1
|
Biosensors based on β-galactosidase enzyme: Recent advances and perspectives. Anal Biochem 2017; 535:1-11. [DOI: 10.1016/j.ab.2017.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Accepted: 07/18/2017] [Indexed: 11/19/2022]
|
2
|
Baeza M, López C, Alonso J, López-Santín J, Álvaro G. Ceramic Microsystem Incorporating a Microreactor with Immobilized Biocatalyst for Enzymatic Spectrophotometric Assays. Anal Chem 2009; 82:1006-11. [DOI: 10.1021/ac902267f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mireia Baeza
- Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain, and Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Carmen López
- Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain, and Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Julián Alonso
- Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain, and Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Josep López-Santín
- Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain, and Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Gregorio Álvaro
- Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain, and Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
3
|
Ferraz RM, Rodríguez-Carmona E, Ferrer-Miralles N, Meyerhans A, Villaverde A. Screening HIV-1 antigenic peptides as receptors for antibodies and CD4 in allosteric nanosensors. J Mol Recognit 2009; 22:255-60. [DOI: 10.1002/jmr.940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Laczka O, Ferraz RM, Ferrer-Miralles N, Villaverde A, Muñoz FX, Campo FJD. Fast electrochemical detection of anti-HIV antibodies: Coupling allosteric enzymes and disk microelectrode arrays. Anal Chim Acta 2009; 641:1-6. [DOI: 10.1016/j.aca.2009.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
5
|
Barlow JN, Conrath K, Steyaert J. Substrate-dependent modulation of enzyme activity by allosteric effector antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1259-68. [PMID: 19348968 DOI: 10.1016/j.bbapap.2009.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 01/26/2023]
Abstract
We investigate the kinetic effects of antibody variable domain fragments derived from heavy chain antibodies (VHH domains) that behave as allosteric effectors of the nucleoside hydrolase from Trypanosoma vivax (TvNH). Strikingly, these antibodies can stimulate or inhibit TvNH steady-state activity, depending on the substrate used. This effect was investigated in greater detail using steady-state and pre-steady-state kinetic experiments. The most potent allosteric effector, VHH 1589, inhibits certain steps on the TvNH catalytic pathway (e.g. N-glycosidic bond cleavage) but increases the rates of others (e.g. substrate and product release). For the natural nucleoside 7-methyl guanosine, where product ribose release is rate determining, the net effect of VHH 1589 binding is to increase k(cat). For the poor substrate pNPR, VHH 1589 causes chemistry (O-glycosidic bond cleavage) to become rate determining and both k(cat)/K(m) and k(cat) to decrease. Thus, the substrate-dependent effects of VHH 1589 binding are caused by differences in the relative rates of chemistry with respect to subsequent steps on the catalytic pathway for these two substrates. We discuss possible mechanisms for these kinetic effects and the implications for allosteric effector drug development.
Collapse
Affiliation(s)
- John N Barlow
- Structural Biology, Free University of Brussels, Brussels, Belgium.
