1
|
Blockade of renin-angiotensin system prevents micturition dysfunction in renovascular hypertensive rats. Eur J Pharmacol 2014; 738:285-92. [PMID: 24881522 DOI: 10.1016/j.ejphar.2014.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022]
Abstract
Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.
Collapse
|
2
|
cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway. Blood 2013; 122:3533-45. [PMID: 24100445 DOI: 10.1182/blood-2013-03-487850] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP)-dependent signaling modulates platelet shape change through unknown mechanisms. We examined the effects of cAMP signaling on platelet contractile machinery. Prostaglandin E1 (PGE1)-mediated inhibition of thrombin-stimulated shape change was accompanied by diminished phosphorylation of myosin light chain (MLC). Since thrombin stimulates phospho-MLC through RhoA/Rho-associated, coiled-coil containing protein kinase (ROCK)-dependent inhibition of MLC phosphatase (MLCP), we examined the effects of cAMP on this pathway. Thrombin stimulated the membrane localization of RhoA and the formation of a signaling complex of RhoA/ROCK2/myosin phosphatase-targeting subunit 1 (MYPT1). This resulted in ROCK-mediated phosphorylation of MYPT1 on threonine 853 (thr(853)), the disassociation of the catalytic subunit protein phosphatase 1δ (PP1δ) from MYPT1 and inhibition of basal MLCP activity. Treatment of platelets with PGE1 prevented thrombin-induced phospho-MYPT1-thr(853) in a protein kinase A (PKA)-dependent manner. Examination of the molecular mechanisms revealed that PGE1 induced the phosphorylation of RhoA on serine(188) through a pathway requiring cAMP and PKA. This event inhibited the membrane relocalization of RhoA, prevented the association of RhoA with ROCK2 and MYPT1, attenuated the dissociation of PP1δ from MYPT1, and thereby restored basal MLCP activity leading to a decrease in phospho-MLC. These data reveal a new mechanism by which the cAMP-PKA signaling pathway regulates platelet function.
Collapse
|
3
|
The 2-arachidonoylglycerol effect on myosin light chain phosphorylation in human platelets. Biochimie 2013; 95:1620-8. [DOI: 10.1016/j.biochi.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/10/2013] [Indexed: 12/13/2022]
|
4
|
Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 2013; 304:C485-504. [PMID: 23325405 DOI: 10.1152/ajpcell.00161.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.
Collapse
Affiliation(s)
- Trent Butler
- Mothers and Babies Research Centre, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
5
|
Joo MC, Kim YS, Choi ES, Oh JT, Park HJ, Lee MY. Changes in the muscarinic receptors on the colonic smooth muscles of rats with spinal cord injury. Ann Rehabil Med 2011; 35:589-98. [PMID: 22506180 PMCID: PMC3309258 DOI: 10.5535/arm.2011.35.5.589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/22/2011] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate changes in (1) the colonic response to acetylcholine (Ach), (2) the muscarinic (M) receptors in the colon, and (3) the levels of colonic contraction-related proteins after a spinal cord injury (SCI). Method We divided 16 Sprague-Dawley rats into 2 groups: the control group and the SCI group. A spinal cord transection was performed surgically at the T10 vertebral level. After 1 week, the entire colon was divided into 2 segments, the proximal and distal colon. Each segment was mounted in a longitudinal or circular muscle direction in a 10-ml organ bath. We determined the intergroup differences as percentage changes in contractility after Ach treatment alone, Ach treatment with M2 receptor antagonist (AQ-RA741) pretreatment, and Ach treatment with M3 receptor antagonist (4-DAMP) pretreatment. Western blot analyses were performed to determine the expression level of RhoA, and heat shock protein 27 (HSP27). Results Compared to the control rats, the SCI rats showed an increased response to Ach along both the directions in the proximal colon (p<0.05). Compared to the control group, in the SCI group, the Ach response was significantly different in the proximal segment under AQ-RA741 pretreatment (p<0.05) and in the distal segment under 4-DAMP pretreatment (p<0.05). Findings of the western blot analyses showed a significant decrease in the level of protein gene product 9.5 in the proximal and distal colon and a significant increase in the level of RhoA and HSP27 in the proximal colon of the SCI rats. Conclusion Our results suggest that changes in colonic contractility after SCI are partly attributable to changes in the M receptor subtypes.
