1
|
Tsuji S, Kohyanagi N, Mizuno T, Ohama T, Sato K. Perphenazine exerts antitumor effects on HUT78 cells through Akt dephosphorylation by protein phosphatase 2A. Oncol Lett 2020; 21:113. [PMID: 33376545 PMCID: PMC7751355 DOI: 10.3892/ol.2020.12374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Sezary syndrome is a rare type of non-Hodgkin lymphoma. Protein phosphatase 2A (PP2A) is an important tumor suppressor whose activity is widely inhibited in a variety of tumors. Recently, reactivation of PP2A has attracted increasing attention as a promising approach for cancer therapy. Phenothiazine anti-psychotic perphenazine (PPZ) exerts antitumor effects by reactivating PP2A. The present study investigated the molecular mechanism underling the antitumor effects of PPZ in the neuroblastoma rat sarcoma oncogene (NRAS)-mutated Sezary syndrome cell line, HUT78. The results of the present study demonstrated that PPZ induced the dephosphorylation of Akt and ERK1/2, and triggered apoptosis in HUT78 cells. In addition, a PP2A inhibitor blocked the PPZ-mediated dephosphorylation of Akt but did not affect that of ERK1/2. The pharmacological inhibition of Akt and ERK1/2 signaling revealed that Akt activity serves an important role in the survival of HUT78 cells. The present data suggested that suppressing Akt activity by PP2A activation may be an attractive antitumor strategy for NRAS-mutated Sezary syndrome.
Collapse
Affiliation(s)
- Shunya Tsuji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takuya Mizuno
- The Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
2
|
Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep 2020; 10:15837. [PMID: 32985581 PMCID: PMC7522078 DOI: 10.1038/s41598-020-72822-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
The Dlx5 homeobox gene was first implicated as an oncogene in a T-ALL mouse model expressing myristoylated (Myr) Akt2. Furthermore, overexpression of Dlx5 was sufficient to drive T-ALL in mice by directly activating Akt and Notch signaling. These findings implied that Akt2 cooperates with Dlx5 in T-cell lymphomagenesis. To test this hypothesis, Lck-Dlx5;Lck-MyrAkt2 transgenic mice were generated. MyrAkt2 synergized with Dlx5 to greatly accelerate and enhance the dissemination of T-lymphomagenesis. RNA-seq analysis performed on lymphomas from Lck-Dlx5;Lck-MyrAkt mice revealed upregulation of genes involved in the Wnt and cholesterol biosynthesis pathways. Combined RNA-seq and ChIP-seq analysis of lymphomas from Lck-Dlx5;Lck-MyrAkt mice demonstrated that β-catenin directly regulates genes involved in sterol regulatory element binding transcription factor 2 (Srebf2)-cholesterol synthesis. These lymphoma cells had high Lef1 levels and were highly sensitive to β-catenin and Srebf2-cholesterol synthesis inhibitors. Similarly, human T-ALL cell lines with activated NOTCH and AKT and elevated LEF1 levels were sensitive to inhibition of β-catenin and cholesterol pathways. Furthermore, LEF1 expression positively correlated with expression of genes involved in the cholesterol synthesis pathway in primary human T-ALL specimens. Together, these data suggest that targeting β-catenin and/or cholesterol biosynthesis, together with AKT, could have therapeutic efficacy in a subset of T-ALL patients.
