1
|
Guo N, Luo Q, Zheng Q, Yang S, Zhang S. Current status and progress of research on the ADP-dependent glucokinase gene. Front Oncol 2024; 14:1358904. [PMID: 38590647 PMCID: PMC10999526 DOI: 10.3389/fonc.2024.1358904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 04/10/2024] Open
Abstract
ADP-dependent glucokinase (ADPGK) produces glucose-6-phosphate with adenosine diphosphate (ADP) as the phosphate group donor, in contrast to ATP-dependent hexokinases (HKs). Originally found in archaea, ADPGK is involved in glycolysis. However, its biological function in most eukaryotic organisms is still unclear, and the molecular mechanism of action requires further investigation. This paper provides a concise overview of ADPGK's origin, biological function and clinical application. It aims to furnish scientific information for the diagnosis and treatment of human metabolic diseases, neurological disorders, and malignant tumours, and to suggest new strategies for the development of targeted drugs.
Collapse
Affiliation(s)
- Ningjing Guo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qixian Zheng
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Kamiński MM. ADP-dependent glucokinase: the ancient, archaeal key to prostate cancer. Mil Med Res 2024; 11:10. [PMID: 38342920 PMCID: PMC10860298 DOI: 10.1186/s40779-024-00514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Affiliation(s)
- Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Xu H, Li YF, Yi XYL, Zheng XN, Yang Y, Wang Y, Liao DZ, Zhang JP, Tan P, Xiong XY, Jin X, Gong LN, Qiu S, Cao DH, Li H, Wei Q, Yang L, Ai JZ. ADP-dependent glucokinase controls metabolic fitness in prostate cancer progression. Mil Med Res 2023; 10:64. [PMID: 38082365 PMCID: PMC10714548 DOI: 10.1186/s40779-023-00500-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cell metabolism plays a pivotal role in tumor progression, and targeting cancer metabolism might effectively kill cancer cells. We aimed to investigate the role of hexokinases in prostate cancer (PCa) and identify a crucial target for PCa treatment. METHODS The Cancer Genome Atlas (TCGA) database, online tools and clinical samples were used to assess the expression and prognostic role of ADP-dependent glucokinase (ADPGK) in PCa. The effect of ADPGK expression on PCa cell malignant phenotypes was validated in vitro and in vivo. Quantitative proteomics, metabolomics, and extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) tests were performed to evaluate the impact of ADPGK on PCa metabolism. The underlying mechanisms were explored through ADPGK overexpression and knockdown, co-immunoprecipitation (Co-IP), ECAR analysis and cell counting kit-8 (CCK-8) assays. RESULTS ADPGK was the only glucokinase that was both upregulated and predicted worse overall survival (OS) in prostate adenocarcinoma (PRAD). Clinical sample analysis demonstrated that ADPGK was markedly upregulated in PCa tissues vs. non-PCa tissues. High ADPGK expression indicates worse survival outcomes, and ADPGK serves as an independent factor of biochemical recurrence. In vitro and in vivo experiments showed that ADPGK overexpression promoted PCa cell proliferation and migration, and ADPGK inhibition suppressed malignant phenotypes. Metabolomics, proteomics, and ECAR and OCR tests revealed that ADPGK significantly accelerated glycolysis in PCa. Mechanistically, ADPGK binds aldolase C (ALDOC) to promote glycolysis via AMP-activated protein kinase (AMPK) phosphorylation. ALDOC was positively correlated with ADPGK, and high ALDOC expression was associated with worse survival outcomes in PCa. CONCLUSIONS In summary, ADPGK is a driving factor in PCa progression, and its high expression contributes to a poor prognosis in PCa patients. ADPGK accelerates PCa glycolysis and progression by activating ALDOC-AMPK signaling, suggesting that ADPGK might be an effective target and marker for PCa treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Fan Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xian-Yan-Ling Yi
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Nan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Da-Zhou Liao
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing-Yu Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Jin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Na Gong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Hong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jian-Zhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Herrera-Morandé A, Vallejos-Baccelliere G, Cea PA, Zamora RA, Cid D, Maturana P, González-Ordenes F, Castro-Fernández V, Guixé V. Kinetic characterization and phylogenetic analysis of human ADP-dependent glucokinase reveal new insights into its regulatory properties. Arch Biochem Biophys 2023; 741:109602. [PMID: 37084804 DOI: 10.1016/j.abb.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Although ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form. The truncated form revealed no significant impact on the kinetic parameters, showing only a slight increase in the Vmax value, higher metal promiscuity, and the same nucleotide specificity as the full-length enzyme. hADP-GK presents an ordered sequential kinetic mechanism in which MgADP is the first substrate to bind and AMP is the last product released, being the same mechanism described for archaeal ADP-dependent sugar kinases, in agreement with the protein topology. Substrate inhibition by glucose was observed due to sugar binding to nonproductive species. Although Mg2+ is an essential component for kinase activity, it also behaves as a partial mixed-type inhibitor for hADP-GK, mainly by decreasing the MgADP affinity. Regarding its distribution, phylogenetic analysis shows that ADP-GK´s are present in a wide diversity of eukaryotic organisms although it is not ubiquitous. Eukaryotic ADP-GKs sequences cluster into two main groups, showing differences in the highly conserved sugar-binding motif reported for archaeal enzymes [NX(N)XD] where a cysteine residue is found instead of asparagine in a significant number of enzymes. Site directed mutagenesis of the cysteine residue by asparagine produces a 6-fold decrease in Vmax, suggesting a role for this residue in the catalytic process, probably by facilitating the proper orientation of the substrate to be phosphorylated.
Collapse
Affiliation(s)
- Alejandra Herrera-Morandé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Gabriel Vallejos-Baccelliere
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Pablo A Cea
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo A Zamora
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dixon Cid
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Felipe González-Ordenes
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Castro-Fernández
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Wang J, Tian Y, Wei J, Lyu C, Yu H, Song Y. Impacts of dibutyl phthalate on bacterial community composition and carbon and nitrogen metabolic pathways in a municipal wastewater treatment system. ENVIRONMENTAL RESEARCH 2023; 223:115378. [PMID: 36709875 DOI: 10.1016/j.envres.2023.115378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Dibutyl phthalate (DBP) is a typical toxic and hazardous pollutant in pharmaceutical wastewater, affecting the metabolism of microbial flora, leading to decreased treatment efficiency, and deteriorated effluent quality in municipal wastewater treatment plants (WWTPs). This study conducted a long-term experiment with 6 operational stages in a pilot-scale A2O-MBR system, analyzing the effect of DBP on the bacterial community and their carbon and nitrogen metabolic pathways. 16S rRNA gene amplicon sequencing analysis and principal components analysis (PCA) showed that DBP at 8 mg/L significantly influenced the structure of bacterial community (P < 0.05), resulting in reduced bacterial community diversity. Metagenomic analysis was used to explore the embedded carbon and nitrogen metabolic pathways. At the presence of DBP, the metabolism of saccharides, lipids, and aromatic compounds were blocked owing to the vanishment of key enzyme (such as acetylaminohexosyltransferase (EC 2.4.1.92) and UDP-sugar pyro phosphorylase (EC 2.7.7.64)) encoding genes, resulting in weakened carbon metabolism, and thus reduced COD removal performance. The resultant deficiency of the genes such as those encoding hydroxyproline dehydrogenase (EC 1.5.5.3) gave rise to interrupted metabolic pathways of amino acid (arginine, proline, tyrosine, and tryptophan), resulting in declined function of nitrogen metabolism and thus reduced TN removal efficiency. The uncovery of the mechanisms by which DBP affects wastewater treatment system efficiency and microbial metabolism is of theoretical importance for the efficient operation of municipal and pharmaceutical wastewater treatment systems.