1
|
Quantitative Expression of SFN, lncRNA CCDC18-AS1, and lncRNA LINC01343 in Human Breast Cancer as the Regulator Biomarkers in a Novel ceRNA Network: Based on Bioinformatics and Experimental Analyses. Genet Res (Camb) 2022; 2022:6787791. [PMID: 36160032 PMCID: PMC9484965 DOI: 10.1155/2022/6787791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Breast cancer (BC) is one of the leading cancers in the world, which has become an increasing serious problem. In this context, reports demonstrate that some long noncoding RNAs (lncRNAs) play significant regulatory roles in breast tumorigenesis and BC progression via various pathways and act as endogenous RNAs. Finding their dysregulation in cancer and evaluating their interaction with other molecules, such as short noncoding RNAs “microRNA (miRNAs)” as well as various genes, are the most important parts in cancer diagnostics. In this study, after performing GSEA and microarray analysis on the GSE71053 dataset, a new ceRNA network of CCDC18-AS1, LINC01343, hsa-miR4462, and SFN in BC was detected by bioinformatics analysis. Therefore, the expression of SFN, CCDC18-AS1, and LINC01343 was quantitatively measured in 24 BC and normal paired tissues using qRT-PCR. CCDC18-AS1, LINC01343, and SFN were expressed higher in BC than in the control (normal paired) tissues based on qRT-PCR data. Furthermore, a significant positive correlation was observed between CCDC18-AS1 and LINC01343 expression in the samples investigated in this study. The investigation of clinicopathological parameters showed that SFN was highly expressed in tumor size of <5 cm and in nonmenopausal ages, while CCDC18-AS1 and LINC01343 indicated a high expression in stages II-III and III of BC, respectively. The overall survival analysis displayed high and low survival in patients with high expression of SFN and CCDC18-AS1, respectively. The ROC curve analysis disclosed that SFN, CCDC18-AS1, and LINC01343 might be suggested as potential biological markers in BC patients. The high expression of CCDC18-AS1, LINC01343, and SFN in BC samples suggests their potential role in BC tumorigenesis and could be considered hallmarks for the diagnosis and prognosis of BC, although this will require further clinical investigations.
Collapse
|
2
|
Cai S, Yao D, Zhang Y, Li Z, Li X, Li L. Cautions should be taken when using cell models for gastric cancer research. Gene 2022; 806:145922. [PMID: 34454032 DOI: 10.1016/j.gene.2021.145922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Gastric cancer (GC)-derived cell lines were generally used in basic cancer research and drug screening. However, it is always concerned about the difference between cultured cells and primary tumor by oncologists. To address this question, we compared differentially expressed genes (DEGs) in primary cancers, healthy tissues, and cell lines both in vitro and in silico. Seven reported genes with decreased expression in GCs by DNA methylation were analyzed in our cohort studies and experimentally validation. Selected datasets from TCGA (The Cancer Genome Atlas), CCLE (The Broad Institute Cancer Cell Line Encyclopedia), and GTEx (The Genotype-Tissue Expression project) were used to represent GCs, GC-derived cell lines, and healthy tissues respectively in the in silico analysis. Thirty gastric tissues together with six cell lines were used for validations. Unexpectedly, we experimentally found that reported cancer-related downregulated genes were only found in cancer cell lines but not in biopsies. The unchanged gene expressions in primary GCs were generally consistent with our cohort study, using information from cancerous (TCGA) and healthy tissues (GETx). Substantial differences were also found between DEGs of cancer tissues (TGCA)/ healthy tissues (GTEx) pair and cell lines (CCLE)/ healthy tissues (GTEx) pair, which confirmed the significant differences between primary cancer and cancer cell lines. Moreover, elevated expression of YWHAQ (14-3-3 δ) and THBS1 were observed in the GC biopsies, which might be potential biomarkers for GC diagnosis, considering the increased YWHAQ and THBS1 associated with poor survival rates in gastric cancer patients. In sum, it is suggested that cautions should be taken when using GC cell lines to study genes that show great differences between cell lines and tissues.
Collapse
Affiliation(s)
- Siqi Cai
- Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Dan Yao
- Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yuqi Zhang
- Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Zhaohe Li
- Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Li Li
- Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
3
|
Chauhan S, Sen S, Chauhan SS, Pushker N, Tandon R, Kashyap S, Vanathi M, Bajaj MS. Stratifin in ocular surface squamous neoplasia and its association with p53. Acta Ophthalmol 2021; 99:e1483-e1491. [PMID: 33769712 DOI: 10.1111/aos.14844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/23/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sunlight-induced p53 mutations are known to contribute towards increased risk of ocular surface squamous neoplasia (OSSN). Stratifin (14-3-3σ)/HEM (human epithelial marker) is a p53-mediated inhibitor of cell cycle progression and has been shown to be a target of epigenetic deregulation in various carcinomas. In the present study, Stratifin expression, its promoter methylation status as well as expression of mutant p53 in early and advanced AJCC stages (8th edition) of OSSN, was evaluated. METHODS Sixty-four OSSN [20 conjunctival intraepithelial neoplasia (CIN) and 44 squamous cell carcinoma (SCC)] patients were registered for this study, and they were followed up for 36-58 months (mean 48 ± 3.6). Immunoexpression of Stratifin and mutant p53 protein, mRNA expression of Stratifin by reverse transcription polymerase chain reaction (PCR) and methylation status of Stratifin by methylation-specific PCR, was undertaken. RESULTS Hypermethylation of Stratifin promoter in 63% (40/64), loss of Stratifin expression in 75% (48/64) and downregulation of Stratifin mRNA in 61% (39/64) were observed. Stratifin hypermethylation was significantly associated with reduced disease-free survival in both early and advanced T stage SCC cases. Expression of mutant p53 expression was seen in 48% (31/64) OSSN cases. Of the 31 patients with mutant p53 expression, 87% (27/31) also demonstrated loss of Stratifin immunoexpression. A significant association was seen between mutant p53 expression and Stratifin loss (p = 0.01) in advanced T stage SCC cases. CONCLUSIONS Hypermethylation of Stratifin gene and its reduced mRNA expression both are potential biomarkers for identifying high-risk OSSN patients. Aberrant methylation of Stratifin and simultaneous mutant p53 expression implicates involvement of p53-Stratifin mediated signalling pathway in the pathogenesis of OSSN.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Department of Ocular Pathology Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Seema Sen
- Department of Ocular Pathology Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Shyam S. Chauhan
- Department of Biochemistry All India Institute of Medical Sciences New Delhi India
| | - Neelam Pushker
- Ophthalmoplasty Service Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Radhika Tandon
- Cornea and External Disease, Cataract and Refractive Ocular Oncology and Low Vision Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Seema Kashyap
- Department of Ocular Pathology Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Murugesan Vanathi
- Cornea & Ocular Surface Cataract & Refractive Services Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Mandeep S. Bajaj
- Ophthalmoplasty Service Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| |
Collapse
|
4
|
Li MX, Sun XM, Cheng WG, Ruan HJ, Liu K, Chen P, Xu HJ, Gao SG, Feng XS, Qi YJ. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. BMC Cancer 2021; 21:906. [PMID: 34372798 PMCID: PMC8351329 DOI: 10.1186/s12885-021-08647-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
Background A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The purpose of this study was to identify the optimal biomarkers for ESCC using machine learning algorithms. Methods Biomarkers related to clinical survival, recurrence or therapeutic response of patients with ESCC were determined through literature database searching. Forty-eight biomarkers linked to recurrence or prognosis of ESCC were used to construct a molecular interaction network based on NetBox and then to identify the functional modules. Publicably available mRNA transcriptome data of ESCC downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets included GSE53625 and TCGA-ESCC. Five machine learning algorithms, including logical regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF) and XGBoost, were used to develop classifiers for prognostic classification for feature selection. The area under ROC curve (AUC) was used to evaluate the performance of the prognostic classifiers. The importances of identified molecules were ranked by their occurrence frequencies in the prognostic classifiers. Kaplan-Meier survival analysis and log-rank test were performed to determine the statistical significance of overall survival. Results A total of 48 clinically proven molecules associated with ESCC progression were used to construct a molecular interaction network with 3 functional modules comprising 17 component molecules. The 131,071 prognostic classifiers using these 17 molecules were built for each machine learning algorithm. Using the occurrence frequencies in the prognostic classifiers with AUCs greater than the mean value of all 131,071 AUCs to rank importances of these 17 molecules, stratifin encoded by SFN was identified as the optimal prognostic biomarker for ESCC, whose performance was further validated in another 2 independent cohorts. Conclusion The occurrence frequencies across various feature selection approaches reflect the degree of clinical importance and stratifin is an optimal prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Meng-Xiang Li
- School of Information Engineering of Henan University of Science and Technology, 263 Kaiyuan Road, Luolong Qu, Luoyang, 471023, P. R. China.,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Xiao-Meng Sun
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China.,The Sixth People's Hospital of Luoyang, Oncology Department, 14 Xiyuan Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Wei-Gang Cheng
- Department of Thyroid and Breast Cancer Surgery, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Hao-Jie Ruan
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Ke Liu
- School of Information Engineering of Henan University of Science and Technology, 263 Kaiyuan Road, Luolong Qu, Luoyang, 471023, P. R. China.,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Pan Chen
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Hai-Jun Xu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Xiao-Shan Feng
- School of Information Engineering of Henan University of Science and Technology, 263 Kaiyuan Road, Luolong Qu, Luoyang, 471023, P. R. China. .,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China.