Collapse
|
3
|
Hussain AR, Siraj AK, Ahmed M, Bu R, Pratheeshkumar P, Alrashed AM, Qadri Z, Ajarim D, Al-Dayel F, Beg S, Al-Kuraya KS. XIAP over-expression is an independent poor prognostic marker in Middle Eastern breast cancer and can be targeted to induce efficient apoptosis. BMC Cancer 2017; 17:640. [PMID: 28893228 PMCID: PMC5594504 DOI: 10.1186/s12885-017-3627-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer is the most common cancer in females and is ranked second in cancer-related deaths all over the world in women. Despite improvement in diagnosis, the survival rate of this disease has still not improved. X-linked Inhibitor of Apoptosis (XIAP) has been shown to be over-expressed in various cancers leading to poor overall survival. However, the role of XIAP in breast cancer from Middle Eastern region has not been fully explored. Methods We examined the expression of XIAP in more than 1000 Middle Eastern breast cancer cases by immunohistochemistry. Apoptosis was measured by flow cytometry. Protein expression was determined by western blotting. Finally, in vivo studies were performed on nude mice following xenografting and treatment with inhibitors. Results XIAP was found to be over-expressed in 29.5% of cases and directly associated with clinical parameters such as tumor size, extra nodal extension, triple negative breast cancer and poorly differentiated breast cancer subtype. In addition, XIAP over-expression was also significantly associated with PI3-kinase pathway protein; p-AKT, proliferative marker; Ki-67 and anti-apoptotic marker; PARP. XIAP over-expression in our cohort of breast cancer was an independent poor prognostic marker in multivariate analysis. Next, we investigated inhibition of XIAP using a specific inhibitor; embelin and found that embelin treatment led to inhibition of cell viability and induction of apoptosis in breast cancer cells. Finally, breast cancer cells treated with combination of embelin and PI3-kinase inhibitor; LY294002 synergistically induced apoptosis and caused tumor growth regression in vivo. Conclusion These data suggest that XIAP may be playing an important role in the pathogenesis of breast cancer and can be therapeutically targeted either alone or in combination with PI3-kinase inhibition to induce efficient apoptosis in breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12885-017-3627-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Azhar R Hussain
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Abdul Khalid Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maqbool Ahmed
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | | | - Zeeshan Qadri
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Dahish Ajarim
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shaham Beg
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia. .,AlFaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Platonova N, Manzo T, Mirandola L, Colombo M, Calzavara E, Vigolo E, Cermisoni GC, De Simone D, Garavelli S, Cecchinato V, Lazzari E, Neri A, Chiaramonte R. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation. Genes Chromosomes Cancer 2015; 54:516-526. [DOI: 10.1002/gcc.22264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/08/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- Natalia Platonova
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Teresa Manzo
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Leonardo Mirandola
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Michela Colombo
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Elisabetta Calzavara
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Emilia Vigolo
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Greta Chiara Cermisoni
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Daria De Simone
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Silvia Garavelli
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Valentina Cecchinato
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Elisa Lazzari
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health; Università Degli Studi Di Milano; Hematology, Fondazione Cà Granda IRCCS Policlinico; via F. Sforza 35 20122 Milan Italy
| | - Raffaella Chiaramonte
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| |
Collapse
|
5
|
Goswami A, Shah BA, Kumar A, Rizvi MA, Kumar S, Bhushan S, Malik FA, Batra N, Joshi A, Singh J. Antiproliferative potential of a novel parthenin analog P16 as evident by apoptosis accompanied by down-regulation of PI3K/AKT and ERK pathways in human acute lymphoblastic leukemia MOLT-4 cells. Chem Biol Interact 2014; 222:60-7. [PMID: 25196075 DOI: 10.1016/j.cbi.2014.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/09/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Leukemia is one of the deadliest types of cancer. Lack of effective treatment strategies has resulted in an extensive quest for new therapeutic molecules against it. This study explores the molecular mechanism of anticancer activity of P16, a semisynthetic analog of parthenin, against the human acute lymphoblastic leukemia MOLT-4 cells. P16 displayed antiproliferative activity in different cancer cell lines; however, MOLT-4 cells showed highest sensitivity for P16 with IC50 value of 0.6μM. Further studies revealed that P16 induced cell death by apoptosis. It caused mitochondrial stress, which was mediated by the translocation of Bax from cytosol to mitochondria and release of cytochrome c into the cytosol and consequent activation of caspase-9. However, P16 was also able to activate caspase-8, thus involving both extrinsic and intrinsic pathways of apoptosis. Further, activation of caspase-3 led to cleavage of its target proteins PARP-1 and ICAD, which resulted in apoptotic DNA damage. P16 induced apoptosis was accompanied by the down-regulation of important leukemic cell survival proteins like pAKT (S473), pAKT (T308), pP70S6K, pCRAF, and pERK1/2. However, inhibition of caspases by Z-VAD-FMK reversed the down-regulatory effect of P16 on pAKT (S473) and pP70S6K, as evident by the cell viability assay and flow cytometric analysis but this inhibition did not completely reverse the antiproliferative effect of P16, thereby indicating the role of additional factors apart from caspases in P16 induced apoptosis in MOLT-4 cells. Owing to its antiproliferative potential against leukemia cells, P16 can further be explored as an effective therapeutics against leukemia.