Collapse
Affiliation(s)
- Min Cheol Joo
- Department of Rehabilitation Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
6
|
RATTAN SATISH, PHILLIPS BENJAMINR, MAXWELL PINCKNEYJ. RhoA/Rho-kinase: pathophysiologic and therapeutic implications in gastrointestinal smooth muscle tone and relaxation. Gastroenterology 2010; 138:13-8.e1-3. [PMID: 19931260 PMCID: PMC5599165 DOI: 10.1053/j.gastro.2009.11.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- SATISH RATTAN
- Department of Medicine, Division of Gastroenterology & Hepatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA
| | - BENJAMIN R. PHILLIPS
- Department of Surgery, Division of Colon and Rectal Surgery, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA
| | - PINCKNEY J. MAXWELL
- Department of Surgery, Division of Colon and Rectal Surgery, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
7
|
Freitas MR, Eto M, Kirkbride JA, Schott C, Sassard J, Stoclet JC. Y27632, a Rho-activated kinase inhibitor, normalizes dysregulation in alpha1-adrenergic receptor-induced contraction of Lyon hypertensive rat artery smooth muscle. Fundam Clin Pharmacol 2009; 23:169-78. [PMID: 19298234 DOI: 10.1111/j.1472-8206.2008.00658.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RhoA-activated kinase (ROK) is involved in the disorders of smooth muscle contraction found in hypertension model animals and patients. We examined whether the alpha1-adrenergic receptor agonist-induced ROK signal is perturbed in resistance small mesentery artery (SMA) of Lyon genetically hypertensive (LH) rats, using a ROK antagonist, Y27632. Smooth muscle strips of SMA and aorta were isolated from LH and Lyon normotensive (LN) rats. After Ca(2+)-depletion and pre-treatment with phenylephrine (PE), smooth muscle contraction was induced by serial additions of CaCl(2). In LH SMA Ca(2+) permeated cells to a lesser extent as compared with LN SMA, while CaCl(2)-induced contraction of LH SMA was greater than that of LN SMA, indicating a higher ratio of force to Ca(2+) in LH SMA contraction (Ca(2+) sensitization). No hyper-contraction was observed in LH aorta tissues. Treatment of LH SMA with Y27632 restored both Ca(2+) permeability and Ca(2+)-force relationship to levels seen for LN SMA. In response to PE stimulation, phosphorylation of CPI-17, a phosphorylation-dependent myosin phosphatase inhibitor protein, and MYPT1 at Thr853, the inhibitory phosphorylation site of the myosin phosphatase regulatory subunit, was increased in LN SMA, but remained unchanged in LH SMA. These results suggest that the disorder in ROK-dependent Ca(2+) permeability and Ca(2+)-force relationship is responsible for LH SMA hyper-contraction. Unlike other hypertensive models, the ROK-induced hyper-contractility of LH SMA is independent of MYPT1 and CPI-17 phosphorylation, which suggests that ROK-mediated inhibition of myosin phosphatase does not affect SMA hyper-contractility in LH SMA cells.