| | | | | |
Collapse
|
6
|
Ferraz R, Aris A, González G, López-Santín J, Villaverde A, Álvaro G. Allosteric molecular sensing of anti-HIV antibodies by an immobilized engineered β-galactosidase. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
García-Fruitós E, Arís A, Villaverde A. Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 2006; 73:289-94. [PMID: 17085715 PMCID: PMC1797118 DOI: 10.1128/aem.01952-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial inclusion bodies, while showing intriguing amyloid-like features, such as a beta-sheet-based intermolecular organization, binding to amyloid-tropic dyes, and origin in a sequence-selective deposition process, hold an important amount of native-like secondary structure and significant amounts of functional polypeptides. The aggregation mechanics supporting the occurrence of both misfolded and properly folded protein is controversial. Single polypeptide chains might contain both misfolded stretches driving aggregation and properly folded protein domains that, if embracing the active site, would account for the biological activities displayed by inclusion bodies. Alternatively, soluble, functional polypeptides could be surface adsorbed by interactions weaker than those driving the formation of the intermolecular beta-sheet architecture. To explore whether the fraction of properly folded active protein is a natural component or rather a mere contaminant of these aggregates, we have explored their localization by image analysis of inclusion bodies formed by green fluorescent protein. Since the fluorescence distribution is not homogeneous and the core of inclusion bodies is particularly rich in active protein forms, such protein species cannot be passively trapped components and their occurrence might be linked to the reconstruction dynamics steadily endured in vivo by such bacterial aggregates. Intriguingly, even functional protein species in inclusion bodies are not excluded from the interface with the solvent, probably because of the porous structure of these particular protein aggregates.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
8
|
Ferraz RM, Arís A, Martínez MA, Villaverde A. High-throughput, functional screening of the anti-HIV-1 humoral response by an enzymatic nanosensor. Mol Immunol 2006; 43:2119-23. [PMID: 16464501 DOI: 10.1016/j.molimm.2005.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/14/2005] [Accepted: 12/23/2005] [Indexed: 11/29/2022]
Abstract
The impact of antibodies on the target's epitope conformation is a major determinant of HIV-1 neutralization and a potential contributor to disease progression. We explore here a conformation-sensitive enzymatic nanosensor for the high-throughput functional screening of human anti-HIV-1 antibodies in sera. When displaying a model epitope from a gp41 immunodominant region (Env residues from 579 to 613), the sensing signal quantitatively distinguishes between adaptive and non-adaptive antibody binding. By using this tool, we have identified IgG4 as the immunoglobulin subpopulation most efficient in the structural modification of the target epitope.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
9
|
Ferraz RM, Vera A, Arís A, Villaverde A. Insertional protein engineering for analytical molecular sensing. Microb Cell Fact 2006; 5:15. [PMID: 16584558 PMCID: PMC1459189 DOI: 10.1186/1475-2859-5-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
The quantitative detection of low analyte concentrations in complex samples is becoming an urgent need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by a biological receptor and a signal transducer, represent valuable alternatives to non biological analytical instruments because of the high specificity of the biomolecular recognition. The vast range of existing protein ligands enable those macromolecules to be used as efficient receptors to cover a diversity of applications. In addition, appropriate protein engineering approaches enable further improvement of the receptor functioning such as enhancing affinity or specificity in the ligand binding. Recently, several protein-only sensors are being developed, in which either both the receptor and signal transducer are parts of the same protein, or that use the whole cell where the protein is produced as transducer. In both cases, as no further chemical coupling is required, the production process is very convenient. However, protein platforms, being rather rigid, restrict the proper signal transduction that necessarily occurs through ligand-induced conformational changes. In this context, insertional protein engineering offers the possibility to develop new devices, efficiently responding to ligand interaction by dramatic conformational changes, in which the specificity and magnitude of the sensing response can be adjusted up to a convenient level for specific analyte species. In this report we will discuss the major engineering approaches taken for the designing of such instruments as well as the relevant examples of resulting protein-only biosensors.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Matemática Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain
| | - Andrea Vera
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Anna Arís
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Selz KA, Samoylova TI, Samoylov AM, Vodyanoy VJ, Mandell AJ. Designing allosteric peptide ligands targeting a globular protein. Biopolymers 2006; 85:38-59. [PMID: 17009317 DOI: 10.1002/bip.20607] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patented signal analytic algorithms applied to hydrophobically transformed, numerical amino acid sequences have previously been used to design short, protein-targeted, L or D retro-inverso peptides. These peptides have demonstrated allosteric and/or indirect agonist effects on a variety of G-protein and tyrosine kinase coupled membrane receptors with 30% to over 80% hit rates. Here we extend these approaches to a globular protein target. We designed eight peptide ligands targeting an ELISA antibody responsive protein, beta-galactosidase, betaGAL. Three of the eight 14mer peptides allosterically activated betaGAL with ELISA methodology. Using Bayesian statistics, this 38% hit rate would have occurred 2 x 10(-9) by chance. These peptides demonstrated binding site competitive or noncompetitive interactions, suggesting allosteric site multiplicity with respect to their betaGAL binding-mediated ELISA signal. Kinetic studies demonstrated the temperature dependence of the betaGAL peptide binding functions. Using the van't Hoff relation, we found evidence for enthalpy-entropy compensation. This relation is often found for hydrophobic interactions in aqueous media, and is consistent with the postulated hydrophobic series encoding underlying our protein-targeted, peptide design methods. It appears that our algorithmic, hydrophobic autocovariance eigenvector template approach to the design of allosteric peptides targeting membrane receptors may also be applicable to the design of peptide ligands targeting nonmembrane involved globular proteins.