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yucheng Tian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chunjian Lyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Boschen KE, Steensen MC, Simon JM, Parnell SE. Short-term transcriptomic changes in the mouse neural tube induced by an acute alcohol exposure. Alcohol 2023; 106:1-9. [PMID: 36202274 PMCID: PMC11096843 DOI: 10.1016/j.alcohol.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Alcohol exposure during the formation and closure of the neural tube, or neurulation (embryonic day [E] 8-10 in mice; ∼4th week of human pregnancy), perturbs development of midline brain structures and significantly disrupts gene expression in the rostroventral neural tube (RVNT). Previously, alcohol exposure during neurulation was found to alter gene pathways related to cell proliferation, p53 signaling, ribosome biogenesis, immune signaling, organogenesis, and cell migration 6 or 24 h after administration. Our current study expands upon this work by investigating short-term gene expression changes in the RVNT following a single binge-like alcohol exposure during neurulation. Female C57BL/6J mice were administered a single dose of 2.9 g/kg alcohol or vehicle on E9.0 to target mid-neurulation. The RVNTs of stage-matched embryos were collected 2 or 4 h after exposure and processed for RNA-seq. Functional profiling was performed with g:Profiler, as well as with the CiliaCarta and DisGeNet databases. Two hours following E9.0 alcohol exposure, 650 genes in the RVNT were differentially expressed. Functional enrichment analysis revealed that pathways related to cellular metabolism, gene expression, cell cycle, organogenesis, and Hedgehog signaling were down-regulated, and pathways related to cellular stress response, p53 signaling, and hypoxia were up-regulated by alcohol. Four hours after alcohol exposure, 225 genes were differentially expressed. Biological processes related to metabolism, RNA binding, ribosome biogenesis, and methylation were down-regulated, while protein localization and binding, autophagy, and intracellular signaling pathways were up-regulated. Two hours after alcohol exposure, the differentially expressed genes were associated with disease terms related to eye and craniofacial development and anoxia. These data provide further information regarding the biological functions targeted by alcohol exposure during neurulation in regions of the neural tube that give rise to alcohol-sensitive midline brain structures. Disruption of these gene pathways contributes to the craniofacial and brain malformations associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Melina C Steensen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
Tian Y, Lu J, Qiao Y. A metabolism-associated gene signature for prognosis prediction of hepatocellular carcinoma. Front Mol Biosci 2022; 9:988323. [PMID: 36250026 PMCID: PMC9561844 DOI: 10.3389/fmolb.2022.988323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequently occurring type of cancer, is strongly associated with metabolic disorders. In this study, we aimed to characterize the metabolic features of HCC and normal tissue adjacent to the tumor (NAT). By using samples from The Cancer Genome Atlas (TCGA) liver cancer cohort and comparing 85 well-defined metabolic pathways obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG), 70 and 7 pathways were found to be significantly downregulated and upregulated, respectively, in HCC, revealing that tumor tissue lacks the ability to maintain normal metabolic levels. Through unsupervised hierarchical clustering of metabolic pathways, we found that metabolic heterogeneity correlated with prognosis in HCC samples. Thus, using the least absolute shrinkage and selection operator (LASSO) and filtering independent prognostic genes by the Cox proportional hazards model, a six-gene-based metabolic score model was constructed to enable HCC classification. This model showed that high expression of LDHA and CHAC2 was associated with an unfavorable prognosis but that high ADPGK, GOT2, MTHFS, and FTCD expression was associated with a favorable prognosis. Patients with higher metabolic scores had poor prognoses (p value = 2.19e-11, hazard ratio = 3.767, 95% CI = 2.555-5.555). By associating the score level with clinical features and genomic alterations, it was found that NAT had the lowest metabolic score and HCC with tumor stage III/IV the highest. qRT‒PCR results for HCC patients also revealed that tumor samples had higher score levels than NAT. Regarding genetic alterations, patients with higher metabolic scores had more TP53 gene mutations than those with lower metabolic scores (p value = 8.383e-05). Validation of this metabolic score model was performed using another two independent HCC cohorts from the Gene Expression Omnibus (GEO) repository and other TCGA datasets and achieved good performance, suggesting that this model may be used as a reliable tool for predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Yilin Tian
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Yongxia Qiao,
| |
Collapse
|
8
|
Zhang K, Wang Q, Liang Y, Yan Y, Wang H, Cao X, Shan B, Zhang Y, Li A, Fang Y. Quantitative Proteomic Analysis of Mouse Sciatic Nerve Reveals Post-injury Upregulation of ADP-Dependent Glucokinase Promoting Macrophage Phagocytosis. Front Mol Neurosci 2021; 14:777621. [PMID: 34867191 PMCID: PMC8633568 DOI: 10.3389/fnmol.2021.777621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Nerve injury induces profound and complex changes at molecular and cellular levels, leading to axonal self-destruction as well as immune and inflammatory responses that may further promote neurodegeneration. To better understand how neural injury changes the proteome within the injured nerve, we set up a mouse model of sciatic nerve injury (SNI) and conducted an unbiased, quantitative proteomic study followed by biochemical assays to confirm some of the changed proteins. Among them, the protein levels of ADP-dependent glucokinase (ADPGK) were significantly increased in the injured sciatic nerve. Further examination indicated that ADPGK was specifically expressed and upregulated in macrophages but not neurons or Schwann cells upon injury. Furthermore, culturing immortalized bone marrow-derived macrophages (iBMDMs) in vitro with the conditioned media from transected axons of mouse dorsal root ganglion (DRG) neurons induced ADPGK upregulation in iBMDMs, suggesting that injured axons could promote ADPGK expression in macrophages non-cell autonomously. Finally, we showed that overexpression of ADPGK per se did not activate macrophages but promoted the phagocytotic activity of lipopolysaccharides (LPS)-treated macrophages. Together, this proteomic analysis reveals interesting changes of many proteins within the injured nerve and our data identify ADPGK as an important in vivo booster of injury-induced macrophage phagocytosis.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingyao Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiyao Liang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yu Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiqiong Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, China.,Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Yao R, Lu T, Liu J, Li W, Weng X, Yue X, Li F. Variants of ADPGK gene and its effect on the male reproductive organ parameters and sperm count in Hu sheep. Anim Biotechnol 2021:1-8. [PMID: 34730075 DOI: 10.1080/10495398.2021.1995400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ADP-dependent glucokinase (ADPGK) plays an important role instead of hexokinase in regulating energy metabolism via the Embden-Meyerhof-Parnas Pathway. And energy provided via glycolysis promotes testis development and spermatogenesis. In this study, 466 Hu sheep were screened for mutations in the ADPGK gene to examine the association of the ADPGK gene polymorphisms with the testis traits and spermatogenesis. The NC_056060.1: g.31295 C > T SNP was found in the 3'-UTR region, resulting in two genotypes CC and TC type with genotypic frequencies of 0.66 and 0.34, respectively. This mutation was significantly associated with testis weight, testis long circumference, testis short girth, epididymis weight, and sperm concentration (p < 0.05). Moreover, TC genotype individuals had an increased tendency in the expression of the ADPGK gene and had significant reproductive performance advantages compared with CC genotype individuals in the study. And compared with the small testes (<50 g), the ADPGK gene expression of big testes (>160 g) increased significantly. This indicates an association between the ADPGK gene and reproductive organ parameters and sperm count in selected Hu sheep breed, and this SNP may serve as an effective DNA molecular marker for marker-assisted selection in Hu sheep breeding programs.
