1
|
Xie J, Wang Z, Fan W, Liu Y, Liu F, Wan X, Liu M, Wang X, Zeng D, Wang Y, He B, Yan M, Zhang Z, Zhang M, Hou Z, Wang C, Kang Z, Fang W, Zhang L, Lam EWF, Guo X, Yan J, Zeng Y, Chen M, Liu Q. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6:333. [PMID: 34482361 PMCID: PMC8418605 DOI: 10.1038/s41392-021-00702-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.
Collapse
Affiliation(s)
- Jiajun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Youping Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xuan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mengjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Kang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinsong Yan
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China.
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Sun Yat-sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ling Z, Long X, Li J, Feng M. Homeodomain protein DLX4 facilitates nasopharyngeal carcinoma progression via up-regulation of YB-1. Genes Cells 2020; 25:466-474. [PMID: 32281175 DOI: 10.1111/gtc.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor in nasopharynx tissues and lacks effective treatment strategies. Dysregulation of distal-less homeobox 4 (DLX4) participates in the development of tumors. Understanding the regulatory mechanism of DLX4 in NPC progression may address this issue. Here, we first identified an up-regulation of DLX4 in NPC cell lines compared to normal epithelial cells. Data from colony formation and transwell assays showed that knockdown of DLX4 inhibited cell proliferation and invasion of NPC, respectively. Moreover, DLX4 knockdown blocked the cell cycle of NPC at G1 phase, suggesting the antitumor effect of DLX4 knockdown on NPC. The downstream target of DLX4 was identified as Y-box binding protein 1 (YB-1), whose expression was increased by over-expression of DLX4, while decreased by knockdown of DLX4. The binding capacity between DLX4 and YB-1 was verified by chromatin immunoprecipitation (ChIP), and the result showed that DLX4 could not directly bind to the promoter of YB-1. Mechanically, YB-1 over-expression reversed the effects of DLX4 knockdown on cell proliferation, cell cycle arrest and cell invasion of NPC. In conclusion, our findings indicated that DLX4 promoted NPC progression via up-regulation of YB-1, which would shed light on therapeutic schedule in NPC.
Collapse
Affiliation(s)
- Zeyi Ling
- Department of Otolaryngology Head and neck surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| | - Xiaoli Long
- Department of Geriatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| | - Jie Li
- Department of Otolaryngology Head and neck surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| | - Mingliang Feng
- Department of Otolaryngology Head and neck surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
3
|
The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 2018; 516:55-70. [PMID: 29329079 DOI: 10.1016/j.virol.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus LMP1 is an oncoprotein required for immortalizing B lymphocytes and also plays important roles in transforming non-lymphoid tissue. The discovery of LMP1 protein interactions will likely generate targets to treat EBV-associated cancers. Here, we define the broader LMP1 interactome using the recently developed BioID method. Combined with mass spectrometry, we identified over 1000 proteins across seven independent experiments with direct or indirect relationships to LMP1. Pathway analysis suggests that a significant number of the proteins identified are involved in signal transduction and protein or vesicle trafficking. Interestingly, a large number of proteins thought to be important in the formation of exosomes and protein targeting were recognized as probable LMP1 interacting partners, including CD63, syntenin-1, ALIX, TSG101, HRS, CHMPs, and sorting nexins. Therefore, it is likely that LMP1 modifies protein trafficking and exosome biogenesis pathways. In support of this, knock-down of syntenin-1 and ALIX resulted in reduced exosomal LMP1.
Collapse
|
4
|
Chang PY, Huang Y, Hung TY, Chong KY, Chang YS, Chao CCK, Chow KPN. Spontaneous metastases in immunocompetent mice harboring a primary tumor driven by oncogene latent membrane protein 1 from Epstein-Barr virus. Biomed J 2016; 39:261-271. [PMID: 27793268 PMCID: PMC6139811 DOI: 10.1016/j.bj.2015.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023] Open
Abstract
Background In vitro and clinical studies suggest that the oncogene LMP1 (latent membrane protein 1) encoded by Epstein–Barr virus (EBV) plays a role in the development of nasopharyngeal carcinoma (NPC) and the formation of metastases in immunocompetent individuals. However, whether LMP1 itself is sufficient to drive these events in immunocompetent hosts remains elusive due to the lack of appropriate experimental models. The aim of this study was to study LMP1-dependent tumorigenesis and metastasis in BALB/c mice inoculated with BALB/c-3T3 cells expressing N-LMP1 (a Taiwanese NPC variant). Methods Following cancer cell inoculation, metastasis formation was monitored over time using PCR analysis of LMP1 as tumor marker. We also used a luciferase (Luc)-containing N-LMP1 and bioluminescent imaging (BLI) to monitor metastasis formation in a non-invasive manner. Results N-LMP1 appeared early in draining lymph nodes and in various distant organs before the rapid growth of the primary tumor. Lung metastasis was observed by BLI and further confirmed by histological examination. Furthermore, we detected luciferase signals in the lungs, even before the animals were sacrificed. Conclusions Our results demonstrate the high metastatic character of N-LMP1 in immunocompetent hosts. Systemic tumor dissemination occurs even before aggressive tumor growth at the primary site, suggesting that early treatment of primary LMP1-associated tumors and distant micro-metastases is critical to achieve positive results.