| | - Yi-Jun Qi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China.
| |
Collapse
|
5
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
6
|
Davidson B, Holth A, Wang Z, Hellsylt E, Tropé CG, Hetland Falkenthal TE, Holm R. Expression of 14-3-3 sigma and eta proteins is unrelated to survival in metastatic high-grade serous carcinoma. APMIS 2018; 126:309-313. [PMID: 29464778 DOI: 10.1111/apm.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
The objective of this study was to analyze the expression and clinical role of 14-3-3 family proteins in high-grade serous carcinoma (HGSC). Protein expression of 14-3-3 sigma (14-3-3σ) and 14-3-3 eta (14-3-3η) by immunohistochemistry was studied in 298 HGSC specimens (249 peritoneal, 49 pleural) and was analyzed for association with clinicopathologic parameters, chemoresponse and survival. The 14-3-3σ protein was diffusely (>75% of cells) expressed in 100% of carcinomas in analysis of a pilot series and was therefore not further analyzed. The 14-3-3η protein was expressed to a variable extent in 260/298 (87%) effusions. Higher 14-3-3η protein expression was significantly related to higher CA 125 levels at diagnosis (p = 0.004), but was unrelated to other clinicopathologic parameters, chemoresponse or survival. Analysis of the association between 14-3-3η and previously studied proteins regulating mitosis showed positive association with class III β-tubulin expression (p = 0.025). The present study documents frequent expression of 14-3-3σ and 14-3-3η in HGSC effusions, but does not support a role for these proteins as prognostic markers or predictors of chemotherapy response in metastatic HGSC.
Collapse
Affiliation(s)
- Ben Davidson
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Zhihui Wang
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Ellen Hellsylt
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Claes G Tropé
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ruth Holm
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
7
|
Singh TD, Gupta S, Shrivastav BR, Tiwari PK. Epigenetic profiling of gallbladder cancer and gall stone diseases: Evaluation of role of tumour associated genes. Gene 2015; 576:743-52. [PMID: 26456195 DOI: 10.1016/j.gene.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND As on today, the global mortality rate of gallbladder cancer is still very high. Both genetic and epigenetic alterations play pivotal roles in the development of cancer. We selected seven tumour associated genes, implicated in other cancers, to assess their methylation status in gallbladder cancer and gallstone diseases. AIM OF STUDY To study the promoter methylation of certain tumour associated genes in the molecular pathogenesis of gallbladder cancer and gall stone diseases. MATERIALS AND METHODS Methylation specific PCR for seven tumour associated genes, viz., MASPIN, 14-3-3 sigma gene, THBS1, FLNC, HLTF, COX-2 and SOCS1, was performed in 50 gallbladder cancer (GBC), 30 gall stone diseases (GSD) and their respective adjacent control tissues. Semi-quantitative PCR and immunohistochemistry was carried out to check the expression level. Student's t-test was carried out to compare the differences in the methylation and expression patterns between cases and control tissues. RESULTS We observed methylation of CpG islands in seven of the studied markers, but, the frequency of methylation was found varying among different samples. Of them, 14-33 sigma showed methylation in 45 GBC (90%; p=0.0001) and 25 GSD (86.66%; p=0.001), MASPIN in 35 GBC (70%; p=0.0008) and 18 GSD (51.43%; p=0.040), FLNC in 16 GBC (32%; p=0.0044) and 9 GSD (25.71%; p=ns), THBS1 in 26 GBC (52%; p=0.0009) and 10 GSD (28.57%; p=0.0505), HLTF in 8 GBC (16%; p=ns) and 2 GSD (5.71%; p=ns), COX2 in 10 GBC (20%; p=ns) and 6 GSD (17.14%; p=ns) and SOCS-1 in 3 GBC samples only (6%; p=ns), but not in GSD. Semi-quantitative PCR revealed down regulation in MASPIN, 14-3-3 sigma, THBS1, HLTF, COX2 and SOCS1 in advanced gallbladder cases. Immunohistochemistry further confirmed the down-regulation of SOCS1 in GBC. CONCLUSION The present study infers that accumulation of epigenetic alterations increases poor prognosis of GBC patients. Out of seven genes, MASPIN and THBS1 play key epigenetic role in GBC, but not in GSD. The reason for downregulation of SOCS1 only in GBC, and unaltered expression of 14-3-3 sigma protein in all the GBC and GSD tissue samples is not clear. Further investigation on the expression pattern of these genes in GBC cell lines may elucidate their likely functional role in in association with gallbladder cancer.
Collapse
Affiliation(s)
- Tekcham Dinesh Singh
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474 011 MP, India
| | - Sanjeev Gupta
- Department of Pathology, Cancer Hospital and Research Institute, Gwalior 474 007 MP, India
| | - Braj Raj Shrivastav
- Department of Surgical Oncology, Cancer Hospital and Research Institute, Gwalior 474 007 MP, India
| | - Pramod Kumar Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474 011 MP, India.
| |
Collapse
|
8
|
Kobayashi H, Sugimoto H, Onishi S, Nakano K. Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma. Oncol Lett 2015; 10:612-618. [PMID: 26622542 DOI: 10.3892/ol.2015.3367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 05/27/2015] [Indexed: 02/07/2023] Open
Abstract
Ovarian clear cell carcinoma can arise from endometriosis; however, it is distinct from other types of epithelial ovarian carcinoma in terms of its clinicopathological and molecular features. Cancer antigen 125 lacks the sensitivity and specificity required for accurate clinical diagnosis of clear cell carcinoma. Therefore, the aim of the current review was to identify novel biomarker candidates for the immunohistochemical and serological diagnosis of clear cell carcinoma. A search of the relevant English language literature published between 1966 and 2014 was conducted using the PubMed MEDLINE online database. High-throughput tissue microarray technology and proteomic screening combined with mass spectrometry may provide additional information regarding diagnostic biomarker candidates for ovarian clear cell carcinoma. The present review summarizes the characteristics of potential genomic alterations that activate cancer signaling pathways and, thus, contribute to carcinogenesis. The major signaling pathways activated in clear cell carcinoma are associated with cell cycle regulation (hepatitis A virus cellular receptor 1 and tumor protein D52), growth factor signaling (insulin-like growth factor binding protein 1; KiSS-1 metastasis-suppressor; erb-b2 receptor tyrosine kinase 2; and fibroblast growth factor receptor 2), anti-apoptosis and survival pathways [sialidase 3 (membrane sialidase)], metabolism (γ-glutamyltransferase 1), chemoresistance (napsin A aspartic peptidase, glutathione peroxidase 3; and aldehyde dehydrogenase 1 family, member A1), coagulation [coagulation factor III (thromboplastin, tissue factor); and tissue factor pathway inhibitor 2], signaling (lectin, galactoside-binding and soluble, 3), and adhesion and the extracellular matrix [cadherin 1, type 1, E-cadherin (epithelial); versican; and laminin, α 5]. The present review of the relevant literature may provide a basis for additional clinical investigation of the ovarian clear cell carcinoma serum biomarker candidate proteins identified herein.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hitomi Sugimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shunsuke Onishi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazutoshi Nakano
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
9
|
Ko S, Kim JY, Jeong J, Lee JE, Yang WI, Jung WH. The role and regulatory mechanism of 14-3-3 sigma in human breast cancer. J Breast Cancer 2014; 17:207-18. [PMID: 25320618 PMCID: PMC4197350 DOI: 10.4048/jbc.2014.17.3.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/02/2014] [Indexed: 12/25/2022] Open
Abstract
Purpose 14-3-3 sigma (σ) is considered to be an important tumor suppressor and decreased expression of the same has been reported in many malignant tumors by hypermethylation at its promoter or ubiquitin-mediated proteolysis by estrogen-responsive ring finger protein (Efp). In this study, we investigated the significance of 14-3-3 σ expression in human breast cancer and its regulatory mechanism. Methods Efp was silenced using small interfering RNA (siRNA) in the MCF-7 breast cancer cell line in order to examine its influence on the level of 14-3-3 σ protein. The methylation status of the 14-3-3 σ promoter was also evaluated by methylation-specific polymerase chain reaction (PCR). The expression of Efp and 14-3-3 σ in 220 human breast carcinoma tissues was assessed by immunohistochemistry. Other clinicopathological parameters were also evaluated. Results Silencing Efp in the MCF-7 breast cancer cell line resulted in increased expression of 14-3-3 σ. The Efp-positive human breast cancers were more frequently 14-3-3 σ-negative (60.5% vs. 39.5%). Hypermethylation of 14-3-3 σ was common (64.9%) and had an inverse association with 14-3-3 σ positivity (p=0.072). Positive 14-3-3 σ expression was significantly correlated with poor prognosis: disease-free survival (p=0.008) and disease-specific survival (p=0.009). Conclusion Our data suggests that in human breast cancer, the regulation of 14-3-3 σ may involve two mechanisms: ubiquitin-mediated proteolysis by Efp and downregulation by hypermethylation. However, the inactivation of 14-3-3 σ is probably achieved mainly by hypermethylation. Interestingly, 14-3-3 σ turned out to be a very significant poor prognostic indicator, which is in contrast to its previously known function as a tumor suppressor, suggesting a different role of 14-3-3 σ in breast cancer.