Collapse
Affiliation(s)
- Rongyu Yao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingting Lu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiamei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wanhong Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiuiu Weng
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Gansu Runmu Biological Engineering Co., Ltd., Yongchang, China.,Biotechnology Engineering Laboratory of Gansu Meat Sheep Breeding, Minqin, China
| |
Collapse
|
10
|
Massey V, Parrish A, Argemi J, Moreno M, Mello A, García-Rocha M, Altamirano J, Odena G, Dubuquoy L, Louvet A, Martinez C, Adrover A, Affò S, Morales-Ibanez O, Sancho-Bru P, Millán C, Alvarado-Tapias E, Morales-Arraez D, Caballería J, Mann J, Cao S, Sun Z, Shah V, Cameron A, Mathurin P, Snider N, Villanueva C, Morgan TR, Guinovart J, Vadigepalli R, Bataller R. Integrated Multiomics Reveals Glucose Use Reprogramming and Identifies a Novel Hexokinase in Alcoholic Hepatitis. Gastroenterology 2021; 160:1725-1740.e2. [PMID: 33309778 PMCID: PMC8613537 DOI: 10.1053/j.gastro.2020.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS We recently showed that alcoholic hepatitis (AH) is characterized by dedifferentiation of hepatocytes and loss of mature functions. Glucose metabolism is tightly regulated in healthy hepatocytes. We hypothesize that AH may lead to metabolic reprogramming of the liver, including dysregulation of glucose metabolism. METHODS We performed integrated metabolomic and transcriptomic analyses of liver tissue from patients with AH or alcoholic cirrhosis or normal liver tissue from hepatic resection. Focused analyses of chromatin immunoprecipitation coupled to DNA sequencing was performed. Functional in vitro studies were performed in primary rat and human hepatocytes and HepG2 cells. RESULTS Patients with AH exhibited specific changes in the levels of intermediates of glycolysis/gluconeogenesis, the tricarboxylic acid cycle, and monosaccharide and disaccharide metabolism. Integrated analysis of the transcriptome and metabolome showed the used of alternate energetic pathways, metabolite sinks and bottlenecks, and dysregulated glucose storage in patients with AH. Among genes involved in glucose metabolism, hexokinase domain containing 1 (HKDC1) was identified as the most up-regulated kinase in patients with AH. Histone active promoter and enhancer markers were increased in the HKDC1 genomic region. High HKDC1 levels were associated with the development of acute kidney injury and decreased survival. Increased HKDC1 activity contributed to the accumulation of glucose-6-P and glycogen in primary rat hepatocytes. CONCLUSIONS Altered metabolite levels and messenger RNA expression of metabolic enzymes suggest the existence of extensive reprogramming of glucose metabolism in AH. Increased HKDC1 expression may contribute to dysregulated glucose metabolism and represents a novel biomarker and therapeutic target for AH.
Collapse
Affiliation(s)
- Veronica Massey
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina
| | - Austin Parrish
- Daniel Baugh Institute, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Josepmaria Argemi
- Department of Gastroenterology and Hepatology, Division of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Liver Unit, Clinica Universidad de Navarra. Hepatology Program, Center for Applied Medical Research, IdisNA, Pamplona, Spain
| | - Montserrat Moreno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Aline Mello
- Department of Gastroenterology and Hepatology, Division of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mar García-Rocha
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Altamirano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebrón, Vall d'Hebrón Institut de Recerca, Barcelona, Spain
| | - Gemma Odena
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina
| | - Laurent Dubuquoy
- Service des Maladies de l'appareil digestif, CHU Lille, Inserm LIRIC-UMR995, University of Lille, Lille, France
| | - Alexandre Louvet
- Service des Maladies de l'appareil digestif, CHU Lille, Inserm LIRIC-UMR995, University of Lille, Lille, France
| | - Carlos Martinez
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Adrover
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Affò
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina Millán
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Edilmar Alvarado-Tapias
- Department of Gastroenterology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Dalia Morales-Arraez
- Department of Gastroenterology and Hepatology, Division of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Juan Caballería
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Liver Unit, Hospital Clínic, CIBER de Enfermedades Hepáticas y Digestivas, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Zhaoli Sun
- Johns Hopkins School of Medicine, Department of Surgery and Transplant Biology Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Andrew Cameron
- Johns Hopkins School of Medicine, Department of Surgery and Transplant Biology Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phillipe Mathurin
- Service des Maladies de l'appareil digestif, CHU Lille, Inserm LIRIC-UMR995, University of Lille, Lille, France
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Càndid Villanueva
- Department of Gastroenterology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Timothy R Morgan
- Gastroenterology Services, VA Long Beach Healthcare, VA Long Beach Healthcare System, Long Beach, California
| | - Joan Guinovart
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina; Department of Gastroenterology and Hepatology, Division of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Liu Y, Zhang Y, Zarrei M, Dong R, Yang X, Zhao D, Scherer SW, Gai Z. Refining critical regions in 15q24 microdeletion syndrome pertaining to autism. Am J Med Genet B Neuropsychiatr Genet 2020; 183:217-226. [PMID: 31953991 DOI: 10.1002/ajmg.b.32778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Chromosome 15q24 microdeletion syndrome is characterized by developmental delay, facial dysmorphism, hearing loss, hypotonia, recurrent infection, and other congenital malformations including microcephaly, scoliosis, joint laxity, digital anomalies, as well as sometimes having autism spectrum disorder (ASD) and attention deficit hyperactivity disorder. Here, we report a boy with a 2.58-Mb de novo deletion at chromosome 15q24. He is diagnosed with ASD and having multiple phenotypes similar to those reported in cases having 15q24 microdeletion syndrome. To delineate the critical genes and region that might be responsible for these phenotypes, we reviewed all previously published cases. We observe a potential minimum critical region of 650 kb (LCR15q24A-B) affecting NEO1 among other genes that might pertinent to individuals with ASD carrying this deletion. In contrast, a previously defined minimum critical region downstream of the 650-kb interval (LCR15q24B-D) is more likely associated with the developmental delay, facial dysmorphism, recurrent infection, and other congenital malformations. As a result, the ASD phenotype in this individual is potentially attributed by genes particularly NEO1 within the newly proposed critical region.
Collapse
Affiliation(s)
- Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Yanqing Zhang
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, 250022, China
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Dongmei Zhao
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, 250022, China
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
12
|
Garcia SN, Guedes RC, Marques MM. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 2020; 26:7285-7322. [PMID: 30543165 DOI: 10.2174/0929867326666181213092652] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Glycolysis is a tightly regulated process in which several enzymes, such as Hexokinases (HKs), play crucial roles. Cancer cells are characterized by specific expression levels of several isoenzymes in different metabolic pathways and these features offer possibilities for therapeutic interventions. Overexpression of HKs (mostly of the HK2 isoform) have been consistently reported in numerous types of cancer. Moreover, deletion of HK2 has been shown to decrease cancer cell proliferation without explicit side effects in animal models, which suggests that targeting HK2 is a viable strategy for cancer therapy. HK2 inhibition causes a substantial decrease of glycolysis that affects multiple pathways of central metabolism and also destabilizes the mitochondrial outer membrane, ultimately enhancing cell death. Although glycolysis inhibition has met limited success, partly due to low selectivity for specific isoforms and excessive side effects of the reported HK inhibitors, there is ample ground for progress. The current review is focused on HK2 inhibition, envisaging the development of potent and selective anticancer agents. The information on function, expression, and activity of HKs is presented, along with their structures, known inhibitors, and reported effects of HK2 ablation/inhibition. The structural features of the different isozymes are discussed, aiming to stimulate a more rational approach to the design of selective HK2 inhibitors with appropriate drug-like properties. Particular attention is dedicated to a structural and sequence comparison of the structurally similar HK1 and HK2 isoforms, aiming to unveil differences that could be explored therapeutically. Finally, several additional catalytic- and non-catalytic roles on different pathways and diseases, recently attributed to HK2, are reviewed and their implications briefly discussed.
Collapse
Affiliation(s)
- Sara N Garcia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
13
|
ADP-dependent glucokinase regulates energy metabolism via ER-localized glucose sensing. Sci Rep 2019; 9:14248. [PMID: 31582762 PMCID: PMC6776650 DOI: 10.1038/s41598-019-50566-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Modulation of energy metabolism to a highly glycolytic phenotype, i.e. Warburg effect, is a common phenotype of cancer and activated immune cells allowing increased biomass-production for proliferation and cell division. Endoplasmic reticulum (ER)-localized ADP-dependent glucokinase (ADPGK) has been shown to play a critical role in T cell receptor activation-induced remodeling of energy metabolism, however the underlying mechanisms remain unclear. Therefore, we established and characterized in vitro and in vivo models for ADPGK-deficiency using Jurkat T cells and zebrafish. Upon activation, ADPGK knockout Jurkat T cells displayed increased cell death and ER stress. The increase in cell death resulted from a metabolic catastrophe and knockout cells displayed severely disturbed energy metabolism hindering induction of Warburg phenotype. ADPGK knockdown in zebrafish embryos led to short, dorsalized body axis induced by elevated apoptosis. ADPGK hypomorphic zebrafish further displayed dysfunctional glucose metabolism. In both model systems loss of ADPGK function led to defective N- and O-glycosylation. Overall, our data illustrate that ADPGK is part of a glucose sensing system in the ER modulating metabolism via regulation of N- and O-glycosylation.