Collapse
Affiliation(s)
- Pu-Yuan Chang
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yenlin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tzu-Yuan Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medical Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Kai-Ping N Chow
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Wang Z, Xie J, Yan M, Wang J, Wang X, Zhang J, Zhang Y, Li P, Lei X, Huang Q, Lin S, Guo X, Liu Q. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget 2016; 7:26765-79. [PMID: 27049918 PMCID: PMC5042013 DOI: 10.18632/oncotarget.8503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/30/2016] [Indexed: 12/15/2022] Open
Abstract
Mechanism for the malignant phenotype of nasopharyngeal carcinoma (NPC) remains poorly understood. Epstein-Barr virus (EBV) consistently appears in nearly all malignant NPC patient samples, suggesting the strong etiological link between the malignant phenotype and EBV infection. Here we found that the EBV-encoded latent membrane protein (LMP1) enhanced cell growth, motility, invasion and xenograft tumor growth of NPC. RNA-seq profiling analysis of LMP1-positive NPC patient tissues indicated that widespread gene repression contributed to malignant phenotype of NPC. The transcription factor binding site (TFBS) enrichment analysis indicated a subset of transcription factors including ATOH8, a novel transcript factor which belongs to the basic helix-loop-helix (bHLH) gene family inversely enriched in promoters of up-regulated genes and down-regulated genes. Importantly, the expression of ATOH8 was suppressed in both immortalized normal nasopharyngeal epithelial cells (NPEC) and NPC cells with LMP1 overexpression. The Real-Time PCR and Western Blot assays indicated that ATOH8 decreased expression in NPC cell lines and patient samples. Moreover, by gain- or loss-of-function assays, we demonstrated that ATOH8 inhibition promoted malignant phenotype, whereas ATOH8 restoration reversed malignant phenotype of NPC. Finally, we demonstrated that LMP1 inhibited ATOH8 expression by epigenetically impairing the occupancy of activating H3K4me3 and enhancing the occupancy of repressive H3K27me3 on ATOH8 promoter. Collectively, our study uncovered the occurrence of malignant phenotype of NPC induced by EBV infection and characterized a novel bHLH transcription factor ATOH8 as a new downstream target of LMP1.
Collapse
Affiliation(s)
- Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jiajun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jing Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xi Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yan Zhang
- Yale Stem Cell Center, Department of Genetics, Yale University, New Haven, CT, USA
| | - Pengfei Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinxing Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qitao Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Lun SWM, Cheung ST, Lo KW. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2014; 33:529-38. [PMID: 25223912 PMCID: PMC4244315 DOI: 10.5732/cjc.014.10081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed.
Collapse
Affiliation(s)
- Samantha Wei-Man Lun
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
| | | | | |
Collapse
|
7
|
Sun XJ, Liu H, Zhang P, Zhang XD, Jiang ZW, Jiang CC. miR-10b promotes migration and invasion in nasopharyngeal carcinoma cells. Asian Pac J Cancer Prev 2014; 14:5533-7. [PMID: 24175854 DOI: 10.7314/apjcp.2013.14.9.5533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNA-10b (miR-10b) has been reported to play an important role in some types of cancer, but the effects and possible mechanisms of action of miR-10b in the metastasis of nasopharyngeal carcinoma cells (NPC) have not been explored. The aim of the present study was to investigate the function of miR-10b in nasopharyngeal carcinoma and to determine the molecular mechanisms underlying its action. The MTT assay was used to assess proliferation of CNE-2Z cells. Wound healing and transwell migration assays were applied to assess cell migration and invasion, while and expression of E-cadherin and MMP-9 were detected using Western blot analysis. Real-time PCR was employed to detect the expression of genes related to migration and invasion and the 2-??Ct method was used to calculate the degree of expression. MTT assay showed the expression of miR-10b to have no effect on the proliferation of NPC cell lines. The wound healing assay showed that miR-10b mimics promoted the mobility and invasion of NPC cell lines. Inhibitors of miR-10b reduced the ability of NPC cell lines to migrate and invade. In addition, the expression of genes related to migration and invasion, such as E-cadherin, vimentin, and MMP-9, were confirmed to be different in the CNE-2Z NPC cell line transfected with miR-10b mimics and with miR-10b inhibitors. In the present study, miR-10b was found to upregulate the expression of MMP-9 and knockdown of miR-10b was found to significantly downregulate the expression of E-cadherin. On the whole, these results showed that miR-10b plays an important role in the invasion and metastasis of NPC cells.
Collapse
Affiliation(s)
- Xiao-Jin Sun
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China E-mail : ,
| | | | | | | | | | | |
Collapse
|
8
|
Zhou D, Jiang X, Ding W, Zheng L, Yang L, Zheng C, Lu L. siRNA-participated chemotherapy: an efficient and specific therapeutic against gastric cancer. J Cancer Res Clin Oncol 2013; 139:2057-70. [PMID: 24077839 DOI: 10.1007/s00432-013-1492-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE This study aims to investigate the role of siRNA silencing fibroblast growth factor receptor (FGFR) expression in promoting chemotherapy effect of gastric cancer and to explore its mechanism. METHODS Human gastric cancer cells MGC80-3 were divided into four groups: control group, cisplatin group (2 μg/L), cisplatin (2 μg/L) + siRNA group and siRNA group. The expressions of FGFR in four groups were detected by immunofluorescence. The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. The protein expression levels of vascular endothelial growth factor receptor (VEGFR), caspase-3 and Bax were detected by Western blot. Further, animal model of gastric cancer was established and divided into four groups as in vitro experiment. The expression of FGFR mRNA in tumor tissue was detected by the real-time fluorescence quantitative polymerase chain reaction. The size of tumor was measured to analyze the effects of treatment. Histopathological detections were performed by hematoxylin and eosin staining and immunohistochemistry. RESULTS For in vitro experiment, significant decrease inFGFR expression, inhibition of proliferation and promotion of apoptosis were observed in siRNA-treated cells, so as cisplatin group. siRNA also resulted in the reduction of VEGFR and rise in apoptosis-related protein (caspase-3). As for the experiment in vivo, siRNA also suppressed the expression of FGFR and enhanced tumor shrink. Furthermore, the co-administration of siRNA and cisplatin revealed a more excellent antitumor effect than other therapies. CONCLUSIONS siRNA can effectively suppress FGFR expression and cell proliferation, but promote apoptosis in vitro and also inhibit tumor growth and FGFR production in vivo. siRNA-participated chemotherapy may provide an efficient therapeutic approach to treat gastric cancer.