Collapse
Affiliation(s)
- SeungSang Ko
- Department of Surgery, Cheil General Hospital & Women's Health Care Center, Catholic Kwandong University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Pathology, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Ick Yang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Hee Jung
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Qi YJ, Wang M, Liu RM, Wei H, Chao WX, Zhang T, Lou Q, Li XM, Ma J, Zhu H, Yang ZH, Liu HQ, Ma YF. Downregulation of 14-3-3σ correlates with multistage carcinogenesis and poor prognosis of esophageal squamous cell carcinoma. PLoS One 2014; 9:e95386. [PMID: 24743601 PMCID: PMC3990633 DOI: 10.1371/journal.pone.0095386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Aims The asymptomatic nature of early-stage esophageal squamous cell carcinoma (ESCC) results in late presentation and consequent dismal prognosis This study characterized 14-3-3σ protein expression in the multi-stage development of ESCC and determined its correlation with clinical features and prognosis. Materials and Methods Western blot was used to examine 14-3-3σ protein expression in normal esophageal epithelium (NEE), low grade intraepithelial neoplasia (LGIN), high grade intraepithelial neoplasia (HGIN), ESCC of TNM I to IV stage and various esophageal epithelial cell lines with different biological behavior. Immunohistochemistry was used to estimate 14-3-3σ protein in 110 biopsy samples of NEE, LGIN or HGIN and in 168 ESCC samples all of whom had follow-up data. Support vector machine (SVM) was used to develop a classifier for prognosis. Results 14-3-3σ decreased progressively from NEE to LGIN, to HGIN, and to ESCC. Chemoresistant sub-lines of EC9706/PTX and EC9706/CDDP showed high expression of 14-3-3σ protein compared with non-chemoresistant ESCC cell lines and immortalized NEC. Furthermore, the downregulation of 14-3-3σ correlated significantly with histological grade (P = 0.000) and worse prognosis (P = 0.004). Multivariate Cox regression analysis indicated that 14-3-3σ protein (P = 0.016) and T stage (P = 0.000) were independent prognostic factors for ESCC. The SVM ESCC classifier comprising sex, age, T stage, histological grade, lymph node metastasis, clinical stage and 14-3-3σ, distinguished significantly lower- and higher-risk ESCC patients (91.67% vs. 3.62%, P = 0.000). Conclusions Downregulation of 14-3-3σ arises early in the development of ESCC and predicts poor survival, suggesting that 14-3-3σ may be a biomarker for early detection of high-risk subjects and diagnosis of ESCC. Our seven-feature SVM classifier for ESCC prognosis may help to inform clinical decisions and tailor individual therapy.
Collapse
Affiliation(s)
- Yi-Jun Qi
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Ming Wang
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Rui-Min Liu
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Hua Wei
- Huaihe Hospital, Henan University, Kaifeng, Henan, P. R. China
| | - Wei-Xia Chao
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Tian Zhang
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Qiang Lou
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Xiu-Min Li
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Jin Ma
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Han Zhu
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Zhen-Hua Yang
- Linzhou Cancer Hospital, Linzhou, Henan, P. R. China
| | - Hai-Qing Liu
- Linzhou Cancer Hospital, Linzhou, Henan, P. R. China
| | - Yuan-Fang Ma
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| |
Collapse
|
11
|
Huang HH, Chen CH, Huang SC, Yang CH, Hwang CF. Expression of 14-3-3 sigma, cyclin-dependent kinases 2 and 4, p16, and Epstein-Barr nuclear antigen 1 in nasopharyngeal carcinoma. J Laryngol Otol 2014; 128:134-141. [PMID: 24460960 DOI: 10.1017/s0022215113003447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The protein 14-3-3 sigma plays a role in cell cycle arrest by sequestering cyclin-dependent kinase 1 cyclin B1 complexes, as well as cyclin-dependent kinases 2 and 4, hence its definition as a cyclin-dependent kinase inhibitor. However, the nature of the interaction between these biological markers in nasopharyngeal carcinoma is unknown. This study aimed to investigate whether altered expression of these markers contributes to nasopharyngeal carcinogenesis. METHODS The study population consisted of 30 nasopharyngeal carcinoma patients and 10 patients without nasopharyngeal carcinoma. The nasopharyngeal carcinoma cell lines TW02, TW04 and Hone-1 were also assessed. We analysed levels of messenger RNA and protein for the p16 gene and the 14-3-3 sigma, Epstein-Barr nuclear antigen 1, and cyclin-dependent kinase 2 and 4 proteins, in nasopharyngeal carcinoma tissue specimens and cell lines and in normal nasopharyngeal tissue. RESULTS Protein and messenger RNA levels for cyclin-dependent kinase 2 and Epstein-Barr nuclear antigen 1 were significantly higher in nasopharyngeal carcinoma compared with normal tissue, while levels of cyclin-dependent kinase 4 generally were not; results for 14-3-3 sigma varied. Nasopharyngeal carcinoma patients had diminished p16 gene expression, compared with normal tissue. CONCLUSION Levels of cyclin-dependent kinase 2 and Epstein-Barr nuclear antigen 1 were significantly higher in nasopharyngeal carcinoma than in normal tissue, while p16 gene expression was diminished. These three proteins may contribute to nasopharyngeal carcinogenesis.
Collapse
Affiliation(s)
- H-H Huang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-H Chen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - S-C Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-H Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-F Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
12
|
14-3-3 proteins in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Gheibi A, Kazemi M, Baradaran A, Akbari M, Salehi M. Study of promoter methylation pattern of 14-3-3 sigma gene in normal and cancerous tissue of breast: A potential biomarker for detection of breast cancer in patients. Adv Biomed Res 2012; 1:80. [PMID: 23326810 PMCID: PMC3544103 DOI: 10.4103/2277-9175.102990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 12/25/2022] Open
Abstract
Background: In recent years, DNA methylation as a main epigenetic modification in human cancer is found as a promising biomarker in early detection of breast cancer. Possible applications of numerous hypermethylated genes have been reported in diagnosis of breast cancer but there has been a little comprehensive study on the clinical usefulness of these genes in breast cancer. The aim of the present study was to investigate the promoter methylation status of 14-3-3 sigma gene with the goal of developing a diagnostic application in breast cancer. Materials and Methods: Totally 40 cases of cancerous and noncancerous tissues were studied. DNA was extracted from tissue samples, and promoter methylation pattern was determined by using methylation-specific polymerase chain reaction. Results: Methylation pattern of 14-3-3 sigma promoter significantly differed between control and malignant breast tissues (P = 0.001), and there was no remarkable correlation between methylation and age (P > 0.05). Conclusion: The relationship of promoter methylation of 14-3-3 sigma with development of breast cancer found in this study and confirmed the results of previous reports suggests that we can provide the foundation for possible application of 14-3-3 sigma as a potential biomarker for early detection and monitoring disease status.
Collapse
Affiliation(s)
- A Gheibi
- Department of Biomedical Sciences, Division of Genetics, Isfahan, Iran
| | | | | | | | | |
Collapse
|
14
|
Oak CH, Wilson D, Lee HJ, Lim HJ, Park EK. Potential molecular approaches for the early diagnosis of lung cancer (review). Mol Med Rep 2012; 6:931-6. [PMID: 22923136 DOI: 10.3892/mmr.2012.1042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of mortality from cancer among men and women worldwide. More individuals die each year of lung cancer than of colon, breast and prostate cancer combined. Despite new diagnostic techniques, the overall 5-year survival rate remains at approximately 15% and the majority of patients still present with advanced disease. Therefore, lung cancer is the most lethal cancer at present. Diagnosing and treating cancer at its early stages, ideally during the precancerous stages, could increase the 5-year survival rate by 3-4‑fold, with the possibility of cure. To date, no screening method has been shown to decrease the disease-specific mortality rate. This review describes issues related to early lung cancer screening and their rationale, the management of primary cancers detected by screening and the different approaches that have been tested for cancer screening; these include imaging techniques, bronchoscopies and molecular screening, such as analysis of epigenomics using different noninvasive or invasive sources, such as blood, sputum, bronchoscopic samples and exhaled breath.