Collapse
Affiliation(s)
- Maria Regina Freitas
- Pharmacologie et Physico-chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, Illkirch-Cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Park SY, Song HJ, Sohn UD. Participation of Rho-associated kinase in electrical stimulated and acetylcholine-induced contraction of feline esophageal smooth muscle. Eur J Pharmacol 2009; 607:220-5. [PMID: 19239907 DOI: 10.1016/j.ejphar.2009.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/21/2009] [Accepted: 02/09/2009] [Indexed: 11/18/2022]
Abstract
The RhoA/Rho-associated kinase (ROCK) signaling pathway has been known to play a critical role in Ca(2+)-sensitization of smooth muscle contraction. In this study, we investigated the role of ROCK in feline esophageal body smooth muscle contraction induced by electrical field stimulation and exogenous acetylcholine in vitro. Y-27632 [(+)-(R)-trans-4-(1-aminoethyl)-(4-pyridyl) cyclohexanecarboxamide dihydrochloride], ROCK inhibitor, and specific antibodies to ROCK1 and ROCK2 proteins, which are two isoforms of ROCK, were used. Electrical field stimulation induced off-contraction and on-contraction in the presence of N(G)-nitro-L-arginine methylester, originating from the cholinergic nerve. Y-27632 inhibited both excitatory contractions in a concentration-dependent manner. Exogenous acetylcholine concentration-dependently induced two types of contractions: an initial contraction which occurred immediately after the addition of acetylcholine during short periods, and a sustained contraction which sluggishly continued after the initial contraction. Maximal initial and sustained contractions were reached at 10(-5) M acetylcholine. Y-27632 significantly inhibited both acetylcholine-induced contractions in a concentration-dependent manner. Western blot analysis revealed that acetylcholine maximally increased the level of phosphorylation in the 20 kDa regulatory light chain of myosin II (MLC(20)) at Ser(19) from 0.25 min to 1 min, and then declined after 2 min. The level changes of MLC(20) phosphorylation during the 5 min paralleled with those of acetylcholine-induced contractions. The expression of ROCK1 and ROCK2 in membrane fractions of muscle was increased by acetylcholine; more specifically, ROCK2 continually expressed up to 5 min. Taken together, ROCK may be involved in neural-evoked and acetylcholine-induced contraction via translocation to the membrane in feline esophageal smooth muscle.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
9
|
Hashimoto R, Yumoto M, Watanabe M, Konishi M, Haraoka J, Miki T. Differential effects of an expected actin-tropomyosin binding region of heat shock protein 20 on the relaxation in skinned carotid artery and taenia cecum from guinea pig. J Smooth Muscle Res 2009; 45:63-74. [DOI: 10.1540/jsmr.45.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ryo Hashimoto
- Department of Neurosurgery; Tokyo Medical University
- Department of Physiology; Tokyo Medical University
| | - Masatoshi Yumoto
- Department of Physiology; Tokyo Medical University
- Department of Anesthesiology, The Jikei University School of Medicine
| | | | | | - Jo Haraoka
- Department of Neurosurgery; Tokyo Medical University
| | - Tamotsu Miki
- Department of Neurosurgery; Tokyo Medical University
| |
Collapse
|
10
|
Martinka P, Lai EY, Fähling M, Jankowski V, Jankowski J, Schubert R, Gaestel M, Persson AEG, Persson PB, Patzak A. Adenosine increases calcium sensitivity via receptor-independent activation of the p38/MK2 pathway in mesenteric arteries. Acta Physiol (Oxf) 2008; 193:37-46. [PMID: 18005245 DOI: 10.1111/j.1748-1716.2007.01800.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Adenosine (Ado) restores desensitized angiotensin II-induced contractions in the renal arterioles via an intracellular, receptor-independent mechanisms including the p38 mitogen-activated protein kinase (MAPK). In the present study we test the hypothesis that MAPK-activated protein kinase 2 (MK2) mediates the Ado effect downstream from p38 MAPK resulting in an increased phosphorylation of the regulatory unit of the myosin light chain (MLC(20)). METHODS AND RESULTS Contraction experiments were performed in rings of mesenteric arteries under isometric conditions in C57BL6 and MK2 knock out mice (MK2-/-). Ado pretreatment (10(-5) mol L(-1)) strongly increased Ang II sensitivity, calcium sensitivity and the phosphorylation of MLC(20). Treatment with Ado (3 x 10(-6) or 10(-5) mol L(-1) in between successive Ang II applications) enhanced the desensitized Ang II responses (second to fifth application). Ca(2+) transients were not effected by Ado. Further, blockade of type 1 and type 2 Ado receptors during treatment did not influence the effect. Type 3 receptor activation by inosine instead of Ado had no effect. Conversely, inhibition of nitrobenzylthioinosine-sensitive Ado transporters prevented the effects of Ado. Inhibition of p38 MAPK as well as use of MK2-/- mice prevented contractile Ado effects on the mesenteric arteries and the phosphorylation of MLC(20). CONCLUSION The study shows that Ado activates the p38 MAPK/MK2 pathway in vascular smooth muscle via an intracellular action, which results in an increased MLC(20) phosphorylation in concert with increased calcium sensitivity of the contractile apparatus. This mechanism can significantly contribute to the regulation of vascular tone, e.g. under post-ischaemic conditions.