Collapse
Affiliation(s)
- Donglei Zhou
- General Surgery Department, The Tenth People's Hospital Affiliated to Tongji University, No. 301 Yanchang Middle Road, Zhabei District, Shanghai 200072, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Ma X, Xu Z, Yang L, Xiao L, Tang M, Lu J, Xu S, Tang Y, Wen X, Deng X, Sun L, Cao Y. EBV-LMP1-targeted DNAzyme induces DNA damage and causes cell cycle arrest in LMP1-positive nasopharyngeal carcinoma cells. Int J Oncol 2013; 43:1541-1548. [PMID: 24042231 DOI: 10.3892/ijo.2013.2098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/23/2013] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine the molecular mechanisms underlying the effect of the LMP1-targeted DNAzyme 1 (DZ1) on cell cycle progression in nasopharyngeal carcinoma (NPC) cells. We showed that the active DZ1 inhibited the expression of latent membrane protein 1 (LMP1) and induced a G1 phase arrest. In addition, this cell cycle deregulation was shown to be accompanied by upregulation of the DNA damage marker γ-H2AX, downregulation of the DNA damage response factor p-p53-Ser15 and cell proliferation inhibition. To investigate what affected the cell cycle progression, we examined the expression of two checkpoint-related cyclins and cyclin-dependent kinases (CDKs). We found a decrease of cyclin D1 and cyclin E protein levels at 24 h from the DZ1 treatment. Moreover, we observed inhibition of CDK4 activity and decreased cyclin D1 expression in the complexes immunoprecipitated with CDK4 antibody. We also found a reduction in cdc2 phosphorylation at Thr161 which partially stands for the cdc2 kinase activity in DZ1-treated CNE1-LMP1 cells, although the downregulation of LMP1 expression had no effect on the cyclin B1 and cdc2 expression. Further, we analyzed changes in cdc2 kinase activity induced by DZ1 and found that the downregulation of the LMP1 expression resulted in a 5-fold reduction in cdc2 kinase activity in CNE1-LMP1. The data suggest that the downregulation of the LMP1 expression by DZ1 was able to induce DNA damage, which then further inhibited the cell proliferation and resulted in malfunction of cell cycle checkpoints that led to G1 phase arrest and the decrease in number of cells in G2/M phase.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Infection of Epstein-Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc Natl Acad Sci U S A 2012; 109:9593-8. [PMID: 22647604 DOI: 10.1073/pnas.1202910109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Latent infection of EBV is linked to the development of multiple cancers that have distinct patterns of expression of viral proteins and microRNAs (miRNAs). In this study, we show that in vitro infection of a gastric epithelial cell line with EBV alters growth properties and induces growth in soft agar. The infected cells have high levels of expression of a large cluster of viral miRNAs, [the BamHI A rightward transcript (BART) miRNAs] and limited viral protein expression. Expression profile microarray analysis of this cell line revealed a large number of changes in cellular expression, with decreased expression of many genes. Inhibition of the trace-expressed levels of the viral oncoprotein, latent membrane protein 1, did not affect growth or alter the pattern of cellular expression. The expression changes are highly enriched for genes involved in cell motility and transformation pathways, suggesting these changes are important for the altered growth phenotype. Importantly, the transcripts decreased by microarray are significantly enriched in both experimentally and bioinformatically predicted BART miRNA targets. The absence of viral protein expression and the enrichment for viral miRNA targets in the modulated cell genes suggest that the BART miRNAs are major contributors to the transformed growth properties of the EBV-infected cells. The ability to affect cell growth through miRNA expression without viral protein expression would be a major factor in the development of cancer in individuals with functional immune systems.
Collapse
|
11
|
Tominaga M, Nakano A. Plant-Specific Myosin XI, a Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2012; 3:211. [PMID: 22973289 PMCID: PMC3437519 DOI: 10.3389/fpls.2012.00211] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/21/2012] [Indexed: 05/04/2023]
Abstract
In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin-myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear. To achieve a better understanding of the plant-specific actin-myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana. Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation.
Collapse
Affiliation(s)
- Motoki Tominaga
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
- Japan Science and Technology Agency, PRESTOKawaguchi, Saitama, Japan
- *Correspondence: Motoki Tominaga, Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| | - Akihiko Nakano
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, University of TokyoBunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Saha A, Robertson ES. Epstein-Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. Clin Cancer Res 2011; 17:3056-63. [PMID: 21372216 DOI: 10.1158/1078-0432.ccr-10-2578] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that establishes a life-long asymptomatic infection in immunocompetent hosts. It is also found to be frequently associated with a broad spectrum of B-cell lymphomas predominantly seen in immunodeficient patients. Despite many resemblances, these EBV-linked lymphoproliferative disorders display heterogeneity at the clinical and the molecular level. Moreover, EBV-associated lymphoproliferative diseases differ in their differential expression patterns of the EBV-encoded latent antigens, which are directly related to their interactions with the host. EBV-driven primary B-cell immortalization is linked to the cooperative functions of these latent proteins, which are critical for perturbing many important cell-signaling pathways maintaining B-cell proliferation. Additionally, it is used as a surrogate model to explore the underlying mechanisms involved in the development of B-cell neoplasms. Recent discoveries have revealed that a number of sophisticated mechanisms are exploited by EBV during cancer progression. This finding will be instrumental in the design of novel approaches for therapeutic interventions against EBV-associated B-cell lymphomas. This review limits the discussion to the biology and pathogenesis of EBV-associated B-cell lymphomas and the related clinical implications.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology Program, Abramson, Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
13
|
Ke X, Yang YC, Hong SL. EBV-LMP1-targeted DNAzyme restrains nasopharyngeal carcinoma growth in a mouse C666-1 xenograft model. Med Oncol 2010; 28 Suppl 1:S326-32. [DOI: 10.1007/s12032-010-9681-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/06/2010] [Indexed: 12/11/2022]
|
14
|
Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, Pan Q, He ML, Li XP. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett 2010; 299:29-36. [PMID: 20732742 DOI: 10.1016/j.canlet.2010.07.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 11/24/2022]
Abstract
MicroRNA-10b (miR-10b) has been reported to facilitate the metastasis of breast cancer. However, little is known about the role of miR-10b in the metastasis of nasopharyngeal carcinoma (NPC). Here, we show that high levels of miR-10b expression in Epstein-Barr virus (EBV)-positive latent membrane protein-1 (LMP1)-expressing NPC cells, and its expression is down-regulated by silencing LMP1 or Twist. Induction of miR-10b over-expression in LMP1-silent C666-1 cells promoted significant wound healing and transmembrane invasiveness in vitro. More importantly, miR-10b over-expression promoted the metastasis of NPC and accelerated the death of tumor-bearing nude mice. These findings strongly suggest that miR-10b positively regulates the metastasis of NPC.