Collapse
Affiliation(s)
- Chul Ho Oak
- Department of Internal Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
14-3-3σ mediates G2-M arrest produced by 5-aza-2'-deoxycytidine and possesses a tumor suppressor role in endometrial carcinoma cells. Gynecol Oncol 2012; 127:231-40. [PMID: 22772061 DOI: 10.1016/j.ygyno.2012.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/19/2012] [Accepted: 06/27/2012] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To determine the effect of 5-aza-2'-deoxycytidine (DAC) on human endometrial carcinoma cell (HECC) oncogenicity and demonstrate a molecular mechanism by which DAC modulates HECC oncogenicity. METHODS The effect of DAC was tested on HECC RL95-2, AN3, Ishikawa and ECC1 cells. The role of 14-3-3σ on HECC oncogenicity in response to DAC treatment was evaluated in RL95-2 and AN3 cells after forced expression or silencing of 14-3-3σ gene expression. RESULTS Treatment of HECC with DAC produced non-cytotoxic cell growth inhibition and G2/M cell cycle arrest. This effect was strongly correlated with increased expression of p21 and 14-3-3σ. Silencing of 14-3-3σ induced cellular proliferation and reduced the effect of DAC on cell cycle arrest in G2/M phases. Conversely, forced expression of 14-3-3σ showed the opposite effect. Furthermore, forced expression of 14-3-3σ in human endometrial cell lines reduced cell growth and colony formation. CONCLUSIONS We suggest that 14-3-3σ in HECC suppresses cell proliferation and mediates DAC induced G2/M arrest and inhibition of cell proliferation in HECC.
Collapse
|
16
|
Logan PC, Steiner M, Ponnampalam AP, Mitchell MD. Cell cycle regulation of human endometrial stromal cells during decidualization. Reprod Sci 2012; 19:883-94. [PMID: 22534328 DOI: 10.1177/1933719112438447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Differentiation of endometrial stromal cells into decidual cells is crucial for optimal endometrial receptivity. Data from our previous microarray study implied that expression of many cell cycle regulators are changed during decidualization and inhibition of DNA methylation in vitro. In this study, we hypothesized that both the classic progestin treatment and DNA methylation inhibition would inhibit stromal cell proliferation and cell cycle transition. METHODS The human endometrial stromal cell line (HESC) was treated from 2 days to 18 days with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (AZA), a mixture of estradiol/progestin/cyclic adenosine monophosphate ([cAMP]; medroxy-progesterone acetate [MPA mix]) or both. Cell growth was measured by cell counting, cell cycle transition and apoptosis were analyzed by flow cytometry, expression of cell cycle regulators were analyzed by quantitative polymerase chain reaction (qPCR) and Western blotting, and change in DNA methylation profiles were detected by methylation-specific PCR. RESULTS Both AZA and MPA mix inhibited the proliferation of HESC for at least 7 days. Treatment with MPA mix resulted in an early G0/G1 inhibition followed by G2/M phase inhibition at 18 days. In contrast, AZA treatment inhibited cell cycle progression at the G2/M phase throughout. The protein levels of p21(Cip1)and 14-3-3σ were increased with both AZA and MPA mix treatments without any change in the DNA methylation profiles of the genes. CONCLUSIONS Our data imply that the decidualization of HESC is associated with cell cycle arrest at G0/G1 phase initially and G2/M phase at later stages. Our results also suggest that p53 pathway members play a role in the cell cycle regulation of endometrial stromal cells.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
17
|
Abstract
Ovarian cancer is the most lethal gynecological cancer. Due to few early symptoms and a lack of early detection strategies, most patients are diagnosed with advanced-stage disease. Most of these patients, although initially responsive, eventually develop drug resistance. In this chapter, epigenetic changes in ovarian cancer are described. Various epigenetic changes including CpG island methylation and histone modification have been identified in ovarian cancer. These aberrations are associated with distinct disease subtypes and present in circulating serum of ovarian cancer patients. Several epigenetic changes have shown promise for their diagnostic, prognostic, and predictive capacity but still need further validation.In contrast to DNA mutations and deletions, epigenetic modifications are potentially reversible by epigenetic therapies. Promising preclinical studies show epigenetic drugs to enhance gene re-expression and drug sensitivity in ovarian cancer cell lines and animal models.
Collapse
|
18
|
Montavon C, Gloss BS, Warton K, Barton CA, Statham AL, Scurry JP, Tabor B, Nguyen TV, Qu W, Samimi G, Hacker NF, Sutherland RL, Clark SJ, O'Brien PM. Prognostic and diagnostic significance of DNA methylation patterns in high grade serous ovarian cancer. Gynecol Oncol 2011; 124:582-8. [PMID: 22115852 DOI: 10.1016/j.ygyno.2011.11.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Altered DNA methylation patterns hold promise as cancer biomarkers. In this study we selected a panel of genes which are commonly methylated in a variety of cancers to evaluate their potential application as biomarkers for prognosis and diagnosis in high grade serous ovarian carcinoma (HGSOC); the most common and lethal subtype of ovarian cancer. METHODS The methylation patterns of 10 genes (BRCA1, EN1, DLEC1, HOXA9, RASSF1A, GATA4, GATA5, HSULF1, CDH1, SFN) were examined and compared in a cohort of 80 primary HGSOC and 12 benign ovarian surface epithelium (OSE) samples using methylation-specific headloop suppression PCR. RESULTS The genes were variably methylated in primary HGSOC, with HOXA9 methylation observed in 95% of cases. Most genes were rarely methylated in benign OSE, with the exception of SFN which was methylated in all HGSOC and benign OSE samples examined. Methylation of DLEC1 was associated with disease recurrence, independent of tumor stage and suboptimal surgical debulking (HR 3.5 (95% CI:1.10-11.07), p=0.033). A combination of the methylation status of HOXA9 and EN1 could discriminate HGSOC from benign OSE with a sensitivity of 98.8% and a specificity of 91.7%, which increased to 100% sensitivity with no loss of specificity when pre-operative CA125 levels were also incorporated. CONCLUSIONS This study provides further evidence to support the feasibility of detecting altered DNA methylation patterns as a potential diagnostic and prognostic approach for HGSOC.
Collapse
Affiliation(s)
- Céline Montavon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Radhakrishnan VM, Jensen TJ, Cui H, Futscher BW, Martinez JD. Hypomethylation of the 14-3-3σ promoter leads to increased expression in non-small cell lung cancer. Genes Chromosomes Cancer 2011; 50:830-6. [PMID: 21755566 PMCID: PMC3155660 DOI: 10.1002/gcc.20904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 11/12/2022] Open
Abstract
The 14-3-3 proteins are a set of seven highly conserved proteins that have recently been implicated in having a role in human tumorigenesis. However, the mechanism by which 14-3-3 proteins may act in this capacity is not well understood. In this study, we examined the expression of one of the 14-3-3 family members, 14-3-3σ, since it was shown previously to be aberrantly altered in human tumors. Using quantitative rtPCR and immunohistochemistry, we found that the expression levels of 14-3-3σ were elevated in the majority of human non-small cell lung cancers (NSCLC) we examined. Surprisingly, we found that the 14-3-3σ gene was hypomethylated in lung tumors relative to normal lung tissue suggesting that decreased DNA methylation resulted in increased expression of 14-3-3σ in NSCLC. We also determined the gene copy number for 14-3-3σ in tumor samples and found no significant correlation with elevated mRNA expression. And also no mutations were found in 14-3-3σ gene. Overall, our data suggest that misregulated expression of 14-3-3σ gene may be due to altered methylation status. © 2011 Wiley-Liss, Inc.