Collapse
MESH Headings
- Adenosine/pharmacology
- Angiotensin II/pharmacology
- Animals
- Calcium/metabolism
- Calcium/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- MAP Kinase Signaling System/drug effects
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myosin Light Chains/metabolism
- Phosphorylation/drug effects
- Receptors, Purinergic P1/physiology
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- P Martinka
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ihalainen S, Soliymani R, Iivanainen E, Mykkänen K, Sainio A, Pöyhönen M, Elenius K, Järveläinen H, Viitanen M, Kalimo H, Baumann M. Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient. Mol Med 2007. [PMID: 17622327 DOI: 10.2119/2006-00069.ihalainen] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in the NOTCH3 gene, most which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor-like repeats in the extracellular domain of Notch3 receptor (N3ECD). CADASIL is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we used proteomic analysis to characterize the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs, and cellular stress. Our findings indicate that misfolding of Notch3 may cause endoplasmic reticulum stress and activation of unfolded protein response, leading to increased reactive oxygen species and inhibition of cell proliferation. In addition, upregulation of contractile proteins suggests an alteration in the signaling system of VSMC contraction. The accumulation of N3ECD on the cell surface possibly upregulates the angiotensin II regulatory feedback loop and thereby enhances the readiness of the cells to respond to angiotensin II stimulation.
Collapse
Affiliation(s)
- Saara Ihalainen
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ihalainen S, Soliymani R, Iivanainen E, Mykkänen K, Sainio A, Pöyhönen M, Elenius K, Järveläinen H, Viitanen M, Kalimo H, Baumann M. Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:305-14. [PMID: 17622327 PMCID: PMC1906681 DOI: 10.2119/2006–00069.ihalainen] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 03/07/2007] [Indexed: 01/13/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in the NOTCH3 gene, most which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor-like repeats in the extracellular domain of Notch3 receptor (N3ECD). CADASIL is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we used proteomic analysis to characterize the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs, and cellular stress. Our findings indicate that misfolding of Notch3 may cause endoplasmic reticulum stress and activation of unfolded protein response, leading to increased reactive oxygen species and inhibition of cell proliferation. In addition, upregulation of contractile proteins suggests an alteration in the signaling system of VSMC contraction. The accumulation of N3ECD on the cell surface possibly upregulates the angiotensin II regulatory feedback loop and thereby enhances the readiness of the cells to respond to angiotensin II stimulation.
Collapse
MESH Headings
- CADASIL/pathology
- Cells, Cultured
- Collagen/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Gels
- Gene Expression Profiling
- Humans
- Infant, Newborn
- Muscle Contraction
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/pathology
- Proteins/metabolism
- Proteome/analysis
Collapse
Affiliation(s)
- Saara Ihalainen
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sakai H, Chiba Y, Misawa M. Role of Rho kinase in endothelin-1-induced phosphorylation of CPI-17 in rat bronchial smooth muscle. Pulm Pharmacol Ther 2006; 20:734-9. [PMID: 17071121 DOI: 10.1016/j.pupt.2006.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 06/12/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
It has been reported that CPI-17 (protein kinase C (PKC)-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase (MLCP) of 17 kDa) was phosphorylated by excitatory agonists in smooth muscle contraction. However, endothelin-1 (ET-1)-mediated regulation of CPI-17 in bronchial smooth muscle has not been documented. We therefore investigated whether phosphorylation of CPI-17 is induced by ET-1 in rat bronchial smooth muscle. Moreover, the role of Rho kinase (ROCK; Rho-associated coiled-coil forming protein kinase) is investigated in phosphorylation of CPI-17 induced by ET-1 in rat bronchial smooth muscle. The ET-1-induced contraction was attenuated by Y-27632 (10(-6) M), a ROCK inhibitor. ET-1 induced a phosphorylation of CPI-17 with a phosphorylation of myosin light chain (MLC); those phosphorylation responses were significantly inhibited by Y-27632 (10(-6) M). These findings suggest that the activation of ROCK is involved in force development and CPI-17 phosphorylation induced by ET-1 stimulation in rat bronchial smooth muscle. Thus, RhoA/ROCK/CPI-17 pathway is considered to play an important role in the ET-1-induced Ca(2+) sensitisation of bronchial smooth muscle contraction.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