Collapse
Affiliation(s)
- Gang Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shen CX, Wen Z, Qian YH, Mu SF, Guan XF. Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:94. [PMID: 20626878 PMCID: PMC2917418 DOI: 10.1186/1756-9966-29-94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/13/2010] [Indexed: 12/11/2022]
Abstract
Background/Aim To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV). Materials/Methods Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology. Results Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney. Conclusion The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.
Collapse
Affiliation(s)
- Cong-Xiang Shen
- Otolaryngology-Head & Neck Surgery, Zhujiang Hospital, The Southern Medical University, Guangzhou 510282, China
| | | | | | | | | |
Collapse
|
16
|
Morris MA, Dawson CW, Young LS. Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Future Oncol 2010; 5:811-25. [PMID: 19663731 DOI: 10.2217/fon.09.53] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although frequently expressed in Epstein-Barr virus (EBV)-positive malignancies, the contribution of the oncogenic latent membrane protein-1 (LMP1) to the pathogenesis of nasopharyngeal carcinoma remains to be fully defined. As a key effector in EBV-driven B-cell transformation in vitro, LMP1 also displays oncogenic properties in rodent fibroblasts, and exhibits similar effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a plethora of signaling pathways including: NF-kappaB, JNK/p38 (SAPK), PI3-kinase and ERK-MPK. The constitutive activation of these pathways appears central in the ability of LMP1 to induce multiple morphological and phenotypic alterations. Here we review the effects of LMP1 on epithelial cell growth transformation, and its putative role in the pathogenesis of nasopharyngeal carcinoma, focusing on key areas of proliferation, survival, cell motility and invasion.
Collapse
Affiliation(s)
- Mhairi A Morris
- Cancer Research UK Institute for Cancer Studies, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
17
|
Xia H, Ng SS, Jiang S, Cheung WKC, Sze J, Bian XW, Kung HF, Lin MC. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun 2009; 391:535-41. [PMID: 19931509 DOI: 10.1016/j.bbrc.2009.11.093] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 01/01/2023]
Abstract
Nasopharyngeal carcinoma (NPC), a highly metastatic and invasive malignant tumor originating from the nasopharynx, is widely prevalent in Southeast Asia, the Middle East and North Africa. Although viral, dietary and genetic factors have been implicated in NPC, the molecular basis of its pathogenesis is not well defined. Based on a recent microRNA (miRNA) microarray study showing miR-200 downregulation in NPC, we further investigated the role of miR-200a in NPC carcinogenesis. We found that the endogenous miR-200a expression level increases with the degree of differentiation in a panel of NPC cell lines, namely undifferentiated C666-1, high-differentiated CNE-1, and low-differentiated CNE-2 and HNE1 cells. By a series of gain-of-function and loss-of-function studies, we showed that over-expression of miR-200a inhibits C666-1 cell growth, migration and invasion, whereas its knock-down stimulates these processes in CNE-1 cells. In addition, we further identified ZEB2 and CTNNB1 as the functional downstream targets of miR-200a. Interestingly, knock-down of ZEB2 solely impeded NPC cell migration and invasion, whereas CTNNB1 suppression only inhibited NPC cell growth, suggesting that the inhibitory effects of miR-200a on NPC cell growth, migration and invasion are mediated by distinct targets and pathways. Our results reveal the important role of miR-200a as a regulatory factor of NPC carcinogenesis and a potential candidate for miRNA-based therapy against NPC.
Collapse
Affiliation(s)
- Hongping Xia
- Integrative Chemical Biology Laboratory, Institute of Molecular Technology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Larrat S, Morand P, Bas A, Vigne S, Crance JM, Boyer V, Nicod S, Grossi L, Buisson M, Burmeister WP, Seigneurin JM, Germi R. Inhibition of Epstein–Barr virus replication by small interfering RNA targeting the Epstein–Barr virus protease gene. Antivir Ther 2009. [DOI: 10.1177/135965350901400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The Epstein–Barr virus (EBV) protease (PR), coded by the BVRF2 gene, is essential for the maturation of the viral capsid and viral DNA packaging during the late stage of the EBV lytic cycle. Like the other herpesvirus serine PRs, EBV PR could be a target for the inhibition of EBV replication. To date, no data have been reported on the inhibition of EBV PR messenger RNA (mRNA) by small interfering RNA (siRNA). Methods In this study, siRNAs targeting EBV PR were delivered to the epithelial 293 cell line stably transfected with the complete B95-8 EBV episome. EBV DNA and PR mRNA were quantified by real-time PCR in cells and supernatant, protein expression was assessed by immunoblotting, and production of EBV infectious particles in the culture medium was measured by Raji cell superinfection. Results The EBV PR mRNA within the cells was reduced by 73%, the PR protein by 35% and the amount of virus in the cell supernatant was drastically decreased by 86% or 95%, depending on the method. Conclusions The strong effect of the siRNA targeting EBV PR on EBV replication attests to the crucial role played by EBV PR in the production of infectious particles and suggests that targeting this enzyme can be a new strategy against EBV-associated diseases where virus replication occurs.