Collapse
MESH Headings
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- DNA Methylation/genetics
- Electrophoresis, Polyacrylamide Gel
- Exonucleases/genetics
- Exonucleases/metabolism
- Exoribonucleases
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | - Taylor J. Jensen
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 857245 USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 857245 USA
| | - Haiyan Cui
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 857245 USA
- Biometry Unit, University of Arizona, Tucson, Arizona 857245 USA
| | - Bernard W. Futscher
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 857245 USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 857245 USA
| | - Jesse D. Martinez
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 857245 USA
| |
Collapse
|
20
|
Potential markers for detection and monitoring of ovarian cancer. JOURNAL OF ONCOLOGY 2011; 2011:475983. [PMID: 21577260 PMCID: PMC3090619 DOI: 10.1155/2011/475983] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/08/2011] [Indexed: 12/12/2022]
Abstract
This paper reviews current screening techniques as well as novel biomarkers and their potential role in early detection of ovarian cancer. Ovarian cancer is one of the most common reproductive cancers and has the highest mortality rate amongst gynecologic cancers. Because most ovarian cancer diagnoses occur in the late stages of the disease, five-year survival rates fall below 20%. To improve survival rates and to lower mortality rates for ovarian cancer, improved detection at early stages of the disease is needed. Current screening approaches include tumor markers, ultrasound, or a combination. Efforts are underway to discover new biomarkers of ovarian cancer in order to surmount the obstacles in early-stage diagnosis. Among serum protein markers, HE4 and mesothelin can augment CA125 detection providing higher sensitivity and specificity due to the presence of these proteins in early-stage ovarian cancer. Detection testing that includes methylation of the MCJ gene and increased expression of vascular endothelial growth factor is correlated to poor prognosis and may predict patient survival outcome. Detection testing of biomarkers with long-term stability and combination panels of markers, will likely lead to effective screening strategies with high specificity and sensitivity for early detection of ovarian cancer.
Collapse
|
21
|
Arai E, Wakai-Ushijima S, Fujimoto H, Hosoda F, Shibata T, Kondo T, Yokoi S, Imoto I, Inazawa J, Hirohashi S, Kanai Y. Genome-wide DNA methylation profiles in renal tumors of various histological subtypes and non-tumorous renal tissues. Pathobiology 2011; 78:1-9. [PMID: 21474971 DOI: 10.1159/000322072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/18/2010] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study is to clarify genome-wide DNA methylation profiles in renal tumors of various histological subtypes. METHODS Bacterial artificial chromosome (BAC) array-based methylated CpG island amplification was performed using tissue samples of 17 patients with papillary renal cell carcinomas (RCCs), chromophobe RCCs and oncocytomas, and the results were compared with those from 51 patients with clear cell RCCs. RESULTS Unsupervised hierarchical clustering analysis based on DNA methylation status clustered type 1 and type 2 papillary RCCs into different subclasses. Although chromophobe RCCs and oncocytomas were clustered into the same subclass, the DNA methylation status of 21 BAC clones was able to discriminate chromophobe RCCs from oncocytomas. The number of BAC clones showing DNA methylation alteration in non-tumorous renal tissue from patients with chromophobe RCCs and oncocytomas was smaller than that from patients with clear cell RCCs. Biphasic accumulation of DNA methylation alterations was observed in non-tumorous renal tissue from all 68 patients, and patients showing such alterations on more BAC clones had a poorer outcome than patients showing them on fewer BAC clones. CONCLUSIONS DNA methylation profiles determining the histological subtypes of renal tumors developing in individual patients and/or patient outcome may be already established in non-tumorous renal tissue at the precancerous stage.
Collapse
Affiliation(s)
- Eri Arai
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers. It is now recognized that in addition to genetic alterations, epigenetic mechanisms, such as DNA methylation, histone modifications and nucleosome remodeling, play an important role in the development and progression of ovarian cancer by modulating chromatin structure, and gene and miRNA expression. Furthermore, epigenetic alterations have been recognized as useful tools for the development of novel biomarkers for diagnosis, prognosis, therapeutic prediction and monitoring of diseases. Moreover, new epigenetic therapies, such as DNA methyltransferase inhibitors and histone deacetylase inhibitors, have been found to be a potential therapeutic option, especially when used in combination with other agents. Here we discuss current developments in ovarian carcinoma epigenome research, the importance of the ovarian carcinoma epigenome for development of diagnostic and prognostic biomarkers, and the current epigenetic therapies used in ovarian cancer.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
23
|
Asadollahi R, Hyde CA, Zhong XY. Epigenetics of ovarian cancer: From the lab to the clinic. Gynecol Oncol 2010; 118:81-7. [DOI: 10.1016/j.ygyno.2010.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 01/22/2023]
|
24
|
Kang S, Dong SM, Park NH. Frequent promoter hypermethylation of TGFBI in epithelial ovarian cancer. Gynecol Oncol 2010; 118:58-63. [PMID: 20421128 DOI: 10.1016/j.ygyno.2010.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Using pharmacologic unmasking and genome-wide differential methylation analysis, we identified a novel methylated gene in ovarian cancers. METHODS Two ovarian cancer cells (OVCAR-3, ES-2) that showed synergistic growth inhibition by 5-aza-dC and cisplatin were selected. After treatment with 5-aza-dC, differential expression profiles were compared using microarray that contained 38,500 genes. Reactivation of candidate genes and their promoter methylation were validated by real-time RT-PCR, MS-PCR and bisulfite sequencing. Methylation status was tested by MS-PCR in 56 patients with epithelial ovarian cancer and compared to the 38 normal ovarian tissues. RESULTS We identified 103 candidate genes that were reactivated by 5-aza-dC treatment. Among those, SFN and TGFBI were commonly reactivated in both cells. Since SFN is a well known methylated marker, we selected TGFBI for further validation. Bisulfite sequencing revealed complete promoter methylation in ES-2 and partial methylation in OVCAR-3. In addition, silencing of TGFBI at the transcription level was reversed by 5-aza-dC treatment. TGFBI methylation was observed in 23 out of 38 (60.5%) cases of ovarian cancer, in no normal ovarian tissues (0 of 38, P=0.001), and in 5 out of 18 (27.8%) borderline tumors (P=0.044). In our cohort, we did not observe any association between methylation of TGFBI and clinicopathologic variables or clinical outcomes. CONCLUSION Our results confirm that TGFBI is frequently methylated in ovarian cancer. Its methylation can be used as a novel epigenetic biomarker in discriminating ovarian cancer from non-cancer or borderline tumors.
Collapse
Affiliation(s)
- Sokbom Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | | | | |
Collapse
|
25
|
Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancers (Basel) 2010; 2:190-208. [PMID: 24281040 PMCID: PMC3827599 DOI: 10.3390/cancers2010190] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/02/2010] [Accepted: 03/19/2010] [Indexed: 12/16/2022] Open
Abstract
A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In cancer, a biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis and epidemiology. These markers can be assayed in non-invasively collected biofluids. However, few cancer biomarkers are highly sensitive and specific for cancer detection at the present time. Consequently, biomarkers are not yet ready for routine use due to challenges in their clinical validation for early disease detection, diagnosis and monitoring to improve long-term survival of patients.
Collapse
Affiliation(s)
- Alok Mishra
- Institute of Cytology and Preventive Oncology, Division of Molecular Oncology, Noida, 201301, UP, India; E-Mail:
| | - Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institues of Health (NIH), 6130 Executive Blvd., Suite 5100, Bethesda, MD 20892-7324, USA
| |
Collapse
|
26
|
14-3-3sigma expression and prognostic value in patients with epithelial ovarian carcinoma: a high throughput tissue microarray analysis. Eur J Surg Oncol 2008; 35:763-7. [PMID: 19081223 DOI: 10.1016/j.ejso.2008.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022] Open
Abstract
AIMS 14-3-3sigma is a potential tumor suppressor gene that when it is silenced by CpG methylation can contribute to cancer development. Previously, we showed that hypermethylation of 14-3-3sigma in human ovarian cancer and ovarian cancer cell lines, and that 14-3-3sigma hypermethylation correlated with loss of its expression by immunohistochemistry. In the present study, our aim is to determine the value of 14-3-3sigma in predicting disease outcome in series of patients with epithelial ovarian cancer. MATERIALS AND METHODS A tumor microarray (TMA) of 192 patients with a very detailed characteristic and follow-up was performed. The slides were immunostained with 14-3-3sigma antibody and its expression was correlated with age, tumor types, grade, stage, volume of residual tumor, response to therapy, overall survival (OS) and disease-free survival (DFS). RESULTS A marginal association with the volume of residual tumor after surgery (chi2 p = 0.044, Fischer's exact 0.051) was seen. There was no association between loss of 14-3-3sigma expression and any of age, stage, grade, tumor subtypes, and clinical response to therapy. Survival analysis according to Kaplan-Meier method showed that loss of 14-3-3sigma expression was not associated with OS or DFS (p = 0.702, p = 0.118, respectively). CONCLUSION Even though 14-3-3sigma is involved in ovarian tumorigenesis, it does not have a prognostic value as a biomarker to predict patients' outcome.