Collapse
|
11
|
Ferraz RM, Arís A, Villaverde A. Enhanced molecular recognition signal in allosteric biosensing by proper substrate selection. Biotechnol Bioeng 2006; 94:193-9. [PMID: 16538674 DOI: 10.1002/bit.20798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among protein biosensors, those based on enzymatic responses to specific analytes offer convenient instruments for fast and ultra-fast molecular diagnosis, through the comparative analysis of the product formed in presence and in absence of the effector. We have explored here the performance of five beta-galactosidase substrates during the activation of a beta-galactosidase sensor by antibodies against the human immunodeficiency virus (HIV). Interestingly, the employed substrate determines the dynamic range of the allosteric signal and significantly influences the sensitivity of the senso-enzymatic reaction. While ortho-nitrophenyl beta-D-galactopyranoside allows the detection of a model anti-gp41 monoclonal antibody below 0.024 ng/microL, phenol red beta-D-galactopyranoside offers the most dynamic response with signal/background ratios higher than 12-fold and a detection limit around 0.071 ng/microL. The hydrolysis of both chromogenic substrates generates linear sensing responses to immune human sera and parallel time-course topologies of the allosteric reaction. Therefore, the obtained results stress the potential of chromogenic substrates versus those rendering quimioluminescent, amperometric, or fluorescent signals, for the further automatization, miniaturization, or adaptation of beta-galactosidase-based biosensing to high-throughput applications.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
12
|
Skálová T, Dohnálek J, Spiwok V, Lipovová P, Vondrácková E, Petroková H, Dusková J, Strnad H, Králová B, Hasek J. Cold-active β-Galactosidase from Arthrobacter sp. C2-2 Forms Compact 660kDa Hexamers: Crystal Structure at 1.9Å Resolution. J Mol Biol 2005; 353:282-94. [PMID: 16171818 DOI: 10.1016/j.jmb.2005.08.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/20/2022]
Abstract
The X-ray structure of cold-active beta-galactosidase (isoenzyme C-2-2-1) from an Antarctic bacterium Arthrobacter sp. C2-2 was solved at 1.9A resolution. The enzyme forms 660 kDa hexamers with active sites opened to the central cavity of the hexamer and connected by eight channels with exterior solvent. To our best knowledge, this is the first cold-active beta-galactosidase with known structure and also the first known beta-galactosidase structure in the form of compact hexamers. The hexamer organization regulates access of substrates and ligands to six active sites and this unique packing, present also in solution, raises questions about its purpose and function. This enzyme belongs to glycosyl hydrolase family 2, similarly to Escherichia coli beta-galactosidase, forming tetramers necessary for its enzymatic function. However, we discovered significant differences between these two enzymes affecting the ability of tetramer/hexamer formation and complementation of the active site. This structure reveals new insights into the cold-adaptation mechanisms of enzymatic pathways of extremophiles.
Collapse
Affiliation(s)
- Tereza Skálová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 1606 Praha 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
García-Fruitós E, González-Montalbán N, Morell M, Vera A, Ferraz RM, Arís A, Ventura S, Villaverde A. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 2005; 4:27. [PMID: 16156893 PMCID: PMC1224866 DOI: 10.1186/1475-2859-4-27] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/12/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many enzymes of industrial interest are not in the market since they are bio-produced as bacterial inclusion bodies, believed to be biologically inert aggregates of insoluble protein. RESULTS By using two structurally and functionally different model enzymes and two fluorescent proteins we show that physiological aggregation in bacteria might only result in a moderate loss of biological activity and that inclusion bodies can be used in reaction mixtures for efficient catalysis. CONCLUSION This observation offers promising possibilities for the exploration of inclusion bodies as catalysts for industrial purposes, without any previous protein-refolding step.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Nuria González-Montalbán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Montse Morell
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Andrea Vera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Anna Arís
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Bioloquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|