Collapse
Affiliation(s)
- Sylvie Larrat
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Patrice Morand
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Ariane Bas
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Solenne Vigne
- Unité de Virologie, Centre de Recherches du Service de Santé des Armées, Grenoble, France
| | - Jean-Marc Crance
- Unité de Virologie, Centre de Recherches du Service de Santé des Armées, Grenoble, France
| | - Véronique Boyer
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Sandrine Nicod
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Laurence Grossi
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Marlyse Buisson
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Wim P Burmeister
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Jean-Marie Seigneurin
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Raphaële Germi
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| |
Collapse
|
19
|
Oh ST, Kim M, Lee SK. Maintenance of the viral episome is essential for the cell survival of an Epstein-Barr virus positive gastric carcinoma cell line. Arch Pharm Res 2009; 32:729-36. [PMID: 19471888 DOI: 10.1007/s12272-009-1512-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/17/2009] [Accepted: 03/27/2009] [Indexed: 12/14/2022]
Abstract
While Epstein Barr virus (EBV) is associated with about 10% of gastric carcinomas worldwide, the role of the virus in the tumorigenesis of EBV-associated gastric carcinoma (EBVaGC) is unclear. Previously, we reported that a gastric cancer cell line, SNU-719, that is naturally infected with EBV closely resembles EBVaGC. Here, we attempted to eliminate the EBV genome from SNU-719 cells to ascertain the influence of EBV in EBVaGC. Southern blotting and fluorescence in situ hybridization (FISH) showed that EBV genomes were maintained as episomes in SNU-719 cells. To remove EBV episomes, SNU-719 cells were first cultured in a hydroxyurea (HU)-containing medium for up to 6 months. Real-time polymerase chain reaction and FISH results revealed no evidence of HU-mediated EBV genome reduction, although cell growth was reduced by acute HU treatment in dose- and time-dependent manners. Two small interfering RNAs against Epstein Barr nuclear antigen 1 (EBNA1) abrogated over 90% of the ectopic EBNA1 expression in HeLa cells, but only 40% of endogenous EBNA1 expression in SNU-719 cells. Together, our data suggest that maintenance of latent EBV infection is essential for the viability of EBVaGC cells, avoiding elimination of EBV episomes from the cells.
Collapse
Affiliation(s)
- Sang Taek Oh
- Department of Biomedical Sciences, Catholic University of Korea, Seoul, 137-701, Korea
| | | | | |
Collapse
|
20
|
Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 2009; 542:5-54. [PMID: 19565894 DOI: 10.1007/978-1-59745-561-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an "awkward adolescence." Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
21
|
DNAzymes targeted to EBV-encoded latent membrane protein-1 induce apoptosis and enhance radiosensitivity in nasopharyngeal carcinoma. Cancer Lett 2008; 265:226-38. [DOI: 10.1016/j.canlet.2008.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 11/24/2022]
|
22
|
Seto E, Ooka T, Middeldorp J, Takada K. Reconstitution of nasopharyngeal carcinoma-type EBV infection induces tumorigenicity. Cancer Res 2008; 68:1030-6. [PMID: 18281477 DOI: 10.1158/0008-5472.can-07-5252] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several reports have shown that the EBV-encoded BARF1 gene has oncogenic activity. We have recently reported that BARF1 is expressed as a latent gene in most nasopharyngeal carcinomas (NPC), suggesting that BARF1 may have an important role in NPC oncogenesis. However, we found that when the NPC-derived EBV-negative cell lines, HONE-1 and CNE-1, were infected with EBV in vitro, BARF1 was not expressed, although the expression of other latent genes was identical to that of NPC tumors. Therefore, we generated a recombinant EBV (rEBV) carrying the BARF1 gene (BARF1-rEBV) under the SV40 promoter to reconstitute the NPC-type EBV infection. NPC-derived EBV-negative cell lines were stably infected with either a wild-type rEBV (wild-rEBV) or BARF1-rEBV. The resultant BARF1-rEBV-infected NPC cell clones represented NPC-type EBV expression, and BARF1 expression was similar to that observed in NPC tissues. BARF1-rEBV-infected cell clones grew to a higher cell density and were more resistant to apoptosis than wild-rEBV-infected counterparts. BARF1 protein was quickly secreted into the culture medium, and secreted BARF1 contributed to the increase of cell densities in NPC cells, but it had no effect on resistance to apoptosis. Furthermore, BARF1-rEBV-infected cell clones became tumorigenic in nude mice. These results suggest that BARF1 plays an important role in NPC development.
Collapse
Affiliation(s)
- Eri Seto
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
23
|
Dykxhoorn DM, Chowdhury D, Lieberman J. RNA interference and cancer: endogenous pathways and therapeutic approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:299-329. [PMID: 18437900 DOI: 10.1007/978-1-4020-6554-5_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endogenous RNA interference (RNAi) pathway regulates cellular differentiation and development using small noncoding hairpin RNAs, called microRNAs. This chapter will review the link between mammalian microRNAs and genes involved in cellular proliferation, differentiation, and apoptosis. Some microRNAs act as oncogenes or tumor suppressor genes, but the target gene networks they regulate are just beginning to be described. Cancer cells have altered atterns of microRNA expression, which can be used to identify the cell of origin and to subtype cancers. RNAi has also been used to identify novel genes involved in cellular transformation using forward genetic screening methods previously only possible in invertebrates. Possible strategies and obstacles to harnessing RNAi for cancer therapy will also be discussed.