Collapse
|
27
|
Liang S, Xu Y, Shen G, Zhao X, Zhou J, Li X, Gong F, Ling B, Fang L, Huang C, Wei Y. Gene expression and methylation status of 14-3-3sigma in human renal carcinoma tissues. IUBMB Life 2008; 60:534-40. [PMID: 18548556 DOI: 10.1002/iub.75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Loss of 14-3-3sigma expression mainly by methylation-mediated silencing has been reported in several human cancers, but the methylation status of 14-3-3sigma in human renal carcinoma is rarely studied so far. In this report, 14-3-3sigma expression was first examined by RT-PCR and immunohistochemistry, and further we investigated the methylation status by methylation-specific PCR and the correlation between 14-3-3sigma expression and its methylation. We found 14-3-3sigma expression was lost in 27 of 31 renal tissues including 16 renal carcinoma tissues, eight para-cancerous kidney tissues and seven normal kidney tissues. Among 16 renal carcinoma tissues, 14 cases had complete hypermethylation of 14-3-3sigma. Eight para-cancerous kidney tissues were almost completely methylated except one case had both methylation and unmethylation. Among seven normal kidney tissues, five cases had partial methylation, and the other two cases were completely methylated. In addition, 14-3-3sigma mRNA had weak expression in OS-RC-2 cells, but it increased with gradual demethylation after treatment by a demethylation agent, 5-aza-2'-deoxycytidine. In general, 14-3-3sigma mRNA was mostly unexpressed, and its DNA frequently hypermethylated within 14-3-3sigma coding region was closely associated with the gene silencing in cancerous and para-cancerous kidney tissues. 14-3-3sigma was also frequently methylated and almost silencing in normal kidney tissues. However, the methylation frequency was gradually reinforced with the extent of malignancy from normal to para-cancerous and cancerous kidney tissues.
Collapse
Affiliation(s)
- Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA. Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 2008; 25:753-63. [PMID: 18566899 PMCID: PMC2763604 DOI: 10.1007/s10585-008-9187-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 05/20/2008] [Indexed: 01/13/2023]
Abstract
Breast Cancer Metastasis Suppressor 1 (BRMS1) suppresses metastasis of human breast cancer, ovarian cancer and melanoma in athymic mice. Studies have also shown that BRMS1 is significantly downregulated in some breast tumors, especially in metastatic disease. However, the mechanisms which regulate BRMS1 expression are currently unknown. Upon examination of the BRMS1 promoter region by methylation specific PCR (MSP) analysis, we discovered a CpG island (-3477 to -2214), which was found to be hypermethylated across breast cancer cell lines. A panel of 20 patient samples analyzed showed that 45% of the primary tumors and 60% of the matched lymph node metastases, displayed hypermethylation of BRMS1 promoter. Furthermore, we found a direct correlation between the methylation status of the BRMS1 promoter in the DNA isolated from tissues, with the loss of BRMS1 expression assessed by immunohistochemistry. There are several studies investigating the mechanism by which BRMS1 suppresses metastasis; however thus far there is no study that reports the cause(s) of loss of BRMS1 expression in aggressive breast cancer. Here we report for the first time that BRMS1 is a novel target of epigenetic silencing; and aberrant methylation in the BRMS1 promoter may serve as a cause of loss of its expression.
Collapse
Affiliation(s)
- Brandon J. Metge
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, 307 N. University Blvd., Mobile, AL 36688, USA
| | - Andra R. Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Judy A. King
- Department of Pharmacology, University of South Alabama, Mobile, AL, USA
- Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Donna Lynn Dyess
- Department of Surgery, University of South Alabama, Mobile, AL, USA
| | - Danny R. Welch
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- NFCR-Center for Metastasis Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, 307 N. University Blvd., Mobile, AL 36688, USA
| | - Lalita A. Shevde
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, 307 N. University Blvd., Mobile, AL 36688, USA
| |
Collapse
|
29
|
Barton CA, Hacker NF, Clark SJ, O'Brien PM. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol 2008; 109:129-39. [PMID: 18234305 DOI: 10.1016/j.ygyno.2007.12.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review epigenetic changes identified in ovarian cancer, focusing on their potential as clinical markers for detection, monitoring of disease progression and as markers of therapeutic response. METHODS A comprehensive review of English language scientific literature on the topics of methylation and ovarian cancer was conducted. RESULTS Genome-wide demethylation of normally methylated and silenced chromosomal regions, and hypermethylation and silencing of genes including tumor suppressors are common features of cancer cells. Epigenetic alterations, including CpG island DNA methylation, occur in ovarian cancer and the identification of specific genes that are altered by epigenetic events is an area of intense research. Aberrant DNA methylation in ovarian cancer is observed in early cancer development, can be detected in DNA circulating in the blood and hence provides the promise of a non-invasive cancer detection test. In addition, identification of ovarian cancer-specific epigenetic changes has promise in molecular classification and disease stratification. CONCLUSIONS The detection of cancer-specific DNA methylation changes heralds an exciting new era in cancer diagnosis as well as evaluation of prognosis and therapeutic responsiveness and warrants further investigation.
Collapse
Affiliation(s)
- Caroline A Barton
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | | | | | |
Collapse
|
30
|
Kuroda Y, Aishima S, Taketomi A, Nishihara Y, Iguchi T, Taguchi K, Maehara Y, Tsuneyoshi M. 14-3-3sigma negatively regulates the cell cycle, and its down-regulation is associated with poor outcome in intrahepatic cholangiocarcinoma. Hum Pathol 2007; 38:1014-1022. [PMID: 17391729 DOI: 10.1016/j.humpath.2006.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 01/07/2023]
Abstract
The 14-3-3sigma gene has been implicated in G2/M cell cycle arrest by p53, and the loss of 14-3-3sigma protein expression has been reported in diverse human cancers. However, the role of 14-3-3sigma in the signaling pathway of the cell cycle in the progression of intrahepatic cholangiocarcinoma has not been well understood. To clarify the role of 14-3-3sigma, we examined the protein expressions of 14-3-3sigma, cyclin B1, and p53 in 93 cases of intrahepatic cholangiocarcinoma by immunohistochemical staining. We also examined the correlation between these expressions and survival rate and clinicopathologic factors such as sex, age, tumor grade (ie, pathologic differentiation, tumor size, lymphatic permeation, vascular invasion, perineural invasion, lymph node metastasis), and tumor stage. Positive 14-3-3sigma protein expression (>30% of tumor cells) was observed in 67.7% (63/93) of cases of intrahepatic cholangiocarcinoma and was inversely correlated with cyclin B1 expression. No correlation was found between 14-3-3sigma expression and p53 expression or clinicopathologic factors; however, decreased 14-3-3sigma expression was an independent prognostic factor by multivariate survival analysis (P = .0282). Extensive methylation of 14-3-3sigma was found by methylation-specific polymerase chain reaction and sequence; however, no significant correlation was detected between methylation states and protein expression. These results indicate that depressed 14-3-3sigma protein is involved in the uncontrolled cell cycle in intrahepatic cholangiocarcinoma and that the decreased expression of 14-3-3sigma protein is a significant indicator of poor prognosis for patients with intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Yousuke Kuroda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan; Department of Pathology, Hamanomachi Hospital, Chu-o-ku, Fukuoka 810-8539, Japan.
| | - Akinobu Taketomi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Yunosuke Nishihara
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Tomohiro Iguchi
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Kenichi Taguchi
- Institute for Clinical Research, National Kyushu Cancer Center, Minamiku, Fukuoka 811-1395, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Masazumi Tsuneyoshi
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
Bengtsson S, Krogh M, Szigyarto CAK, Uhlen M, Schedvins K, Silfverswärd C, Linder S, Auer G, Alaiya A, James P. Large-Scale Proteomics Analysis of Human Ovarian Cancer for Biomarkers. J Proteome Res 2007; 6:1440-50. [PMID: 17315909 DOI: 10.1021/pr060593y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is usually found at a late stage when the prognosis is often bad. Relative survival rates decrease with tumor stage or grade, and the 5-year survival rate for women with carcinoma is only 38%. Thus, there is a great need to find biomarkers that can be used to carry out routine screening, especially in high-risk patient groups. Here, we present a large-scale study of 64 tissue samples taken from patients at all stages and show that we can identify statistically valid markers using nonsupervised methods that distinguish between normal, benign, borderline, and malignant tissue. We have identified 217 of the significantly changing protein spots. We are expressing and raising antibodies to 35 of these. Currently, we have validated 5 of these antibodies for use in immunohistochemical analysis using tissue microarrays of healthy and diseased ovarian, as well as other, human tissues.