14
|
Patil SB, Bitar KN. RhoA- and PKC-alpha-mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2006; 290:G83-95. [PMID: 16179599 DOI: 10.1152/ajpgi.00178.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Agonist-induced activation of the RhoA/Rho kinase (ROCK) pathway results in inhibition of myosin phosphatase and maintenance of myosin light chain (MLC20) phosphorylation. We have shown that RhoA/ROCKII translocates and associates with heat shock protein (HSP)27 in the particulate fraction. We hypothesize that inhibition of the 130-kDa regulatory myosin-binding subunit (MYPT) requires its association with HSP27 in the particulate fraction. Furthermore, it is not certain whether regulation of MYPT by CPI-17 or by ROCKII is due to cross talk between RhoA and PKC-alpha. Presently, we examined the cross talk between RhoA and PKC-alpha in the regulation of MYPT phosphorylation in rabbit colon smooth muscle cells. Acetylcholine induced 1) sustained phosphorylation of PKC-alpha, CPI-17, and MYPT; 2) an increase in the association of phospho-MYPT with HSP27 in the particulate fraction; 3) a decrease in myosin phosphatase activity (66.21+/-3.52 and 42.19+/-3.85% nM/ml lysate at 30 s and 4 min); and 4) an increase in PKC activity (298.12+/-46.60% and 290.59+/-22.07% at 30 s and 4 min). Inhibition of RhoA/ROCKII by Y-27632 inhibited phosphorylation of MYPT and its association with HSP27. Both Y27632 and a negative dominant construct of RhoA inhibited phosphorylation of MYPT and CPI-17. Inhibition of PKCs or calphostin C or selective inhibition of PKC-alpha by negative dominant constructs inhibited phosphorylation of MYPT and CPI-17. The results suggest that 1) acetylcholine induces activation of both RhoA and/or PKC-alpha pathways, suggesting cross talk between RhoA and PKC-alpha resulting in phosphorylation of MYPT, inhibition of myosin phosphatase activity, and maintenance of MLC phosphorylation; and 2) phosphorylated MYPT is associated with HSP27 and translocated to the particulate fraction, suggesting a scaffolding role for HSP27 in mediating the association of the complex MYPT/RhoA-ROCKII. Thus both pathways (PKC and RhoA) converge on the regulation of myosin phosphatase activities and modulate sustained phosphorylation of MLC20.
Collapse
Affiliation(s)
- Suresh B Patil
- Division of Pediatric Gastroenterology, University of Michigan Medical School, 1150 W. Medical Center Dr., MSRB 1, Rm. A520, Ann Arbor, MI 48109-0656, USA
| | | |
Collapse
|
15
|
Knock GA, De Silva AS, Snetkov VA, Siow R, Thomas GD, Shiraishi M, Walsh MP, Ward JPT, Aaronson PI. Modulation of PGF2alpha- and hypoxia-induced contraction of rat intrapulmonary artery by p38 MAPK inhibition: a nitric oxide-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1039-48. [PMID: 16055481 DOI: 10.1152/ajplung.00094.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms through which p38 mitogen-activated protein kinase (p38 MAPK) is involved in smooth muscle contraction remain largely unresolved. We examined the role of p38 MAPK in prostaglandin F(2alpha) (PGF(2alpha))-induced vasoconstriction and in hypoxic pulmonary vasoconstriction (HPV) of rat small intrapulmonary arteries (IPA). The p38 MAPK inhibitors SB-203580 and SB-202190 strongly inhibited PGF(2alpha)-induced vasoconstriction, with IC(50)s of 1.6 and 1.2 microM, whereas the inactive analog SB-202474 was approximately 30-fold less potent. Both transient and sustained phases of HPV were suppressed by SB-203580, but not by SB-202474 (both 2 microM). Western blot analysis revealed that PGF(2alpha) (20 microM) increased phosphorylation of p38 MAPK and of heat shock protein 27 (HSP27), and this was abolished by SB-203580 but not by SB-202474 (both 2 microM). Endothelial denudation or blockade of endothelial nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly suppressed the relaxation of PGF(2alpha)-constricted IPA by SB-203580, but not by SB-202474. Similarly, the inhibition of HPV by SB-203580 was prevented by prior treatment with L-NAME. SB-203580 (2 microM), but not SB-202474, enhanced relaxation-induced by the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in endothelium-denuded IPA constricted with PGF(2alpha). In alpha-toxin-permeabilized IPA, SB-203580-induced relaxation occurred in the presence but not the absence of the NO donor sodium nitroprusside (SNP); SB-202474 was without effect even in the presence of SNP. In intact IPA, neither PGF(2alpha)- nor SNAP-mediated changes in cytosolic free Ca(2+) were affected by SB-203580. We conclude that p38 MAPK contributes to PGF(2alpha)- and hypoxia-induced constriction of rat IPA primarily by antagonizing the underlying Ca(2+)-desensitizing actions of NO.