Collapse
Affiliation(s)
- Derek M Dykxhoorn
- Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Lee DCW, Chua DTT, Wei WI, Sham JST, Lau ASY. Induction of matrix metalloproteinases by Epstein–Barr virus latent membrane protein 1 isolated from nasopharyngeal carcinoma. Biomed Pharmacother 2007; 61:520-6. [PMID: 17913445 DOI: 10.1016/j.biopha.2007.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Epstein--Barr virus latent infection is associated with human malignancies including Burkitt's lymphoma, gastric carcinoma and the highly invasive nasopharyngeal carcinoma (NPC). Increased expression of EBV latent membrane protein 1, LMP1, is correlated with tumor progression and metastasis in NPC. LMP1 induces cellular proteins including cytokines and matrix metalloproteinases (e.g., MMP1, MMP2 and MMP9). MMPs are endopeptidases involved in the degradation of extracellular matrix proteins; and their upregulation in cancer implicates their potential role in tumor metastasis. In light of the role of LMP1 in cytokine dysregulation and the fact that MMPs are regulated by cytokines, we examined whether LMP1 promotes NPC metastasis via the induction of MMPs. To delineate the oncogenic role of LMP1 in NPC, we first investigated the induction of MMP1, MMP2, MMP3 and MMP9 in LMP1-positive NPC tumor samples (n=15) by quantitative RT-PCR. We showed a significant induction of MMP1 and MMP3 transcripts in the EBV LMP1-positive NPC tissues, compared with biopsies obtained from the adjacent non-tumor tissues. To investigate the role of LMP1 in MMP expression in NPC, we cloned the LMP1 gene from NPC samples and transiently expressed it in MRC5 cells (human lung fibroblasts). Following transfection, a time-dependent elevation of endogenous MMP3 expression was found in the LMP1-transfectants by quantitative RT-PCR and Western analysis. Taken together, we observed that MMP3 is upregulated in LMP1-positive NPC tumors and LMP1-expression in fibroblasts is associated with MMP3 and cytokine expression. Our results suggest that LMP1 may contribute to invasiveness of NPC cells via the expression of MMP3 in fibroblasts.
Collapse
Affiliation(s)
- D C W Lee
- Immunology Research Laboratory, Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | | | | | | | | |
Collapse
|
25
|
Mroz EA, Rocco JW. RNA interference: Natural, experimental, and clinical roles in cancer biology. Head Neck 2006; 28:1132-41. [PMID: 16823868 DOI: 10.1002/hed.20439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The old idea of using antisense RNA to block messenger RNA has recently led to powerful new techniques for knocking down expression of individual protein-coding genes. The simplicity and general applicability of these new methods for RNA interference (RNAi) have turned them into fundamental tools in molecular and cellular biology, with more than 5000 publications using them during the few years since they were developed. These experimental methods are now known to exploit fundamental cellular processes that regulate differentiation via genomically encoded RNAi sequences known as microRNAs (miRNAs); changes in endogenous microRNA regulation have now been implicated in oncogenesis. Clinical trials based on local delivery of interfering RNA have already begun. More general methods for safe and effective delivery of interfering RNA to intact organisms are being developed, which could open the way to widespread clinical applications. Because RNAi can provide selective knockdown of almost any protein, it may soon provide an approach to individualized cancer therapy.
Collapse
Affiliation(s)
- Edmund A Mroz
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114, USA
| | | |
Collapse
|
26
|
Li XP, Li CYS, Li X, Ding Y, Chan LLY, Yang PH, Li G, Liu X, Lin JS, Wang J, He M, Kung HF, Lin MC, Peng Y. Inhibition of human nasopharyngeal carcinoma growth and metastasis in mice by adenovirus-associated virus–mediated expression of human endostatin. Mol Cancer Ther 2006; 5:1290-8. [PMID: 16731762 DOI: 10.1158/1535-7163.mct-05-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly malignant and frequently metastasized tumor. Endostatin has been shown to inhibit NPC growth, but its efficacy against NPC metastasis has not been shown in vivo. Here, we established a NPC metastasis model in mice by transplanting EBV-positive NPC cells, C666-1, in the livers of nude mice and observed lung metastasis. Furthermore, we showed that tail vein injection of recombinant adeno-associated virus encoding human endostatin (rAAV-hEndo) significantly prolonged the median survival rate of NPC metastasis-bearing mice (from 22 to 37 days, P < 0.01). The rAAV-hEndo treatment resulted in a statistically significant reduction in tumor growth and microvessel formation. It also increased the apoptotic index in the primary liver tumor but not in the normal liver tissue. Importantly, no formation of liver or lung metastasis was detected. The potent inhibition of NPC metastasis suggests the feasibility of combining rAAV-hEndo gene therapy with other therapies for the prevention and treatment of NPC metastasis.
Collapse
Affiliation(s)
- Xiang-Ping Li
- Department of Chemistry, 8/F Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Imai S, Kuroda M, Yamashita R, Ishiura Y. [Therapeutic inhibition of Epstein-Barr virus-associated tumor cell growth by dominant-negative EBNA1]. Uirusu 2006; 55:239-49. [PMID: 16557009 DOI: 10.2222/jsv.55.239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1), a latent viral protein consistently expressed in infected proliferating cells, is essentially required in trans to maintain EBV episomes in cells. Thus EBNA1 will be an appropriate target for specific molecular therapy against EBV-associated cancers. We constructed a mutant (mt) EBNA1 lacking the N-terminal-half, relative to wild-type (wt) EBNA1, and demonstrated that it exerted dominant-negative effects on maintenance of the viral episome from cells regardless of viral latency or tissue origin thereby leading to significant suppression of naturally EBV-harboring Burkitt's lymphoma cell growth in vitro and in vivo. Our mutant can act as dominant-negative (dn) EBNA1 and will afford an additional therapeutic strategy specifically targeting EBV-associated malignancies. The similar approach can be applicable to exploit novel remedial protocols against uncontrollable diseases caused by other persistently-infected viruses. In addition, dnEBNA1 may also provide a useful analytical tool for the possible oncogenic function(s) of wtEBNA1.