Collapse
Affiliation(s)
- Sofia Bengtsson
- Department of Protein Technology, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Staflin K, Järnum S, Hua J, Honeth G, Kannisto P, Lindvall M. Combretastatin A-1 phosphate potentiates the antitumor activity of carboplatin and paclitaxel in a severe combined immunodeficiency disease (SCID) mouse model of human ovarian carcinoma. Int J Gynecol Cancer 2006; 16:1557-64. [PMID: 16884365 DOI: 10.1111/j.1525-1438.2006.00627.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In search for new therapeutic modalities to target epithelial ovarian carcinomas, we investigated the effect of the antiangiogenic drug combretastatin A-1 phosphate (CA1P) as a single treatment or in combination with established therapy, ie, carboplatin and paclitaxel. Five different human epithelial ovarian carcinoma cell lines were inoculated subcutaneously into FOX CHASE CB-77 severe combined immunodeficiency disease (SCID) mice. When tumors reached a volume of approximately 100 mm(3), the treatment was initiated. All drugs were given intraperitoneally at weekly doses. CA1P was more effective as an antitumor agent than combretastatin A-4 phosphate as a single-drug treatment or in combination with carboplatin and paclitaxel. CA1P had a strong tumor outgrowth inhibiting effect on four out of five tumors included in this study. Comparing animals receiving CA1P with animals receiving a combination of carboplatin and paclitaxel, CA1P was more effective on two out of three tested tumors, whereas carboplatin and paclitaxel were more effective on one out of three of the tumors. We show that treatment of human ovarian carcinomas with CA1P in the SCID mouse model results in a strong antitumor effect both as a single-drug treatment and as an enhancement of the therapeutic effect in a combination treatment protocol with carboplatin and paclitaxel.
Collapse
Affiliation(s)
- K Staflin
- Department of Cell and Molecular Biology, Section for Tumor Biology, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Satoh JI, Tabunoki H, Nanri Y, Arima K, Yamamura T. Human astrocytes express 14-3-3 sigma in response to oxidative and DNA-damaging stresses. Neurosci Res 2006; 56:61-72. [PMID: 16797759 DOI: 10.1016/j.neures.2006.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/17/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
The 14-3-3 protein family consists of seven isoforms, most of which are expressed abundantly in neurons and glial cells, although the sigma isoform, a p53 target gene originally identified as an epithelium-specific marker, has not been identified in the human central nervous system. Here, we show that human astrocytes in culture expressed 14-3-3sigma under stress conditions. By Western blot, the expression of 14-3-3sigma, p53 and p21 was coordinately upregulated in astrocytes following exposure to hydrogen peroxide, 4-hydroxy-2-nonenal (4-HNE) or etoposide, a topoisomerase II inhibitor. 14-3-3sigma was induced by treatment with 5-aza-2'-deoxycytidine, suggesting a hypermethylated status of the gene promoter in astrocytes. In vivo, a small subset of hypertrophic reactive astrocytes, often showing a multinucleated morphology, expressed 14-3-3sigma in active demyelinating lesions of multiple sclerosis (MS) and ischemic lesions of cerebral infarction, where the expression of 4-HNE and 8-hydroxy-2'-deoxyguanosine was enhanced in reactive astrocytes. Microarray analysis of etoposide-treated astrocytes verified upregulation of p53-responsive genes and concurrent downregulation of mitotic checkpoint-regulatory genes. These observations suggest that 14-3-3sigma might serve as a marker of oxidative and DNA-damaging stresses inducing the mitotic checkpoint dysfunction in reactive astrocytes under pathological conditions.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Neuroinformatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
34
|
Pulukuri SM, Rao JS. CpG island promoter methylation and silencing of 14-3-3sigma gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2. Oncogene 2006; 25:4559-72. [PMID: 16786000 PMCID: PMC1526774 DOI: 10.1038/sj.onc.1209462] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
14-3-3sigma proteins regulate numerous cellular processes that are important to cancer development. One of its biological roles involves G2 cell-cycle arrest following DNA damage. It has also been reported that the loss of 14-3-3sigma expression via CpG methylation may contribute to malignant transformation by impairing the G2 cell-cycle checkpoint function, thereby allowing an accumulation of genetic defects. However, how the CpG methylation-dependent silencing mechanism works in relation to promoter methylation associated with methyl-CpG-binding proteins (MeCPs) is still unclear. To better understand the mechanism, we first examined the methylation status of the 14-3-3sigma promoter-associated CpG islands and 14-3-3sigma gene expression in a subset of prostate cancer cell lines using methylation-specific PCR (MSP), an HhaI-based DNA methylation assay, and reverse transcription-PCR (RT-PCR). We found that the 14-3-3sigma expression is lost in LNCaP and Tramp-C1 prostate cancer cell lines and that this expression is restored after treatment with epigenetic silencing modifiers 5-aza-2'-deoxycytidine (5-aza) and trichostatin A (TSA). These results imply transcriptional silencing via promoter-associated CpG methylation. Chromatin immunoprecipitation analysis revealed that methyl-CpG-binding protein 2 (MBD2) is associated preferentially to the methylated CpG island in the 14-3-3sigma promoter in LNCaP and Tramp-C1 cells but not in 14-3-3sigma-expressing PC3 and DU145 cells, which contain an unmethylated CpG island in the 14-3-3sigma promoter region. The 14-3-3sigma gene silencing because of CpG methylation correlates with binding of MBD2. In addition, the activation of 14-3-3sigma gene expression by a combination of 5-aza and TSA also involves the release of the MBD2 from the 14-3-3sigma promoter-methylated CpG island in LNCaP and Tramp-C1 cells. Furthermore, MBD2 knockdown by siRNA stimulated 14-3-3sigma expression in LNCaP cells. We also investigated whether the loss of 14-3-3sigma expression in LNCaP and Tramp-C1 cells affects cell proliferation by MTT assays. Interestingly, we observed that 14-3-3sigma-inactivated LNCaP and Tramp-C1 cells had markedly decreased cell proliferation and protein expression of proliferation cell nuclear antigen (PCNA) after restoration of 14-3-3sigma expression with 5-aza and TSA treatment. On the other hand, the same treatment did not significantly affect 14-3-3sigma-active PC3 and DU145 cells, which normally express 14-3-3sigma. Finally, 14-3-3sigma knockdown by siRNA resulted in increased proliferation in PC3 and DU145 cells. These findings suggest that the transcriptional silencing of the 14-3-3sigma gene is caused by promoter CpG island methylation associated with MBD2, and that this may play an important role in prostate cancer progression during the invasive and metastatic stages of the disease.
Collapse
Affiliation(s)
- S M Pulukuri
- Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, IL 61656, USA
| | | |
Collapse
|
35
|
Terasawa K, Toyota M, Sagae S, Ogi K, Suzuki H, Sonoda T, Akino K, Maruyama R, Nishikawa N, Imai K, Shinomura Y, Saito T, Tokino T. Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br J Cancer 2006; 94:914-21. [PMID: 16479257 PMCID: PMC2361363 DOI: 10.1038/sj.bjc.6602984] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription factor 2 gene (TCF2) encodes hepatocyte nuclear factor 1β (HNF1β), a transcription factor associated with development and metabolism. Mutation of TCF2 has been observed in renal cell cancer, and by screening aberrantly methylated genes, we have now identified TCF2 as a target for epigenetic inactivation in ovarian cancer. TCF2 was methylated in 53% of ovarian cancer cell lines and 26% of primary ovarian cancers, resulting in loss of the gene's expression. TCF2 expression was restored by treating cells with a methyltransferase inhibitor, 5-aza-2′deoxycitidine (5-aza-dC). In addition, chromatin immunoprecipitation showed deacetylation of histone H3 in methylated cells and, when combined with 5-aza-dC, the histone deacetylase inhibitor trichostatin A synergistically induced TCF2 expression. Epigenetic inactivation of TCF2 was also seen in colorectal, gastric and pancreatic cell lines, suggesting general involvement of epigenetic inactivation of TCF2 in tumorigenesis. Restoration of TCF2 expression induced expression of HNF4α, a transcriptional target of HNF1β, indicating that epigenetic silencing of TCF2 leads to alteration of the hepatocyte nuclear factor network in tumours. These results suggest that TCF2 is involved in the development of ovarian cancers and may represent a useful target for their detection and treatment.