Collapse
Affiliation(s)
- Akshra Goswami
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Bhahwal Ali Shah
- Division of Natural Products Microbes, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India
| | - Suresh Kumar
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Shashi Bhushan
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Fayaz Ahmed Malik
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutt Sanatan Dharam College, Sector-32, Chandigarh 160047, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India.
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
6
|
Bu R, Hussain AR, Al-Obaisi KAS, Ahmed M, Uddin S, Al-Kuraya KS. Bortezomib inhibits proteasomal degradation of IκBα and induces mitochondrial dependent apoptosis in activated B-cell diffuse large B-cell lymphoma. Leuk Lymphoma 2014; 55:415-424. [PMID: 23697845 DOI: 10.3109/10428194.2013.806799] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activated B-cell type lymphoma (ABC), a subgroup of diffuse large B-cell lymphoma (DLBCL), has a worse survival after upfront chemotherapy and is characterized by constitutive activation of the anti-apoptotic nuclear factor-κB (NFκB) pathway. The implication of NFκB inhibition in ABC has not yet been fully explored as a potential therapeutic target. Therefore, a panel of ABC cell lines was used to examine the effect of bortezomib, a proteasome inhibitor which blocks degradation of IκBα and consequently inhibits NFκB activity. Our data showed that bortezomib caused a dose-dependent growth inhibition and induction of apoptosis in all cell lines studied. We next determined the status of the NFκB pathway following bortezomib treatment and found that there was accumulation of IκBα without affecting its phosphorylation status at an early time point. Electrophoretic mobility shift assay showed that bortezomib treatment inhibited constitutive nuclear NFκB in ABC cell lines. Furthermore, treatment of ABC cell lines with bortezomib for 48 h also down-regulated the expression of NFκB-regulated gene products, such as IκBα, Bcl-2, Bcl-Xl, XIAP and survivin, leading to apoptosis via the mitochondrial apoptotic pathway. Altogether, these results suggest that NFκB may be a potential target for therapeutic intervention in DLBCL using proteasomal inhibitors such as bortezomib.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | | | | | | | | | | |
Collapse
|
7
|
Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway. Chem Biol Interact 2013; 205:198-211. [PMID: 23911876 DOI: 10.1016/j.cbi.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023]
Abstract
In this study the role of PI3K/Akt signaling pathway in arsenic trioxide (ATO)-treated parental Jurkat cells and also in derived ATO-resistant clones grown in the presence of given ATO concentration was investigated. ATO-resistant clones (cultured for 8-12weeks in the presence of 1, 2.5 and 5μM ATO) were characterized by high viability in the presence of ATO but slower growth rate compared to the parental cells. Morphological and functional characterization of derived ATO-resistant clones revealed that they did not differ fundamentally from parental Jurkat cells in terms of cell size, level of GSH, the lysosomal fluorescence or CD95/Fas surface antigen expression. However, a slight increase in the mitochondrial potential (JC-1 staining) was detected in the clones compared to parental Jurkat cells. Side population analysis (Vybrant DyeCycle Violet™ staining) in ATO resistant clones did not indicate any enrichment withcancer stem cells. Akt1/2, AktV or wortmannin inhibitors decreased viability of ATO-resistant clones grown in the presence of ATO, with no effect on ATO-treated parental cells. Flow cytometry analysis showed that ATO decreased the level of p-Akt in ATO-treated parental cells, while the resistant clones exhibited higher levels of p-Akt immunostaining than parental Jurkat cells. Expression analysis of 84 genes involved in the PI3K/Akt pathway revealed that this pathway was predominantly active in ATO-resistant clones. c-JUN seems to play a key role in the induction of cell death in ATO-treated parental Jurkat cells, as dose-dependent strong up-regulation of JUN was specific for the ATO-treated parental Jurkat cells. On the other hand, changes in expression of cyclin D1 (CCND1), insulin receptor substrate 1 (IRS1) and protein kinase C isoforms (PRKCZ,PRKCB and PRKCA) may be responsible for the induction of resistance to ATO. The changes in expression of growth factor receptor-bound protein 10 (GRB10) observed in ATO-resistant clones suggest a possibility of induction of different mechanisms in development of resistance to ATO depending on the drug concentration and thus involvement of different signaling mediators.
Collapse
|
8
|
Suppipat K, Park CS, Shen Y, Zhu X, Lacorazza HD. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells. PLoS One 2012; 7:e51251. [PMID: 23251470 PMCID: PMC3521002 DOI: 10.1371/journal.pone.0051251] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1), and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.
