. Rgf3p interacted with the GDP-bound form of Rho1p and promoted the GDP-GTP exchange. In addition, we show that overexpression of Rgf3p produces multiseptated cells and increases beta-1,3-glucan synthase activity and the amount of cell wall beta-1,3-glucan. Rgf3p localized to the septum and the mRNA level was regulated in a cell-cycle-dependent manner peaking during septation. Our results suggest that Rgf3p acts as a positive activator of Rho1p, probably activating the Rho functions that coordinate cell-wall biosynthesis to maintain cell integrity during septation.
Collapse
Affiliation(s)
- Virginia Tajadura
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|