Collapse
Affiliation(s)
- K Terasawa
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo 060-8543, Japan
| | - M Toyota
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8543, Japan
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
- PRESTO, JST, Kawaguchi, Japan
- Department of Molecular Biology, Cancer Research Institute, South-1 West-17, Chuo-ku, Sapporo, Hokkaido, Japan. E-mail:
| | - S Sagae
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo 060-8543, Japan
| | - K Ogi
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8543, Japan
| | - H Suzuki
- Department of Public Health, Sapporo 060-8543, Japan
| | - T Sonoda
- Department of Public Health, Sapporo 060-8543, Japan
| | - K Akino
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8543, Japan
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - R Maruyama
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - N Nishikawa
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8543, Japan
- First Department of Surgery, Sapporo Medical University, Sapporo 060-8543, Japan
| | - K Imai
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - Y Shinomura
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - T Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo 060-8543, Japan
| | - T Tokino
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8543, Japan
| |
Collapse
|
36
|
Abstract
The 14-3-3sigma gene is a direct target of the p53 tumor suppressor and its product inhibits cell cycle progression. Recently, a proteomic analysis revealed that 14-3-3sigma regulates additional cellular processes relevant to carcinogenesis, as migration and MAP-kinase signalling. The expression of 14-3-3sigma is down-regulated by CpG methylation in several types of human cancer, among them prostate, lung, breast and several types of skin cancer. The epigenetic inactivation of 14-3-3sigma occurs at an early stage of tumor development and may allow evasion from senescence and promote genomic instability. In the future the detection of CpG methylation of 14-3-3sigma may be used for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Dmitri Lodygin
- Molecular Oncology, Independent Max-Planck Research Group, Max-Planck-Institute of Biochemistry, Martinsried, Munich, Germany
| | | |
Collapse
|
37
|
Nakayama H, Sano T, Motegi A, Oyama T, Nakajima T. Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 2005; 55:707-15. [PMID: 16271083 DOI: 10.1111/j.1440-1827.2005.01900.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
14-3-3 sigma (sigma) is a negative regulator of the cell cycle and contributes to G2 arrest. Lack of its expression due to hypermethylation of CpG islands has been reported in some carcinomas. A recent study showed that 14-3-3 sigma was down-regulated through proteolysis by estrogen-responsive finger protein (Efp). Here, we investigated the expression of 14-3-3 sigma, hormone receptors, Efp and p53 in 86 cases of endometrial adenocarcinoma and 46 cases of normal or non-neoplastic endometria by means of immunohistochemistry and methylation-specific polymerase chain reaction. In normal endometrium, 14-3-3 sigma was overexpressed in the mid- to late-secretory phase due to hypomethylation. In endometrial adenocarcinoma, 14-3-3 sigma expression was low in low grade endometrioid adenocarcinoma due to hypermethylation, and increased significantly with increasing histological grade due to hypomethylation. 14-3-3 sigma expression inversely correlated with estrogen receptor alpha, progesterone receptor and Efp, and positively correlated with myometrial invasion and lymph node metastasis. These results suggest that 14-3-3 sigma was one of the menstrual cycle-related proteins regulated by epigenetic methylation, and its expression was influenced by epigenetic methylation or hormone receptors in progression of endometrial adenocarcinoma, and therefore was more than just a cell-cycle regulator.
Collapse
Affiliation(s)
- Hiroko Nakayama
- Department of Tumor Pathology, Gunma University, Graduate School of Medicine, Faculty of Medicine, Maebashi, Japan.
| | | | | | | | | |
Collapse
|
38
|
Abstract
The 14-3-3 proteins are a family of adaptors that have recently gained a lot of attention due to the discovery that they may play an important role in human tumorigenesis. Examination of human tumors shows that expression of these proteins is increased in some tumors and decreased in others. Since biochemical studies suggest that 14-3-3 proteins regulate multiple pathways that are also disrupted during tumorigenesis, it is unclear how they actually contribute to tumor development.
Collapse
Affiliation(s)
- Jesse D Martinez
- University of Arizona, Arizona Cancer Center and Department of Cell Biology & Anatomy, Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
Wang Y, Yu Q, Cho AH, Rondeau G, Welsh J, Adamson E, Mercola D, McClelland M. Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia 2005; 7:748-60. [PMID: 16207477 PMCID: PMC1501885 DOI: 10.1593/neo.05289] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/15/2005] [Accepted: 04/22/2005] [Indexed: 12/31/2022]
Abstract
DNA methylation and copy number in the genomes of three immortalized prostate epithelial and five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, and PC3M-LN4) were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, polymerase chain reaction (PCR) amplification, labeling, and hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY) previously observed in prostate cancer and 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1). The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, and GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.
Collapse
Affiliation(s)
- Yipeng Wang
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Qiuju Yu
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Ann H Cho
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Gaelle Rondeau
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - John Welsh
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Eileen Adamson
- The Burnham Institute, Cancer Research Center, La Jolla, CA, USA
| | - Dan Mercola
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| |
Collapse
|
40
|
Perathoner A, Pirkebner D, Brandacher G, Spizzo G, Stadlmann S, Obrist P, Margreiter R, Amberger A. 14-3-3sigma expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Clin Cancer Res 2005; 11:3274-9. [PMID: 15867223 DOI: 10.1158/1078-0432.ccr-04-2207] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE 14-3-3sigma is an intracellular, dimeric, phosphoserine binding protein that is expressed in epithelial cells and involved in cancer development. In this study, we examined the expression of 14-3-3sigma and evaluated its clinical significance in colorectal carcinoma. EXPERIMENTAL DESIGN Expression of 14-3-3sigma was analyzed by Western blot in nine colorectal carcinoma cell lines, eight paired colorectal carcinoma tissues, and normal mucosas. Immunohistochemistry was used to evaluate expression of 14-3-3sigma in tissues of 121 colorectal carcinoma patients and to correlate it with clinical parameters. RESULTS Western blot analysis of colorectal carcinoma cell lines and tissues revealed strong 14-3-3sigma expression in four of eight cell lines and 14-3-3sigma overexpression in carcinomas compared with normal mucosa in six of eight colorectal carcinoma tissue pairs. Immunohistochemical analysis revealed 14-3-3sigma overexpression in 38.8% of colorectal carcinoma samples. Furthermore, highly positive immunoreactivity was significantly correlated with tumor differentiation (P < 0.001) and pT stage (P < 0.003). In Kaplan-Meier analysis, 14-3-3sigma overexpression was associated with a significantly decreased survival time compared with negatively stained or low stained cases (P < 0.0096). In multivariate regression analysis, 14-3-3sigma expression emerged as a significant independent parameter (P < 0.037). CONCLUSIONS These results provide evidence that 14-3-3sigma expression increases during carcinoma progression in a subset of colorectal carcinoma. The overexpression of this antigen identifies patients at high risk. It is tempting to suggest that 14-3-3sigma overexpression either promotes tumor proliferation and/or prevents apoptotic signal transduction in colorectal carcinoma. Thus, targeting 14-3-3sigma might be a new therapeutic strategy in colorectal carcinoma.
Collapse
|
41
|
Okumura H, Natsugoe S, Matsumoto M, Yokomakura N, Uchikado Y, Takatori H, Ishigami S, Takao S, Aikou T. Predictive value of p53 and 14-3-3sigma for the effect of chemoradiation therapy on esophageal squamous cell carcinoma. J Surg Oncol 2005; 91:84-9. [PMID: 15999354 DOI: 10.1002/jso.20279] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES The p53 family regulates cell-cycle arrest, triggers apoptosis, repairs DNA damage caused by various genotoxic stresses, and protects cells from death upon irradiation. The purpose of the present study was to examine the expressions of p53 and one of the p53 family proteins, 14-3-3sigma, in biopsy specimens and to predict the clinical and histological responses to chemoradiation therapy (CRT) in patients with esophageal squamous cell carcinoma (ESCC). METHODS We investigated with the relationship between p53 and 14-3-3sigma expressions in biopsy specimens obtained from 62 patients with ESCC and analyzed these patients' clinical and histological responses to CRT. Chemoradiation therapy consisted of 5-fluorouracil plus cisplatin and 40 Gy of radiation. RESULTS Following CRT, 71.0% of patients showed a positive clinical response and 52.8% showed a positive histological response. The rate of positive expression was 43.5% for p53 and 58.1% for 14-3-3sigma. Statistically significant correlations were found between p53 expression and clinical response to CRT (P = 0.001) and histological response to CRT (P = 0.041), and between 14-3-3sigma expression and histological response to CRT (P = 0.01). Furthermore, in p53-positive tumors, CRT was more effective in tumors with 14-3-3sigma-positive expressions than those with 14-3-3sigma-negative expressions (P = 0.037). The survival rate of the patients with 14-3-3sigma-positive tumors was better than those with 14-3-3sigma-negative tumors in patients with p53-positive tumors (P = 0.047). CONCLUSIONS We demonstrated that p53-negative or 14-3-3sigma-positive expressions were closely related to the response to CRT. It is clinically useful to examine the expression of these genes in biopsy specimens for predicting the CRT outcomes in patients with ESCC.
Collapse
Affiliation(s)
- Hiroshi Okumura
- Department of Surgical Oncology, Digestive Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Cancer cells show characteristic alterations in DNA methylation patterns. Aberrant CpG methylation of specific promoters results in inactivation of tumor suppressor genes and therefore plays an important role in carcinogenesis. The p53-regulated gene 14-3-3sigma undergoes frequent epigenetic silencing in several types of cancer, including carcinoma of the breast, prostate, and skin, suggesting that the loss of 14-3-3sigma expression may be causally involved in tumor progression. Functional studies demonstrated that 14-3-3sigma is involved in cell-cycle control and prevents the accumulation of chromosomal damage. The recent identification of novel 14-3-3sigma-associated proteins by a targeted proteomics approach implies that 14-3-3sigma regulates diverse cellular processes, which may become deregulated after silencing of 14-3-3sigma expression in cancer cells.
Collapse
Affiliation(s)
- Dmitri Lodygin
- Molecular Oncology, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | | |
Collapse
|