Collapse
Affiliation(s)
- Koramit Suppipat
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ye Shen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiao Zhu
- Summer Medical and Research Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
9
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE, Khwaja A. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia 2012; 27:650-60. [PMID: 23038273 DOI: 10.1038/leu.2012.285] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PI3K, mTOR and NOTCH pathways are frequently dysregulated in T-cell acute lymphoblastic leukaemia (T-ALL). Blockade of PI3K and mTOR with the dual inhibitor PI-103 decreased proliferation in all 15 T-ALL cell lines tested, inducing cell death in three. Combined PI3K/mTOR/NOTCH inhibition (with a γ-secretase inhibitor (GSI)) led to enhanced cell-cycle arrest and to subsequent cell death in 7/11 remaining NOTCH mutant cell lines. Commitment to cell death occurred within 48-72 h and was maximal when PI3K, mTOR and NOTCH activities were inhibited. PI-103 addition led to upregulation of c-MYC, which was blocked by coincubation with a GSI, indicating that PI3K/mTOR inhibition resulted in activation of the NOTCH-MYC pathway. Microarray studies showed a global increase in NOTCH target gene expression upon PI3K/mTOR inhibition. NOTCH-MYC-induced resistance to PI3K/mTOR inhibition was supported by synergistic cell death induction by PI-103 and a small molecule c-MYC inhibitor, and by reduction of the cytotoxic effect of PI-103+GSI by c-MYC overexpression. These results show that drugs targeting PI3K/mTOR can upregulate NOTCH-MYC activity, have implications for the use of PI3K inhibitors for the treatment of other malignancies with activated NOTCH, and provide a rational basis for the use of drug combinations that target both the pathways.
Collapse
Affiliation(s)
- C Shepherd
- Department of Haematology, University College, London, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012; 3:954-87. [PMID: 23006971 PMCID: PMC3660063 DOI: 10.18632/oncotarget.652] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bu R, Uddin S, Ahmed M, Hussain AR, Alsobhi S, Amin T, Al-Nuaim A, Al-Dayel F, Abubaker J, Bavi P, Al-Kuraya KS. c-Met inhibitor synergizes with tumor necrosis factor-related apoptosis-induced ligand to induce papillary thyroid carcinoma cell death. Mol Med 2012; 18:167-177. [PMID: 22113498 PMCID: PMC3320136 DOI: 10.2119/molmed.2011.00238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/15/2011] [Indexed: 11/06/2022] Open
Abstract
The Met receptor tyrosine kinase is overexpressed and/or activated in variety of human malignancies. Previously we have shown that c-Met is overexpressed in Middle Eastern papillary thyroid carcinoma (PTC) and significantly associated with an aggressive phenotype, but its role has not been fully elucidated in PTC. The aim of this study was to determine the functional link between the c-Met/AKT signaling pathway and death receptor 5 (DR5) in a large cohort of PTC in a tissue microarray format followed by functional studies using PTC cell lines and nude mice. Our data showed that high expressions of p-Met and DR5 were significantly associated with an aggressive phenotype of PTC and correlated with BRAF mutation. Treatment of PTC cell lines with PHA665752, an inhibitor of c-Met tyrosine kinase, inhibited cell proliferation and induced apoptosis via the mitochondrial pathway in PTC cell lines. PHA665752 treatment or expression of c-Met small interfering (si)RNA resulted in dephosphorylation of c-Met, AKT and its downstream effector molecules. Furthermore, PHA665752 treatment upregulated DR5 expression via generation of reactive oxygen species in PTC cell lines, and synergistically potentiated death receptor-induced apoptosis with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Finally, cotreatment with PHA665752 and TRAIL caused more pronounced effects on PTC xenograft tumor growth in nude mice. Our data suggest that the c-Met/AKT pathway may be a potential target for therapeutic intervention for treatment of PTC refractory to conventionally therapeutic modalities.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia
| | - Shahab Uddin
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia
| | - Maqbool Ahmed
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia
| | - Azhar R Hussain
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia
| | - Saif Alsobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarek Amin
- Department of Endocrinology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdurahman Al-Nuaim
- Department of Endocrinology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jehad Abubaker
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia
| | - Prashant Bavi
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Penas C, Ramachandran V, Ayad NG. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis. Front Oncol 2012; 1:60. [PMID: 22655255 PMCID: PMC3356048 DOI: 10.3389/fonc.2011.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C's cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.