Collapse
Affiliation(s)
- Greg A Knock
- Dept. of Asthma, Allergy & Respiratory Science, School of Medicine, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gerthoffer WT. Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 2005; 288:G849-53. [PMID: 15826932 DOI: 10.1152/ajpgi.00530.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stimulation of muscarinic M3 and M2 receptors on gastrointestinal smooth muscle elicits contraction via activation of G proteins that are coupled to a diverse set of downstream signaling pathways and effector proteins. Many studies suggest a canonical excitation-contraction coupling pathway that includes activation of phospholipases, production of inositol 1,4,5-trisphosphate and diacylglycerol, release of calcium from the sarcoplasmic reticulum, activation of L-type calcium channels, and activation of nonselective cation channels. These events lead to elevated intracellular calcium concentration, which activates myosin light chain kinase to phosphorylate and activate myosin II thus causing contraction. In addition, muscarinic receptors are coupled to signaling pathways that modulate the effect of activator calcium. The Rho/Rho kinase pathway inhibits myosin light chain phosphatase, one of the key steps in sensitization of the contractile proteins to calcium. Phosphatidylinositol 3-kinases and Src family tyrosine kinases are also activated by muscarinic agonists. Src family tyrosine kinases regulate L-type calcium and nonselective cation channels. Src activation also leads to activation of ERK and p38 MAPKs. ERK MAPKs phosphorylate caldesmon, an actin filament binding protein. P38 MAPKs activate phospholipases and MAPKAP kinase 2/3, which phosphorylate HSP27. HSP27 may regulate cross-bridge function, actin filament formation, and actin filament attachment to the cell membrane. In addition to the well-known role of M3 muscarinic receptors to regulate myoplasmic calcium levels, the integrated effect of muscarinic activation probably also includes signaling pathways that modulate phospholipases, cyclic nucleotides, contractile protein function, and cytoskeletal protein function.
Collapse
Affiliation(s)
- William T Gerthoffer
- University of Nevada School of Medicine, Department of Pharmacology, Reno, Nevada 89557-0270, USA.
| |
Collapse
|
17
|
Abstract
The present review is an attempt to put into perspective the available information on the putative changes in cellular mechanisms of the contractile properties of the aging gastrointestinal (GI) smooth muscle. Information on smooth muscle of the GI tract is scanty. Smooth muscle cells from old rats (32 months old) exhibit limited cell length distribution and diminished contractility. The observed reduced contractile response may be due to the effect of aging on signal transduction pathways, especially an inhibition of the tyrosine kinase-Src kinase pathway, a reduced activation of the PKCalpha pathway, a reduced association of contractile proteins (HSP27-tropomyosin, HSP27-actin, and actin-myosin). Levels of HSP27-phosphorylation are also reduced compared to adult rats. Regulation of GI motility is a complex mechanism of signal transduction and interaction of signaling and contractile proteins. It is suggested that further studies to elucidate the role of HSP27 in aging smooth muscle of the GI tract are needed.