Collapse
|
14
|
Abstract
SIGNIFICANCE Hexokinases are key enzymes that are responsible for the first reaction of glycolysis, but they also moonlight other cellular processes, including mitochondrial redox signaling regulation. Modulation of hexokinase activity and spatiotemporal location by reactive oxygen and nitrogen species as well as other gasotransmitters serves as the basis for a unique, underexplored method of tight and flexible regulation of these fundamental enzymes. Recent Advances: Redox modifications of thiols serve as a molecular code that enables the precise and complex regulation of hexokinases. Redox regulation of hexokinases is also used by multiple parasites to cause widespread and severe diseases, including malaria, Chagas disease, and sleeping sickness. Redox-active molecules affect each other, and the moonlighting activity of hexokinases provides another feedback loop that affects the cellular redox status and is hijacked in malignantly transformed cells. CRITICAL ISSUES Several compounds affect the redox status of hexokinases in vivo. These include the dehydroascorbic acid (oxidized form of vitamin C), pyrrolidinium porrolidine-1-carbodithioate (contraceptive), peroxynitrite (product of ethanol metabolism), alloxan (a glucose analog), and isobenzothiazolinone ebselen. However, very limited information is available regarding which amino acid residues in hexokinases are affected by redox signaling. Except in cases of monogenic diabetes, direct evidence is absent for disease phenotypes that are associated with variations within motifs that are susceptible to redox signaling. FUTURE DIRECTIONS Further studies should address the propensity of hexokinases and their disease-associated variants to participate in redox regulation. Robust and straightforward proteomic methods are needed to understand the context and consequences of hexokinase-mediated redox regulation in health and disease.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
15
|
Grudnik P, Kamiński MM, Rembacz KP, Kuśka K, Madej M, Potempa J, Dawidowski M, Dubin G. Structural basis for ADP-dependent glucokinase inhibition by 8-bromo-substituted adenosine nucleotide. J Biol Chem 2018; 293:11088-11099. [PMID: 29784881 DOI: 10.1074/jbc.ra117.001562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
In higher eukaryotes, several ATP-utilizing enzymes known as hexokinases activate glucose in the glycolysis pathway by phosphorylation to glucose 6-phosphate. In contrast to canonical hexokinases, which use ATP, ADP-dependent glucokinase (ADPGK) catalyzes noncanonical phosphorylation of glucose to glucose 6-phosphate using ADP as a phosphate donor. Initially discovered in Archaea, the human homolog of ADPGK was described only recently. ADPGK's involvement in modified bioenergetics of activated T cells has been postulated, and elevated ADPGK expression has been reported in various cancer tissues. However, the physiological role of ADPGK is still poorly understood, and effective ADPGK inhibitors still await discovery. Here, we show that 8-bromo-substituted adenosine nucleotide inhibits human ADPGK. By solving the crystal structure of archaeal ADPGK in complex with 8-bromoadenosine phosphate (8-Br-AMP) at 1.81 Å resolution, we identified the mechanism of inhibition. We observed that 8-Br-AMP is a competitive inhibitor of ADPGK and that the bromine substitution induces marked structural changes within the protein's active site by engaging crucial catalytic residues. The results obtained using the Jurkat model of activated human T cells suggest its moderate activity in a cellular setting. We propose that our structural insights provide a critical basis for rational development of novel ADPGK inhibitors.
Collapse
Affiliation(s)
- Przemysław Grudnik
- From the Faculty of Biochemistry, Biophysics and Biotechnology and .,Malopolska Center of Biotechnology Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Krakow, Poland
| | - Marcin M Kamiński
- the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | | | - Katarzyna Kuśka
- From the Faculty of Biochemistry, Biophysics and Biotechnology and
| | - Mariusz Madej
- From the Faculty of Biochemistry, Biophysics and Biotechnology and.,Malopolska Center of Biotechnology Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Krakow, Poland
| | - Jan Potempa
- From the Faculty of Biochemistry, Biophysics and Biotechnology and.,Malopolska Center of Biotechnology Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Krakow, Poland
| | - Maciej Dawidowski
- the Faculty of Pharmacy, Warsaw Medical University, Banacha 1 Street, 02-097 Warsaw, Poland
| | - Grzegorz Dubin
- From the Faculty of Biochemistry, Biophysics and Biotechnology and .,Malopolska Center of Biotechnology Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Krakow, Poland
| |
Collapse
|
16
|
A Novel S100A8/A9 Induced Fingerprint of Mesenchymal Stem Cells associated with Enhanced Wound Healing. Sci Rep 2018; 8:6205. [PMID: 29670130 PMCID: PMC5906602 DOI: 10.1038/s41598-018-24425-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
We here investigated whether the unique capacity of mesenchymal stem cells (MSCs) to re-establish tissue homeostasis depends on their potential to sense danger associated molecular pattern (DAMP) and to mount an adaptive response in the interest of tissue repair. Unexpectedly, after injection of MSCs which had been pretreated with the calcium-binding DAMP protein S100A8/A9 into murine full-thickness wounds, we observed a significant acceleration of healing even exceeding that of non-treated MSCs. This correlates with a fundamental reprogramming of the transcriptome in S100A8/A9 treated MSCs as deduced from RNA-seq analysis and its validation. A network of genes involved in proteolysis, macrophage phagocytosis, and inflammation control profoundly contribute to the clean-up of the wound site. In parallel, miR582-5p and genes boosting energy and encoding specific extracellular matrix proteins are reminiscent of scar-reduced tissue repair. This unprecedented finding holds substantial promise to refine current MSC-based therapies for difficult-to-treat wounds and fibrotic conditions.
Collapse
|
17
|
Aslam M, Takahashi N, Matsubara K, Imanaka T, Kanai T, Atomi H. Identification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis. J Biosci Bioeng 2018; 125:320-326. [DOI: 10.1016/j.jbiosc.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
|
18
|
Bibi T, Ali M, Rashid N, Muhammad MA, Akhtar M. Enhancement of gene expression in Escherichia coli and characterization of highly stable ATP-dependent glucokinase from Pyrobaculum calidifontis. Extremophiles 2017; 22:247-257. [DOI: 10.1007/s00792-017-0993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
|
19
|
Ali A, Wathes DC, Swali A, Burns H, Burns S. A novel mammalian glucokinase exhibiting exclusive inorganic polyphosphate dependence in the cell nucleus. Biochem Biophys Rep 2017; 12:151-157. [PMID: 29090276 PMCID: PMC5645163 DOI: 10.1016/j.bbrep.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background Hexokinase and glucokinase enzymes are ubiquitously expressed and use ATP and ADP as substrates in mammalian systems and a variety of polyphosphate substrates and/or ATP in some eukaryotic and microbial systems. Polyphosphate synthesising or utilizing enzymes are widely expressed in microbial systems but have not been reported in mammalian systems, despite the presence of polyphosphate in mammalian cells. Only two micro-organisms have previously been shown to express an enzyme that uses polyphosphate exclusively. Methods A variety of experimental approaches, including NMR and NAD-linked assay systems were used to conduct a biochemical investigation of polyphosphate dependent glucokinase activity in mammalian tissues. Results A novel mammalian glucokinase, highly responsive to hexametaphosphate (HMP) but not ATP or ADP as a phosphoryl donor is present in the nuclei of mammalian hepatocytes. The liver enzyme exhibited sigmoidal kinetics with respect to glucose with a S0.5 of 12 mM, similar to the known kinetics of mammalian ATP-glucokinase. The Km for HMP (0.5 mM) was also similar to that of phosphoryl donors for mammalian ATP-glucokinases. The new enzyme was inhibited by several nucleotide phosphates. Conclusions We report the discovery of a polyphosphate-dependent enzyme system in mammalian cells with kinetics similar to established ATP-dependent glucokinase, also known to have a nuclear location. The kinetics suggest possible regulatory or redox protective roles. General significance The role of polyphosphate in mammalian systems has remained an enigma for decades, and the present report describes progress on the significance of this compound in intracellular metabolism in mammals. The first mammalian enzyme activity using polyphosphate as a phosphorylation substrate. A polyphosphate dependent glucokinase with kinetics similar to human glucokinase. Further evidence of discreet substrate specificity of hexokinases. A possible evolutionary link between polyphosphate and ATP utilization.