Collapse
Affiliation(s)
- Clara Penas
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami, FL, USA
| | | | | |
Collapse
|
14
|
Cheng J, Phong B, Wilson DC, Hirsch R, Kane LP. Akt fine-tunes NF-κB-dependent gene expression during T cell activation. J Biol Chem 2011; 286:36076-36085. [PMID: 21862580 DOI: 10.1074/jbc.m111.259549] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of the NF-κB signaling pathway is critical for leukocyte activation and development. Although previous studies suggested a role for the Akt kinase in coupling the T cell antigen receptor and CD28 to NF-κB activation in T cells, the nature of the role of Akt in this pathway is still unclear. Using a targeted gene profiling approach, we found that a subset of NF-κB-dependent genes required Akt for optimal up-regulation during T cell activation. The selective effects of Akt were manifest at the level of mRNA transcription and p65/RelA binding to upstream promoters and appear to be due to altered formation of the Carma1-Bcl10 complex. The proinflammatory cytokine TNF-α was found to be particularly sensitive to Akt inhibition or knockdown, including in primary human blood T cells and a murine model of rheumatoid arthritis. Our findings are consistent with a hierarchy in the expression of NF-κB-dependent genes, controlled by the strength and/or duration of NF-κB signaling. More broadly, our results suggest that defining the more graded effects of signaling, such as those demonstrated here for Akt and the NF-κB pathway, is important to understanding how cells can fine-tune signaling responses for optimal sensitivity and specificity.
Collapse
Affiliation(s)
- Jing Cheng
- Dept. of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Binh Phong
- Dept. of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - David C Wilson
- Division of Rheumatology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Raphael Hirsch
- Division of Rheumatology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Lawrence P Kane
- Dept. of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
15
|
Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Bäsecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M, McCubrey JA. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 2011; 3:192-222. [PMID: 21422497 PMCID: PMC3091517 DOI: 10.18632/aging.100296] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bavi P, Uddin S, Bu R, Ahmed M, Abubaker J, Balde V, Qadri Z, Ajarim D, Al-Dayel F, Hussain AR, Al-Kuraya KS. The biological and clinical impact of inhibition of NF-κB-initiated apoptosis in diffuse large B cell lymphoma (DLBCL). J Pathol 2011; 224:355-366. [PMID: 21506127 DOI: 10.1002/path.2864] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/28/2010] [Accepted: 01/22/2011] [Indexed: 01/15/2023]
Abstract
NF-κB is frequently over-expressed in a variety of non-Hodgkin's lymphomas (NHLs) and has been implicated in lymphomagenesis; however, its role in diffuse large B cell lymphoma (DLBCL) as a prognostic biomarker has not been fully elucidated. Therefore, we investigated the role of NF-κB and its association with clinicopathological features in a tissue microarray cohort of 230 DLBCL patient samples. We then elucidated the role of NF-κB inhibition on cell viability and apoptosis in vitro, using DLBCL cell lines. Using immunohistochemistry, NF-κB was detected in 25.6% (52/203) DLBCL tumours, was associated with activated B cell (ABC) phenotype (p = 0.0054), Epstein-Barr virus (EBV; p = 0.0080) and over-expression of the anti-apoptotic marker XIAP (p = 0.0013). DLBCL cases with nuclear expression of NF-κB showed a significantly poorer overall survival as compared to those without NF-κB expression (p = 0.0236). In a multivariate analysis using a Cox proportional hazard model for IPI and NF-κB expression, the relative risk was 2.97 for high NF-κB expression (95% CI 1.27-6.94; p = 0.0113) and 7.55 for the high-IPI group (95% CI 3.34-18.35; p < 0.0001). In vitro, Bay 11-7085 inhibited constitutively active NF-κB expression in a dose-dependent manner and inhibition of NF-κB also down-regulated expression of the downstream target gene products Bcl-2, Bcl-XL (BCL2L1), XIAP and Survivin, leading to apoptosis via activation of the mitochondrial apoptotic pathway. NF-κB over-expression was found to be an independent prognostic marker for poor survival in DLBCL. Altogether, these results suggest that NF-κB may be a useful prognostic biomarker and a potential target for therapeutic intervention in DLBCL.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- B-Lymphocytes/immunology
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/physiology
- Caspases/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Enzyme Activation/drug effects
- Female
- Herpesvirus 4, Human/isolation & purification
- Humans
- Immunophenotyping
- Lymphocyte Activation/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Male