Collapse
Affiliation(s)
- Shosuke Imai
- Department of Molecular Microbiology and Infections, Kochi Medical School, Nankoku, Kochi, Japan.
| | | | | | | |
Collapse
|
28
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
29
|
Mei YP, Zhu XF, Zhou JM, Huang H, Deng R, Zeng YX. siRNA targeting LMP1-induced apoptosis in EBV-positive lymphoma cells is associated with inhibition of telomerase activity and expression. Cancer Lett 2006; 232:189-98. [PMID: 16458115 DOI: 10.1016/j.canlet.2005.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/12/2005] [Indexed: 11/22/2022]
Abstract
Epstein-Barr Virus (EBV) is closely associated with B cell malignancies. However, whether EBV appears to be absolutely required for cell proliferation and survival in lymphoma cells is still unknown. In this study, small interfering RNA (siRNA) targeting LMP1 was employed to investigate the effect of LMP1 on cell proliferation in EBV-positive lymphoblastoid B-cell line. A plasmid stable encoding 21-nt small RNA specifically and efficiently interfering LMP1 was constructed, resulting in a substantial loss of LMP1 mRNA and a significantly decreased LMP1 protein expression. Our data demonstrated that cell proliferation was completely inhibited and apoptosis was induced after knockdown of LMP1 gene in lymphoblastoid B-cell line. Also, we found that suppression of LMP1 caused downregulation of telomerase protein expression and decreased telomerase activity in lymphoma cells. In EBV-negative NPC cell line, transfection of plasmid expressing LMP1 greatly enhanced telomerase protein expression. Our results suggested that siRNA targeting LMP1 can induce apoptosis in EBV-positive lymphoma cells and is associated with inhibition of telomerase activity and expression. siRNA-directed LMP1 silencing may be of the therapeutic value for preventing and treating those EBV-associated tumors.
Collapse
Affiliation(s)
- Yu-Ping Mei
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, 651 DongFeng Road East, GuangZhou 510060, China
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The availability of the human genome sequence has revolutionized the strategy of employing nucleic acids with sequences complementary to specific target genes to improve drug discovery and target validation. Development of sequence-specific DNA or RNA analogs that can block the activity of selected single-stranded genetic sequences offers the possibility of rational design with high specificity, lacking in many current drug treatments for various diseases including cancer, at relatively inexpensive costs. Antisense technology is one such example that has shown promising results and boasts of yielding the only approved drug to date in the genomics field. However, in vivo delivery issues have yet to be completely overcome for widespread clinical applications. In contrast to antisense oligonucleotides, the mechanism of silencing an endogenous gene by the introduction of a homologous double-stranded RNA (dsRNA), transgene or virus is called post-transcriptional gene silencing (PTGS) or RNA interference. PTGS is a natural mechanism whereby metazoan cells suppress expansion of genes when they come across dsRNA molecules with the same sequence. Short interfering RNA is currently the fastest growing sector of this antigene field for target validation and therapeutic applications. Although, in theory, the development of genomics-based agents to inhibit gene expression is simple and straightforward, the fundamental concern relies upon the capacity of the oligonucleotide to gain access to the target RNA. This paper summarizes the advances in the last decade in the field of PTGS using RNA interference approaches and provides relevant comparisons with other oligonucleotide-based approaches with a specific focus on oncology applications.
Collapse
Affiliation(s)
- G R Devi
- Comprehensive Cancer Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Hong M, Murai Y, Kutsuna T, Takahashi H, Nomoto K, Cheng CM, Ishizawa S, Zhao QL, Ogawa R, Harmon BV, Tsuneyama K, Takano Y. Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 2005; 132:1-8. [PMID: 16180023 DOI: 10.1007/s00432-005-0036-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/22/2005] [Indexed: 12/19/2022]
Abstract
PURPOSE Epstein-Barr virus (EBV) is associated with the development of several lymphoid and epithelial malignancies, including Burkitt's lymphoma. The EBV latent protein, EBV Nuclear Antigen 1 (EBNA1), is detectable in almost all types of EBV-associated tumors and is essential for replication and maintenance of the latent episome of EBV. We here examined whether the RNA interference (RNAi) technique could be employed to suppress expression of EBNA1 in EBV-positive Burkitt's lymphoma cells. METHODS A Raji cell line expressing small hairpin RNAs (shRNAs) against EBNA1 was established and EBNA1 mRNA level was determined by real-time RT-PCR analysis. We investigated the effects of EBNA1 silence on lymphoma cell growth and cell cycle progression. RESULTS Transfection of an EBNA1 RNAi plasmid resulted in substantial loss of EBNA1 mRNA and significantly inhibited proliferation of Raji cells relative to the control plasmid case. Suppression of EBNA1 was also associated with downregulation of EBV oncogene EBNA2, a decreased PCNA labeling index and increased G0/G1 fraction in cell cycle analysis. CONCLUSIONS These findings point to potential therapeutic applications for vector-mediated siRNA delivery to control EBV-associated malignant disorders.