Collapse
Affiliation(s)
- Antasar Ali
- Biological Sciences, University of Huddersfield, Huddersfield UK HD1 3DH, United Kingdom
| | - D. Claire Wathes
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London UK NW1 0TU, United Kingdom
| | - Angelina Swali
- School of Biosciences, University of Nottingham, Nottingham UK LE12 5RD, United Kingdom
| | - Helena Burns
- Biological Sciences, University of Huddersfield, Huddersfield UK HD1 3DH, United Kingdom
| | - Shamus Burns
- Biological Sciences, University of Huddersfield, Huddersfield UK HD1 3DH, United Kingdom
- Corresponding author.
| |
Collapse
|
20
|
Gaglio D, Valtorta S, Ripamonti M, Bonanomi M, Damiani C, Todde S, Negri AS, Sanvito F, Mastroianni F, Campli AD, Turacchio G, Di Grigoli G, Belloli S, Luini A, Gilardi MC, Colangelo AM, Alberghina L, Moresco RM. Divergent in vitro/in vivo responses to drug treatments of highly aggressive NIH-Ras cancer cells: a PET imaging and metabolomics-mass-spectrometry study. Oncotarget 2016; 7:52017-52031. [PMID: 27409831 PMCID: PMC5239532 DOI: 10.18632/oncotarget.10470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Oncogenic K-ras is capable to control tumor growth and progression by rewiring cancer metabolism. In vitro NIH-Ras cells convert glucose to lactate and use glutamine to sustain anabolic processes, but their in vivo environmental adaptation and multiple metabolic pathways activation ability is poorly understood. Here, we show that NIH-Ras cancer cells and tumors are able to coordinate nutrient utilization to support aggressive cell proliferation and survival. Using PET imaging and metabolomics-mass spectrometry, we identified the activation of multiple metabolic pathways such as: glycolysis, autophagy recycling mechanism, glutamine and serine/glycine metabolism, both under physiological and under stress conditions. Finally, differential responses between in vitro and in vivo systems emphasize the advantageous and uncontrolled nature of the in vivo environment, which has a pivotal role in controlling the responses to therapy.
Collapse
Affiliation(s)
- Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy University of Milan, Milan, Italy
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marilena Ripamonti
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
| | | | | | - Sergio Todde
- Tecnomed Foundation of University of Milano-Bicocca, Monza, Italy
| | - Alfredo Simone Negri
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy University of Milan, Milan, Italy
| | - Francesca Sanvito
- Mouse Histopathology Unit, Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Giuseppe Di Grigoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
| | - Anna Maria Colangelo
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rosa Maria Moresco
- SYSBIO.IT, Centre of Systems Biology, Milano, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
21
|
Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep 2015; 5:18176. [PMID: 26658723 PMCID: PMC4674750 DOI: 10.1038/srep18176] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
To elucidate the little-known bioenergetic pathways of host immune cells in tuberculosis, a granulomatous disease caused by the intracellular pathogen Mycobacterium tuberculosis, we characterized infected murine lung tissue by transcriptomic profiling and confocal imaging. Transcriptomic analysis revealed changes of host energy metabolism during the course of infection that are characterized by upregulation of key glycolytic enzymes and transporters for glucose uptake, and downregulation of enzymes participating in the tricarboxylic acid cycle and oxidative phosphorylation. Consistent with elevated glycolysis, we also observed upregulation of a transporter for lactate secretion and a V type H(+) -ATPase involved in cytosolic pH homeostasis. Transcription profiling results were corroborated by immunofluorescence microscopy showing increased expression of key glycolytic enzymes in macrophages and T cells in granulomatous lesions. Moreover, we found increased mRNA and protein levels in macrophages and T cells of hypoxia inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a master transcriptional regulator. Thus, our findings suggest that immune cells predominantly utilize aerobic glycolysis in response to M. tuberculosis infection. This bioenergetic shift is similar to the Warburg effect, the metabolic signature of cancer cells. Finding immunometabolic changes during M. tuberculosis infection opens the way to new strategies for immunotherapy against tuberculosis.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Richard Pine
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | - Maria L Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
22
|
Richter JP, Goroncy AK, Ronimus RS, Sutherland-Smith AJ. The Structural and Functional Characterization of Mammalian ADP-dependent Glucokinase. J Biol Chem 2015; 291:3694-704. [PMID: 26555263 DOI: 10.1074/jbc.m115.679902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
The enzyme-catalyzed phosphorylation of glucose to glucose-6-phosphate is a reaction central to the metabolism of all life. ADP-dependent glucokinase (ADPGK) catalyzes glucose-6-phosphate production, utilizing ADP as a phosphoryl donor in contrast to the more well characterized ATP-requiring hexokinases. ADPGK is found in Archaea and metazoa; in Archaea, ADPGK participates in a glycolytic role, but a function in most eukaryotic cell types remains unknown. We have determined structures of the eukaryotic ADPGK revealing a ribokinase-like tertiary fold similar to archaeal orthologues but with significant differences in some secondary structural elements. Both the unliganded and the AMP-bound ADPGK structures are in the "open" conformation. The structures reveal the presence of a disulfide bond between conserved cysteines that is positioned at the nucleotide-binding loop of eukaryotic ADPGK. The AMP-bound ADPGK structure defines the nucleotide-binding site with one of the disulfide bond cysteines coordinating the AMP with its main chain atoms, a nucleotide-binding motif that appears unique to eukaryotic ADPGKs. Key amino acids at the active site are structurally conserved between mammalian and archaeal ADPGK, and site-directed mutagenesis has confirmed residues essential for enzymatic activity. ADPGK is substrate inhibited by high glucose concentration and shows high specificity for glucose, with no activity for other sugars, as determined by NMR spectroscopy, including 2-deoxyglucose, the glucose analogue used for tumor detection by positron emission tomography.
Collapse
Affiliation(s)
- Jan P Richter
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand and
| | - Alexander K Goroncy
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand and
| | - Ron S Ronimus
- AgResearch Limited, Palmerston North 4442, New Zealand
| | - Andrew J Sutherland-Smith
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand and
| |
Collapse
|
23
|
Biochemistry and regulatory functions of bacterial glucose kinases. Arch Biochem Biophys 2015; 577-578:1-10. [DOI: 10.1016/j.abb.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
|
24
|
Aono R, Sato T, Imanaka T, Atomi H. A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nat Chem Biol 2015; 11:355-60. [PMID: 25822915 DOI: 10.1038/nchembio.1786] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
Owing to the absence of the pentose phosphate pathway, the degradation pathway for the ribose moieties of nucleosides is unknown in Archaea. Here, in the archaeon Thermococcus kodakarensis, we identified a metabolic network that links the pentose moieties of nucleosides or nucleotides to central carbon metabolism. The network consists of three nucleoside phosphorylases, an ADP-dependent ribose-1-phosphate kinase and two enzymes of a previously identified NMP degradation pathway, ribose-1,5-bisphosphate isomerase and type III ribulose-1,5-bisphosphate carboxylase/oxygenase. Ribose 1,5-bisphosphate and ribulose 1,5-bisphosphate are intermediates of this pathway, which is thus designated the pentose bisphosphate pathway.