- Middle Aged
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- NF-kappa B/physiology
- Nitriles/pharmacology
- Prognosis
- Sulfones/pharmacology
- Survival Analysis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Prashant Bavi
- Human Cancer Genomic Research, Research Center, King Fahad National Center for Children's Cancer, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hussain AR, Ahmed M, Ahmed S, Manogaran P, Platanias LC, Alvi SN, Al-Kuraya KS, Uddin S. Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med 2011; 50:978-987. [PMID: 21215312 DOI: 10.1016/j.freeradbiomed.2010.12.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 12/18/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
We provide evidence that thymoquinone (TQ), a natural compound isolated from Nigella sativa, induces growth inhibition and apoptosis in several primary effusion lymphoma (PEL) cell lines. Our data demonstrate that TQ treatment results in down-regulation of constitutive activation of AKT via generation of reactive oxygen species (ROS) and it causes conformational changes in Bax protein, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol. This leads to activation of caspase-9, caspase-3, and polyadenosine 5'-diphosphate ribose polymerase cleavage, leading to caspase-dependent apoptosis. Pretreatment of PEL cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-mediated effects. In addition, subtoxic doses of TQ sensitized PEL cells to TRAIL via up-regulation of DR5. Altogether, these findings demonstrate that TQ is a potent inducer of apoptosis in PEL cells via release of ROS. They also raise the possibility that incorporation of TQ in treatment regimens for primary effusion lymphomas may provide a novel approach to sensitizing malignant cells and provide a molecular basis for such future translational efforts.
Collapse
Affiliation(s)
- Azhar R Hussain
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Barata JT. The impact of PTEN regulation by CK2 on PI3K-dependent signaling and leukemia cell survival. ACTA ACUST UNITED AC 2010; 51:37-49. [PMID: 21035501 DOI: 10.1016/j.advenzreg.2010.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/05/2010] [Indexed: 11/16/2022]
Abstract
Gene alterations affecting elements of PI3K signaling pathway do not appear to be sufficient to explain the extremely high frequency of PI3K signaling hyperactivation in leukemia. It has been known for long that PTEN phosphorylation at the C-terminal tail, in particular by CK2, contributes to the stabilization and simultaneous inhibition of this critical tumor suppressor. However, direct evidence of the involvement of this mechanism in cancer has been gathered only recently. It is now known that CK2-mediated posttranslational, non-deleting, inactivation of PTEN occurs in T-ALL, CLL and probably other leukemias and solid tumors. To explore this knowledge for therapeutic purposes remains one of the challenges ahead.
Collapse
Affiliation(s)
- João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Unversidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
19
|
Uddin S, Hussain AR, Ahmed M, Al-Dayel F, Bu R, Bavi P, Al-Kuraya KS. Inhibition of c-MET is a potential therapeutic strategy for treatment of diffuse large B-cell lymphoma. J Transl Med 2010; 90:1346-1356. [PMID: 20531293 DOI: 10.1038/labinvest.2010.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hepatocyte growth factor/c-MET has emerged as a potential therapeutic target for several cancers; however, its role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated. In this study, we first investigated the role of c-Met in a large series of DLBCL tissues in a tissue microarray format. We then followed this with in vitro studies on DLBCL cell lines using either pharmacological inhibitors of c-Met or siRNA knockdown strategy. c-Met was found to be overexpressed in 73.2% of patients (186/254) and was significantly associated with overexpression of p-AKT (P=0.0274), p-GSK3 (P=0.0047) and Ki-67 (P=0.0012). Interestingly, c-Met overexpression was significantly more common in the germinal center subtype of DLBCL, as compared with activated B cell subtype (P=0.0002). Overexpression of c-Met in DLBCL was significantly associated with better survival (P=0.0028) and remained significant in multivariate analysis with international prognostic index, thereby confirming c-Met as independent prognostic marker for better outcome in DLBCL. In vitro pharmacological c-Met inhibition and siRNA targeted against c-Met triggered caspase-dependent apoptosis. These findings provide evidence that c-Met is an independent prognostic marker for better outcome in Middle Eastern DLBCL. This data also enlightens the fact that c-Met through AKT kinase has a critical role in carcinogenesis of DLBCL, and strongly suggest that targeting c-Met may have therapeutic value in treatment of DLBCL.