Collapse
Affiliation(s)
- Mei Hong
- Department of Pathology, School of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang N, Wu QL, Fang Y, Mai HQ, Zeng MS, Shen GP, Hou JH, Zeng YX. Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: pattern of expression and correlation with clinical outcome. J Transl Med 2005; 3:26. [PMID: 15978137 PMCID: PMC1188078 DOI: 10.1186/1479-5876-3-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 06/26/2005] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor derived from epithelial cells and Epstein-Barr virus infection has been reported to be a cause of this disease. Chemokine receptor CXCR4 was found to be involved in HIV infection and was highly expressed in human malignant breast tumors and the ligand for CXCR4, CXCL12 (SDF-1), exhibited high expression in organs in which breast cancer metastases are often found. The metastatic pattern of NPC is quite similar to that of malignant breast tumors. In this study, we investigated the expression of CXCR4 in nasopharyngeal carcinoma (NPC) tissues by immunohistostaining. We found different staining patterns, which included localization in the nucleus, membrane, cytoplasm or a combination of them. The staining intensity was also variable among samples. The metastatic rates in patients with high compared to low or absent expression was 38.6% versus 19.8%, respectively (P = 0.004). High expression of CXCR4 was associated with poor overall survival (OS = 67.05% versus 82.08%, P = 0.0225). These results suggest that CXCR4 may be involved in the progression of NPC and that a high level of CXCR4 expression could be used as a prognostic factor.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiu-Liang Wu
- State Key Laboratory of Oncology in Southern China
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yan Fang
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in Southern China
- Department of Nasopharyngeal Carcinoma, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Guo-Ping Shen
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing-Hui Hou
- State Key Laboratory of Oncology in Southern China
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
33
|
Abstract
RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells. RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently, small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.
Collapse
Affiliation(s)
- Fischer L TAN
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101 China
| | - James Q YIN
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101 China
| |
Collapse
|
34
|
Dillon CP, Sandy P, Nencioni A, Kissler S, Rubinson DA, Van Parijs L. Rnai as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2005; 67:147-73. [PMID: 15709955 DOI: 10.1146/annurev.physiol.67.040403.130716] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past four years RNA interference (RNAi) has exploded onto the research scene as a new approach to manipulate gene expression in mammalian systems. More recently, RNAi has garnered much interest as a potential therapeutic strategy. In this review, we briefly summarize the current understanding of RNAi biology and examine how RNAi has been used to study the genetic basis of physiological and disease processes in mammalian systems. We also explore some of the new developments in the use of RNAi for disease therapy and highlight the key challenges that currently limit its application in the laboratory, as well as in the clinical setting.
Collapse
Affiliation(s)
- Christopher P Dillon
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C. Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 2005; 105:2510-8. [PMID: 15572586 DOI: 10.1182/blood-2004-08-3052] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWe use lentiviral-delivered RNA interference (RNAi) to inhibit the growth of a model of primary effusion lymphoma (PEL) in vitro and in vivo. RNAi is a phenomenon allowing the sequence-specific targeting and silencing of exogenous and endogenous gene expression and is being applied to inhibit viral replication both in vitro and in vivo. We show that silencing of genes believed to be essential for the Kaposi sarcoma-associated herpesvirus (KSHV) latent life cycle (the oncogenic cluster) has a varied effect in PEL cell lines cultured in vitro, however, concomitant silencing of the viral cyclin (vcyclin) and viral FLICE (Fas-associating protein with death domain-like interleukin-1β-converting enzyme) inhibitory protein (vFLIP) caused efficient apoptosis in all PEL lines tested. We demonstrate that in a murine model of PEL, lentiviral-mediated RNA interference both inhibits development of ascites and can act as a treatment for established ascites. We also show that the administered lentiviral vectors are essentially limited to the peritoneal cavity, which has advantages for safety and dosage in a therapeutic setting. This shows the use of lentiviral-mediated RNA interference in vivo as a potential therapeutic against a virally driven human cancer.
Collapse
Affiliation(s)
- Andrew Godfrey
- Cancer Research United Kingdom Viral Oncology Group, Wolfson Institute for Biomedical Research, UCL, Gower Street, London, United Kingdom WC1E 6BT
| | | | | | | | | |
Collapse
|
36
|
Abstract
Inhibition of growth and progression of cancer cells is a challenge with major potential impact. RNA interference (RNAi) technology has been rapidly developed as a laboratory tool for the downregulation of the expression of a gene of interest. Moreover, RNAi offers a new potential for gene therapy of particular neoplasms by the specific inhibition of a cancer-associated target. This article will briefly describe the mechanism and application possibilities of RNAi, and illustrate the therapeutic potential in cancer gene therapy. The utilization of RNAi technology as a potential therapeutic tool for the treatment of cancer will be discussed in detail for two specific targets; the Bcr-Abl tyrosine kinase and the multidrug transporter MDR1/P-glycoprotein.
Collapse
Affiliation(s)
- Hermann Lage
- Charité Campus Mitte, Institute of Pathology, For-schumannstr. 20/21 D-10117 Berlin, Germany
| |
Collapse
|
37
|
Busson P, Keryer C, Ooka T, Corbex M. EBV-associated nasopharyngeal carcinomas: from epidemiology to virus-targeting strategies. Trends Microbiol 2004; 12:356-60. [PMID: 15276610 DOI: 10.1016/j.tim.2004.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nasopharyngeal carcinoma is a human malignancy consistently associated with the Epstein-Barr virus. Exposure to non-viral carcinogens and genetic predisposition are other crucial etiologic factors. Tumor development appears to require the expression of a small subset of transforming viral RNAs and proteins with concomitant silencing of most other viral genes. Impairment of the interactions of viral proteins with cellular partners or disruption of viral latency might prove to be useful for novel therapeutic strategies.
Collapse
Affiliation(s)
- Pierre Busson
- UMR 8126, CNRS and Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France.
| | | | | | | |
Collapse
|