Collapse
Affiliation(s)
- Riku Aono
- 1] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. [2] Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takaaki Sato
- 1] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Tadayuki Imanaka
- 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Tokyo, Japan. [2] Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kyoto, Japan
| | - Haruyuki Atomi
- 1] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
25
|
Roles of hepatic glucokinase in intertissue metabolic communication: Examination of novel liver-specific glucokinase knockout mice. Biochem Biophys Res Commun 2015; 460:727-32. [PMID: 25817793 DOI: 10.1016/j.bbrc.2015.03.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
Abstract
Glucokinase is expressed principally in pancreatic β-cells and hepatocytes, and catalyzes the phosphorylation of glucose to glucose-6-phosphate, a rate-limiting step of glycolysis. To better understand the roles of hepatic glucokinase, we generated Gck knockout mice by ablating liver-specific exon 1b. The knockout mice exhibited impaired glucose tolerance, decreased hepatic glycogen content, and reduced Pklr and Fas gene expression in the liver, indicating that hepatic glucokinase plays important roles in glucose metabolism. It has also been reported that hepatic glucokinase regulates the expression of thermogenesis-related genes in brown adipose tissue (BAT) and insulin secretion in response to glucose. However, the liver-specific Gck knockout mice displayed neither altered expression of thermogenesis-related genes in BAT nor impaired insulin secretion by β-cells under a normal chow diet. These results suggest that chronic suppression of hepatic glucokinase has a small influence on intertissue (liver-to-BAT as well as liver-to-β-cell) metabolic communication.
Collapse
|
26
|
Maciolek JA, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol 2014; 27:60-74. [PMID: 24556090 DOI: 10.1016/j.coi.2014.01.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells undergo metabolic reprogramming which promotes glycolytic flux and lactate production as well as elevated production of lipids, proteins, nucleic acids and other carbohydrates (i.e. induction of biomass) even in the presence of oxygen. Activated T cells show induced expression of, among other things, Glucose Transporter 1 and several glycolytic enzymes, including ADP-Dependent Glucokinase and the low affinity isoform Pyruvate Kinase-M2 (which promote glycolytic flux), as well Glutamine Transporters and Glycerol-3-phosphate Dehydrogenase 2 which make available glutamate and glycerol-3-phosphate as mitochondrial energy sources. Intracellular leucine concentrations critically regulate mammalian target of rapamycin (mTOR) signaling to promote Th1, Th2, and Th17 CD4(+) T effector cell differentiation. In contrast, T regulatory (Treg) cells are generated when AMP-Activating Protein Kinase signaling is activated and mTOR activation is suppressed. Unlike effector CD4(+) and CD8(+) T cells, Tregs and memory T cells oxidize fatty acids for fuel. Effector and memory T cells perform different functions and thus show distinct metabolic profiles which are exquisitely controlled by cellular signaling. Upon activation, T cells express the insulin and leptin receptors on their surface and become sensitive to insulin signaling and nutrient availability and show changes in differentiation. Thus, metabolism and nutrient availability influence T cell activation and function.
Collapse
Affiliation(s)
- Jason A Maciolek
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada.
| |
Collapse
|
27
|
Thermal stability of glucokinases in Thermoanaerobacter tengcongensis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:646539. [PMID: 24058911 PMCID: PMC3766608 DOI: 10.1155/2013/646539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
Abstract
In the genome of Thermoanaerobacter tengcongensis, three genes belonging to ROK (Repressor, ORF, and Kinase) family are annotated as glucokinases (GLKs). Using enzyme assays, the three GLKs were identified as ATP-dependent GLK (ATP-GLK), ADP-dependent GLK (ADP-GLK), and N-acetyl-glucosamine/mannosamine kinase (glu/man-NacK). The kinetic properties of the three GLKs such as Km, Vmax, optimal pH, and temperature were characterized, demonstrating that these enzymes performed the specific functions against varied substrates and under different temperatures. The abundance of ATP-GLK was attenuated when culture temperature was elevated and was almost undetectable at 80°C, whereas the ADP-GLK abundance was insensitive to temperature changes. Using degradation assays, ATP-GLK was found to have significantly faster degradation than ADP-GLK at 80°C. Co-immunoprecipitation results revealed that heat shock protein 60 (HSP60) could interact with ATP-GLK and ADP-GLK at 60 and 75°C, whereas at 80°C, the interaction was only effectively with ADP-GLK but not ATP-GLK. The functions of GLKs in T. tengcongensis are temperature dependent, likely regulated through interactions with HSP60.
Collapse
|
28
|
Richter S, Morrison S, Connor T, Su J, Print CG, Ronimus RS, McGee SL, Wilson WR. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism. PLoS One 2013; 8:e65267. [PMID: 23799003 PMCID: PMC3683018 DOI: 10.1371/journal.pone.0065267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023] Open
Abstract
Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.
Collapse
Affiliation(s)
- Susan Richter
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Shona Morrison
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Tim Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jiechuang Su
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Bioinformatics Institute, The University of Auckland, Auckland, New Zealand
| | | | - Sean L. McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - William R. Wilson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
29
|
Kamiński MM, Röth D, Krammer PH, Gülow K. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp (Warsz) 2013; 61:367-84. [PMID: 23749029 DOI: 10.1007/s00005-013-0235-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Early scientific reports limited the cell biological role of reactive oxygen species (ROS) to the cause of pathological damage. However, extensive research performed over the last decade led to a wide recognition of intracellular oxidative/redox signaling as a crucial mechanism of homeostatic regulation. Amongst different cellular processes known to be influenced by redox signaling, T-cell activation is one of the most established. Numerous studies reported an indispensible role for ROS as modulators of T-cell receptor-induced transcription. Nevertheless, mechanistic details regarding signaling pathways triggered by ROS are far from being delineated. The nature and interplay between enzymatic sources involved in the generation of "oxidative signals" are also a matter of ongoing research. In particular, active participation of the mitochondrial respiratory chain as ROS producer constitutes an intriguing issue with various implications for bioenergetics of activated T cells as well as for T-cell-mediated pathologies. The aim of the current review is to address these interesting concepts.
Collapse
Affiliation(s)
- Marcin M Kamiński
- Tumour Immunology Program, Division of Immunogenetics (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany,
| | | | | | | |
Collapse
|
30
|
Kamiński MM, Sauer SW, Kamiński M, Opp S, Ruppert T, Grigaravičius P, Grudnik P, Gröne HJ, Krammer PH, Gülow K. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep 2012; 2:1300-15. [PMID: 23168256 DOI: 10.1016/j.celrep.2012.10.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022] Open
Abstract
Mitochondria-originating reactive oxygen species (ROS) control T cell receptor (TCR)-induced gene expression. Here, we show that TCR-triggered activation of ADP-dependent glucokinase (ADPGK), an alternative, glycolytic enzyme typical for Archaea, mediates generation of the oxidative signal. We also show that ADPGK is localized in the endoplasmic reticulum and suggest that its active site protrudes toward the cytosol. The ADPGK-driven increase in glycolytic metabolism coincides with TCR-induced glucose uptake, downregulation of mitochondrial respiration, and deviation of glycolysis toward mitochondrial glycerol-3-phosphate dehydrogenase(GPD) shuttle; i.e., a metabolic shift to aerobic glycolysis similar to the Warburg effect. The activation of respiratory-chain-associated GPD2 results in hyperreduction of ubiquinone and ROS release from mitochondria. In parallel, mitochondrial bioenergetics and ultrastructure are altered. Downregulation of ADPGK or GPD2 abundance inhibits oxidative signal generation and induction of NF-κB-dependent gene expression, whereas overexpression of ADPGK potentiates them.