Collapse
Affiliation(s)
- Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
20
|
Hussain AR, Khan AS, Ahmed SO, Ahmed M, Platanias LC, Al‐Kuraya KS, Uddin S. Apigenin induces apoptosis via downregulation of S-phase kinase-associated protein 2-mediated induction of p27Kip1 in primary effusion lymphoma cells. Cell Prolif 2010; 43:170-183. [PMID: 20074295 PMCID: PMC6495730 DOI: 10.1111/j.1365-2184.2009.00662.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The mechanisms that regulate mitogenic and antiapoptotic signals in primary effusion lymphoma (PEL) are not well known. In efforts to identify novel approaches to block the proliferation of PEL cells, we assessed the effect of apigenin (4',5,7-trihydroxyflavone), a flavonoid on a panel of PEL cell lines. MATERIALS AND METHODS We studied the effect of apigenin on four PEL cell lines. Apoptosis was measured by annexin V/PI dual staining and DNA laddering. Protein expression was measured by immunoblotting. RESULTS Apigenin induced apoptosis in PEL cell lines in a dose dependent manner. Such effects of apigenin appeared to result from suppression of constitutively active kinase AKT resulting in down-regulation of SKP2, hypo-phosphorylation of Rb and accumulation of p27Kip1. Apigenin treatment of PEL cells caused dephosphorylation of p-Bad protein leading to down regulation of the anti-apoptotic protein, Bcl-2 and an increase in Bax/Bcl2 ratio. Apigenin treatment also triggered Bax conformational change and subsequently translocation from cytosole to mitochondria causing loss of mitochondrial membrane potential with subsequent release of cytochrome c. Released cytochrome c onto the cytosole activated caspase-9 and caspase-3, followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. Finally, treatment of PEL cells with apigenin down-regulated the expression of inhibitor of apoptosis protein (IAPs). CONCLUSIONS Altogether, these data suggest a novel function for apigenin, acting as a suppressor of AKT/PKB pathway in PEL cells, and raise the possibility that this agent may have a future therapeutic role in PEL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.
Collapse
Affiliation(s)
- A. R. Hussain
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A. S. Khan
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S. O. Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M. Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - L. C. Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology‐Oncology, Northwestern University Medical School and Lakeside Veterans Affairs Medical Center, Chicago, IL, USA
| | - K. S. Al‐Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S. Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Abstract
Although the majority of children with acute lymphoblastic leukemia (ALL) can be cured with combination chemotherapy, the challenge remains to salvage patients with resistant disease and to reduce treatment related toxicity. To meet this challenge, it will be essential to incorporate new agents targeting the biological Achilles Heels of this cancer more rapidly into currently available treatment regimen. Here we review the principles of current ALL therapy, recent advances in understanding ALL biology and discuss a selection of promising areas for drug development that may take advantage of the underlying leukemia biology. We focus particularly on strategies to interfere with common effector mechanisms that can be trigged by different individual oncogenic lesions and on new agents from drug development programs in adult oncology, as such agents will come with better chances for sustainable commercial development.
Collapse
|
22
|
Kim EJ, Lee SY, Kim TR, Choi SI, Cho EW, Kim KC, Kim IG. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21WAF1/Cip1 and PTEN/AKT pathway. Biochem Biophys Res Commun 2010; 392:448-53. [DOI: 10.1016/j.bbrc.2010.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
|
23
|
Uddin S, Hussain AR, Ahmed M, Abubaker J, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Bavi P, Al-Kuraya KS. High prevalence of fatty acid synthase expression in colorectal cancers in Middle Eastern patients and its potential role as a therapeutic target. Am J Gastroenterol 2009; 104:1790-1801. [PMID: 19491830 DOI: 10.1038/ajg.2009.230] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Many human epithelial cancers, particularly those with a poor prognosis, express high levels of fatty acid synthase (FASN), a key metabolic enzyme linked to synthesis of membrane phospholipids in cancer cells. Overexpression of FASN is linked with activation of the phosphatidylinositol-3'-kinase (PI3 K)/AKT pathway. However, the role of FASN in colorectal cancer (CRC) has not been fully elucidated. We investigated the expression of FASN and determined its functional association with the PI3/AKT pathway in CRC. METHODS Expression of FASN and its associated targets were studied by immunohistochemistry on 448 CRC tumors in a tissue microarray (TMA) format. Analysis of apoptosis and cell cycle was evaluated in vitro using CRC cell lines by flow cytometry and DNA fragmentation assays. Protein expression was determined by immunohistochemistry and western blotting. In vivo xenograft studies were performed using CRC cell lines and NUDE mice. RESULTS Correlation of FASN with various clinicopathological parameters on 448 CRC samples was assessed. Activated AKT was found in 294/409 (71.9%) of CRC and was associated with FASN overexpression. FASN expression was observed in 27.1% (109/403) of Middle Eastern CRC. Additionally, FASN expression was significantly more common in tumors characterized by microsatellite instability (MSI) than in those characterized by microsatellite stability (MSS) (P<0.01). Our in vitro data using HCT-15, an MSI CRC cell line, showed a better apoptotic response after inhibition of FASN activity as compared with Colo-320, an MSS CRC cell line. Finally, treatment of HCT-15 cell line xenografts with C-75 resulted in growth inhibition of tumors in NUDE mice via downregulation of FASN and AKT activity. CONCLUSIONS These data identify FASN as a potential biomarker and a novel therapeutic target in distinct molecular subtypes of CRC.