Collapse
Affiliation(s)
- Khalil N Bitar
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
18
|
Williams KL, Rahimtula M, Mearow KM. Hsp27 and axonal growth in adult sensory neurons in vitro. BMC Neurosci 2005; 6:24. [PMID: 15819993 PMCID: PMC1087488 DOI: 10.1186/1471-2202-6-24] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Accepted: 04/08/2005] [Indexed: 11/10/2022] Open
Abstract
Background Neurite growth can be elicited by growth factors and interactions with extracellular matrix molecules like laminin. Among the targets of the signalling pathways activated by these stimuli are cytoskeletal elements, such as actin, tubulin and neurofilaments. The cytoskeleton can also be modulated by other proteins, such as the small heat shock protein Hsp27. Hsp27 interacts with actin and tubulin in non-neuronal cells and while it has been suggested to play a role in the response of some neurons to injury, there have been no direct studies of its contribution to axonal regeneration. Results We have investigated neurite initiation and process extension using cultures of adult dorsal root ganglion (DRG) sensory neurons and a laminin stimulation paradigm. Employing confocal microscopy and biochemical analyses we have examined localization of Hsp27 at early and later stages of neurite growth. Our results show that Hsp27 is colocalized with actin and tubulin in lamellopodia, filopodia, focal contacts and mature neurites and growth cones. Disruption of the actin cytoskeleton with cytochalasin D results in aberrant neurite initiation and extension, effects which may be attributable to alterations in actin polymerization states. Inhibition of Hsp27 phosphorylation in our cultures results in an atypical growth pattern that may be attributable to an effect of pHsp27 on the stability of the actin cytoskeleton. Conclusion We observed colocalization of the phosphorylated and non-phosphorylated forms of Hsp27 with actin and tubulin in both very early and later stages of neurite growth from cultured adult DRG neurons. The colocalization of Hsp27 and pHsp27 with actin in lamellopodia and focal contacts at early stages of neurite growth, and in processes, branch points and growth cones at later stages, suggests that Hsp27 may play a role in neuritogenesis and subsequent neurite extension, and potentially in the patterning of this growth. Hsp27 has been reported to play a key role in modulating actin cytoskeletal dynamics as an actin-capping protein in non-neuronal cells. Our results suggest that this may also be the case in neurons and support a role for Hsp27 in neurite outgrowth via its phosphorylation state-dependent interactions with actin.
Collapse
Affiliation(s)
- Kristy L Williams
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Masuma Rahimtula
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Karen M Mearow
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| |
Collapse
|
19
|
Somara S, Pang H, Bitar KN. Agonist-induced association of tropomyosin with protein kinase Calpha in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G268-76. [PMID: 15486343 DOI: 10.1152/ajpgi.00330.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smooth muscle contraction regulated by myosin light chain phosphorylation is also regulated at the thin-filament level. Tropomyosin, a thin-filament regulatory protein, regulates contraction by modulating actin-myosin interactions. Present investigation shows that acetylcholine induces PKC-mediated and calcium-dependent phosphorylation of tropomyosin in colonic smooth muscle cells. Our data also shows that acetylcholine induces a significant and sustained increase in PKC-mediated association of tropomyosin with PKCalpha in the particulate fraction of colonic smooth muscle cells. Immunoblotting studies revealed that in colonic smooth muscle cells, there is no significant change in the amount of tropomyosin or actin in particulate fraction in response to acetylcholine, indicating that the increased association of tropomyosin with PKCalpha in the particulate fraction may be due to acetylcholine-induced translocation of PKCalpha to the particulate fraction. To investigate whether the association of PKCalpha with tropomyosin was due to a direct interaction, we performed in vitro direct binding assay. Tropomyosin cDNA amplified from colonic smooth muscle mRNA was expressed as GST-tropomyosin fusion protein. In vitro binding experiments using GST-tropomyosin and recombinant PKCalpha indicated direct interaction of tropomyosin with PKCalpha. PKC-mediated phosphorylation of tropomyosin and direct interaction of PKCalpha with tropomyosin suggest that tropomyosin could be a substrate for PKC. Phosphorylation of tropomyosin may aid in holding the slided tropomyosin away from myosin binding sites on actin, resulting in actomyosin interaction and sustained contraction.
Collapse
Affiliation(s)
- Sita Somara
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109-0658, USA
| | | | | |
Collapse
|