Collapse
Affiliation(s)
- Marcin M Kamiński
- Division of Immunogenetics (D030), Tumour Immunology Program, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Richter S, Richter JP, Mehta SY, Gribble AM, Sutherland-Smith AJ, Stowell KM, Print CG, Ronimus RS, Wilson WR. Expression and role in glycolysis of human ADP-dependent glucokinase. Mol Cell Biochem 2012; 364:131-45. [PMID: 22219026 DOI: 10.1007/s11010-011-1212-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022]
Abstract
A novel murine enzyme, ADP-dependent glucokinase (ADPGK), has been shown to catalyse glucose phosphorylation using ADP as phosphoryl donor. The ancestral ADPGK gene appears to have been laterally transferred from Archaea early in metazoan evolution, but its biological role has not been established. Here, we undertake an initial investigation of the functional properties of human ADPGK in human tumour cell lines and specifically test the hypothesis that ADPGK might prime glycolysis using ADP under stress conditions such as hypoxia. Recombinant human ADPGK was confirmed to catalyse ADP-dependent glucose phosphorylation in vitro, with an apparent K (M) for glucose of 0.29 mM. Expression databases and western blotting of surgical samples demonstrated high expression in many human tissues, including tumours. Unlike hexokinase-2 (HK2), RNAi studies with exon arrays showed that ADPGK is not a transcriptional target of hypoxia inducible factor-1. Consistent with this, ADPGK protein was not upregulated by hypoxia or anoxia. Surprisingly, stable fivefold overexpression of ADPGK in H460 or HCT116 cells had no apparent effect on proliferation or glycolysis, and did not rescue clonogenicity or glycolysis when HK2 was suppressed by siRNA. Furthermore, suppression of ADPGK by siRNA did not cause detectable inhibition of glycolysis or cell killing by anoxia, although it did induce a statistically significant decrease in plating efficiency of H460 cells under aerobic conditions. Thus, human ADPGK catalyses ADP-dependent phosphorylation of glucose in vitro, but despite its high expression in human tumour cell lines it appears not to make a quantifiable contribution to glycolysis under the conditions evaluated.
Collapse
Affiliation(s)
- Susan Richter
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J Bacteriol 2011; 194:607-16. [PMID: 22101842 DOI: 10.1128/jb.06173-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carbon catabolite repression (CCR) is a widespread phenomenon in many bacteria that is defined as the repression of catabolic enzyme activities for an unfavorable carbon source by the presence of a preferable carbon source. In Streptomyces, secondary metabolite production often is negatively affected by the carbon source, indicating the involvement of CCR in secondary metabolism. Although the CCR mechanism in Streptomyces still is unclear, glucokinase is presumably a central player in CCR. SgGlkA, a glucokinase from S. griseus, belongs to the ROK family glucokinases, which have two consensus sequence motifs (1 and 2). Here, we report the crystal structures of apo-SgGlkA, SgGlkA in complex with glucose, and SgGlkA in complex with glucose and adenylyl imidodiphosphate (AMPPNP), which are the first structures of an ROK family glucokinase. SgGlkA is divided into a small α/β domain and a large α+β domain, and it forms a dimer-of-dimer tetrameric configuration. SgGlkA binds a β-anomer of glucose between the two domains, and His157 in consensus sequence 1 plays an important role in the glucose-binding mechanism and anomer specificity of SgGlkA. In the structures of SgGlkA, His157 forms an HC3-type zinc finger motif with three cysteine residues in consensus sequence 2 to bind a zinc ion, and it forms two hydrogen bonds with the C1 and C2 hydroxyls of glucose. When the three structures are compared, the structure of SgGlkA is found to be modified by the binding of substrates. The substrate-dependent conformational changes of SgGlkA may be related to the CCR mechanism in Streptomyces.
Collapse
|
33
|
Merino F, Rivas-Pardo JA, Caniuguir A, García I, Guixé V. Catalytic and regulatory roles of divalent metal cations on the phosphoryl-transfer mechanism of ADP-dependent sugar kinases from hyperthermophilic archaea. Biochimie 2011; 94:516-24. [PMID: 21906652 DOI: 10.1016/j.biochi.2011.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
In some archaea, glucose degradation proceeds through a modified version of the Embden-Meyerhof pathway where glucose and fructose-6-P phosphorylation is carried out by kinases that use ADP as the phosphoryl donor. Unlike their ATP-dependent counterparts these enzymes have been reported as non-regulated. Based on the three dimensional structure determination of several ADP-dependent kinases they can be classified as members of the ribokinase superfamily. In this work, we have studied the role of divalent metal cations on the catalysis and regulation of ADP-dependent glucokinases and phosphofructokinase from hyperthermophilic archaea by means of initial velocity assays as well as molecular dynamics simulations. The results show that a divalent cation is strictly necessary for the activity of these enzymes and they strongly suggest that the true substrate is the metal-nucleotide complex. Also, these enzymes are promiscuous in relation to their metal usage where the only considerations for metal assisted catalysis seem to be related to the ionic radii and coordination geometry of the cations. Molecular dynamics simulations strongly suggest that this metal is bound to the highly conserved NXXE motif, which constitutes one of the signatures of the ribokinase superfamily. Although free ADP cannot act as a phosphoryl donor it still can bind to these enzymes with a reduced affinity, stressing the importance of the metal in the proper binding of the nucleotide at the active site. Also, data show that the binding of a second metal to these enzymes produces a complex with a reduced catalytic constant. On the basis of these findings and considering evolutionary information for the ribokinase superfamily, we propose that the regulatory metal acts by modulating the energy difference between the protein-substrates complex and the reaction transition state, which could constitute a general mechanism for the metal regulation of the enzymes that belong this superfamily.
Collapse
Affiliation(s)
- Felipe Merino
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
34
|
Miyazono KI, Tabei N, Marushima K, Ohnishi Y, Horinouchi S, Tanokura M. Purification, crystallization and preliminary X-ray analysis of glucokinase from Streptomyces griseus in complex with glucose. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:914-6. [PMID: 21821894 PMCID: PMC3151127 DOI: 10.1107/s1744309111022275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/08/2011] [Indexed: 11/10/2022]
Abstract
Glucokinase catalyzes the phosphorylation of glucose using ATP to yield glucose 6-phosphate. SgGlkA is a bacterial group III glucokinase from Streptomyces griseus that seems to play a regulatory role in carbon catabolite repression in this organism. SgGlkA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. A crystal of SgGlkA in complex with glucose was obtained using a reservoir solution consisting of 0.9 M sodium/potassium tartrate, 0.2 M NaCl and 0.1 M imidazole pH 8.1 and diffracted X-rays to 1.84 Å resolution. The crystal of SgGlkA in complex with glucose belonged to space group P6(2)22 or P6(4)22, with unit-cell parameters a = b = 109.19, c = 141.18 Å. The crystal contained one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobumitsu Tabei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuya Marushima
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
35
|
Guixé V, Merino F. The ADP-dependent sugar kinase family: kinetic and evolutionary aspects. IUBMB Life 2009; 61:753-61. [PMID: 19548321 DOI: 10.1002/iub.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some archaea of the Euryarchaeota present a unique version of the Embden-Meyerhof pathway where glucose and fructose-6-phosphate are phoshporylated using ADP instead of ATP as the phosphoryl donor. These are the only ADP-dependent kinases known to date. Although initially they were believed to represent a new protein family, they can be classified as members of the ribokinase superfamily, which also include several ATP-dependent kinases. As they were first identified in members of the thermococcales it was proposed that the presence of these ADP-dependent kinases is an adaptation to high temperatures. Later, homologs of these enzymes were identified in the genomes of mesophilic and thermophilic methanogenic archaea and even in the genomes of higher eukaryotes, suggesting that the presence of these proteins is not related to the hyperthermophilic life. The ADP-dependent kinases are very restrictive to their ligands being unable to use triphosphorylated nucleotides such as ATP. However, it has been shown that they can bind ATP by competition kinetic experiments. The hyperthermophilic methanogenic archaeon Methanocaldococcus jannaschii has a homolog of these genes, which can phosphorylate glucose and fructose-6-phosphate. For this reason, it was proposed as an ancestral form for the family. However, recent studies have shown that the ancestral activity in the group is glucokinase, and a combination of gene duplication and lateral gene transfer could have originated the two paralogs in this member of the Euryarchaeota. Interestingly, based on structural comparisons made within the superfamily it has been suggested that the ADP-dependent kinases are the newest in the group. In several members of the superfamily, the presence of divalent metal cations has been shown to be crucial for catalysis, so its role in the ADP-dependent family was investigated through molecular dynamics. The simulation shows that, in fact, the metal coordinates the catalytic ensemble and interacts with crucial residues for catalysis.
Collapse
Affiliation(s)
- Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | | |
Collapse
|
36
|
Abstract
The glucokinase (GCK) gene was one of the first candidate genes to be identified as a human “diabetes gene". Subsequently, important advances were made in understanding the impact of GCK in the regulation of glucose metabolism. Structure elucidation by crystallography provided insight into the kinetic properties of GCK. Protein interaction partners of GCK were discovered. Gene expression studies revealed new facets of the tissue distribution of GCK, including in the brain, and its regulation by insulin in the liver. Metabolic control analysis coupled to gene overexpression and knockout experiments highlighted the unique impact of GCK as a regulator of glucose metabolism. Human GCK mutants were studied biochemically to understand disease mechanisms. Drug development programs identified small molecule activators of GCK as potential antidiabetics. These advances are summarized here, with the aim of offering an integrated view of the role of GCK in the molecular physiology and medicine of glucose homeostasis.
Collapse
Affiliation(s)
- P B Iynedjian
- Department of Cell Physiolgy and Metabolism, University of Geneva School of Medicine, CMU 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
37
|
Merino F, Guixé V. Specificity evolution of the ADP-dependent sugar kinase family -in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii. FEBS J 2008; 275:4033-44. [DOI: 10.1111/j.1742-4658.2008.06544.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Irwin DM, Tan H. Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 3:96-107. [PMID: 20483211 DOI: 10.1016/j.cbd.2007.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/26/2022]
Abstract
Hexokinases (HK) phosphorylate sugar immediately upon its entry into cells allowing these sugars to be metabolized. A total of four hexokinases have been characterized in a diversity of vertebrates-HKI, HKII, HKIII, and HKIV. HKIV is often called glucokinase (GCK) and has half the molecular weight of the other hexokinases, as it only has one hexokinase domain, while other vertebrate HKs have two. Differing hypothesis has been proposed to explain the diversification of the hexokinase gene family. We used a genomic approach to characterize hexokinase genes in a diverse array of vertebrate species and close relatives. Surprisingly we identified a fifth hexokinase-like gene, HKDC1 that exists and is expressed in diverse vertebrates. Analysis of the amino acid sequence of HKDC1 suggests that it may function as a hexokinase. To understand the evolution of the vertebrate hexokinase gene family we established a phylogeny of the hexokinase domain in all of the vertebrate hexokinase genes, as well as hexokinase genes from close relatives of the vertebrates. Our phylogeny demonstrates that duplication of the hexokinase domain, yielding a HK with two hexokinase domains, occurred prior to the diversification of the hexokinase gene family. We also establish that GCK evolved from a two hexokinase domain-containing gene, but has lost its N-terminal hexokinase domain. We also show that parallel changes in enzymatic function of HKI and HKIII have occurred.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | |
Collapse
|
39
|
McDaniel AH, Li X, Tordoff MG, Bachmanov AA, Reed DR. A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot. Mamm Genome 2006; 17:1078-92. [PMID: 17103052 PMCID: PMC1698868 DOI: 10.1007/s00335-006-0055-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/28/2006] [Indexed: 11/27/2022]
Abstract
To identify the gene or genes on mouse Chromosome 9 that contribute to strain differences in fatness, we conducted an expanded mapping analysis to better define the region where suggestive linkage was found, using the F(2 )generation of an intercross between the C57BL/6ByJ and 129P3/J mouse strains. Six traits were studied: the summed weight of two adipose depots, the weight of each depot, analyzed individually (the gonadal and retroperitoneal depot), and the weight of each depot (summed and individual) relative to body size. We found significant linkage (LOD = 4.6) that accounted for the relative weight of the summed adipose depots, and another for the relative weight of the gonadal (LOD = 5.3) but not retroperitoneal (LOD = 0.9) adipose depot. This linkage is near marker rs30280752 (61.1 Mb, Build 34) and probably is equivalent to the quantitative trait locus (QTL) Adip5. Because the causal gene is unknown, we identified and evaluated several candidates within the confidence interval with functional significance to the body fatness phenotype (Il18, Acat1, Cyp19a1, Crabp1, Man2c1, Neil1, Mpi1, Csk, Lsm16, Adpgk, Bbs4, Hexa, Thsd4, Dpp8, Anxa2, and Lipc). We conclude that the Adip5 locus is specific to the gonadal adipose depot and that a gene or genes near the linkage peak may account for this QTL.
Collapse
Affiliation(s)
- Amanda H. McDaniel
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Xia Li
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Michael G. Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Alexander A. Bachmanov
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| |
Collapse
|
40
|
Kawai S, Mukai T, Mori S, Mikami B, Murata K. Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J Biosci Bioeng 2005; 99:320-30. [PMID: 16233797 DOI: 10.1263/jbb.99.320] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 02/17/2005] [Indexed: 11/17/2022]
Abstract
Glucose kinase, which we tentatively use in this review, represents the enzymes catalyzing the phosphorylation of glucose and other hexoses by means of phosphoryl donors (ATP, ADP, and inorganic polyphosphate [poly(P)]). Except for glucose kinases utilizing ADP, all other glucose kinases belong to the hexokinase (HK) family and are classified into three groups based on primary structural information, i.e., groups HK, A, and B. The structural and evolutionary relationships of glucose kinases belonging to the above three groups have been controversial due to the lack of tertiary structural information on those in groups A and B. However, recent studies on the tertiary structures of poly(P)/ATP-glucomannokinase (GMK: a glucose kinase in group B) from Arthrobacter sp. strain KM and glucokinase (GK) (ecoGK: a glucose kinase in group A) from Escherichia coli have shed light on this problem. A comparison of the tertiary structures of GMK and ecoGK with those of glucose kinases in group HK demonstrated that both GMK and ecoGK are structurally homologous with glucose kinases in group HK, and that glucose kinases belonging to groups HK, A, and B in the HK family evolved divergently from a common ancestor. Based on the simple structure of GMK compared to those of ecoGK and glucose kinases in group HK, and the putative poly(P)-binding site in GMK, we propose that the ancestor of glucose kinases in the HK family was similar to GMK and used poly(P). We also discuss the ancestor and evolutionary process of ROK proteins, whose primary structures are homologous with those of glucose kinases in group B, in connection with the ancestor and evolutionary process of glucose kinases in the HK family.
Collapse
Affiliation(s)
- Shigeyuki Kawai
- Department of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
41
|
Lunin VV, Li Y, Schrag JD, Iannuzzi P, Cygler M, Matte A. Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol 2004; 186:6915-27. [PMID: 15466045 PMCID: PMC522197 DOI: 10.1128/jb.186.20.6915-6927.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular glucose in Escherichia coli cells imported by phosphoenolpyruvate-dependent phosphotransferase system-independent uptake is phosphorylated by glucokinase by using ATP to yield glucose-6-phosphate. Glucokinases (EC 2.7.1.2) are functionally distinct from hexokinases (EC 2.7.1.1) with respect to their narrow specificity for glucose as a substrate. While structural information is available for ADP-dependent glucokinases from Archaea, no structural information exists for the large sequence family of eubacterial ATP-dependent glucokinases. Here we report the first structure determination of a microbial ATP-dependent glucokinase, that from E. coli O157:H7. The crystal structure of E. coli glucokinase has been determined to a 2.3-A resolution (apo form) and refined to final Rwork/Rfree factors of 0.200/0.271 and to 2.2-A resolution (glucose complex) with final Rwork/Rfree factors of 0.193/0.265. E. coli GlK is a homodimer of 321 amino acid residues. Each monomer folds into two domains, a small alpha/beta domain (residues 2 to 110 and 301 to 321) and a larger alpha+beta domain (residues 111 to 300). The active site is situated in a deep cleft between the two domains. E. coli GlK is structurally similar to Saccharomyces cerevisiae hexokinase and human brain hexokinase I but is distinct from the ADP-dependent GlKs. Bound glucose forms hydrogen bonds with the residues Asn99, Asp100, Glu157, His160, and Glu187, all of which, except His160, are structurally conserved in human hexokinase 1. Glucose binding results in a closure of the small domains, with a maximal Calpha shift of approximately 10 A. A catalytic mechanism is proposed that is consistent with Asp100 functioning as the general base, abstracting a proton from the O6 hydroxyl of glucose, followed by nucleophilic attack at the gamma-phosphoryl group of ATP, yielding glucose-6-phosphate as the product.
Collapse
Affiliation(s)
- Vladimir V Lunin
- Biotechnology Research Institute, NRCC, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2 Canada
| | | | | | | | | | | |
Collapse
|