Collapse
Affiliation(s)
- Shahab Uddin
- Department of Human Cancer Genomic Research, King Fahad National Center for Children's Cancer and Research, Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hussain AR, Ahmed M, Ahmed SO, Al-Thari S, Khan AS, Razack S, Platanias LC, Al-Kuraya KS, Uddin S. Proteasome inhibitor MG-132 mediated expression of p27Kip1 via S-phase kinase protein 2 degradation induces cell cycle coupled apoptosis in primary effusion lymphoma cells. Leuk Lymphoma 2009; 50:1204-1213. [PMID: 19557642 DOI: 10.1080/10428190902951799] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Primary effusion lymphoma (PEL) is an incurable, aggressive B-cell malignancy that develops rapid resistance to conventional chemotherapy. MG-132, a proteasome inhibitor, suppresses cell proliferation and induces apoptosis in several PEL cell lines. Treatment of PEL cells with MG-132 results in downregulation of S-phase kinase protein 2 (SKP2) and accumulation of p27Kip1. Furthermore, MG-132 treatment of PEL cells causes Bax conformational changes, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosole. Such cytochrome c release results in sequential activation of caspases and apoptosis, while pretreatment of PEL cells with universal inhibitor of caspases, z-VAD-fmk prevents cell death induced by MG-132. Finally, our data demonstrated in PEL cells that MG-132 downregulates the expression of inhibitor of apoptosis proteins XIAP, cIAP1 and survivin. Altogether, these findings suggest that MG-132 is a potent inducer of apoptosis of PEL cells via downregulation of SKP2 leading to accumulation of p27Kip1, resulting in cell cycle arrest and apoptosis and strongly suggest that targeting the proteasomal pathway may provide a novel therapeutic approach for the treatment of PEL.
Collapse
Affiliation(s)
- Azhar R Hussain
- Human Cancer Genomic Research, King Fahad National Children's Cancer Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bartelt RR, Cruz-Orcutt N, Collins M, Houtman JCD. Comparison of T cell receptor-induced proximal signaling and downstream functions in immortalized and primary T cells. PLoS One 2009; 4:e5430. [PMID: 19412549 PMCID: PMC2673025 DOI: 10.1371/journal.pone.0005430] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human T cells play an important role in pathogen clearance, but their aberrant activation is also linked to numerous diseases. T cells are activated by the concurrent induction of the T cell receptor (TCR) and one or more costimulatory receptors. The characterization of signaling pathways induced by TCR and/or costimulatory receptor activation is critical, since these pathways are excellent targets for novel therapies for human disease. Although studies using human T cell lines have provided substantial insight into these signaling pathways, no comprehensive, direct comparison of these cell lines to activated peripheral blood T cells (APBTs) has been performed to validate their usefulness as a model of primary T cells. METHODOLOGY/PRINCIPAL FINDINGS We used quantitative biochemical techniques to compare the activation of two widely used human T cell lines, Jurkat E6.1 and HuT78 T cells, to APBTs. We found that HuT78 cells were similar to APBTs in proximal TCR-mediated signaling events. In contrast, Jurkat E6.1 cells had significantly increased site-specific phosphorylation of Pyk2, PLCgamma1, Vav1, and Erk1/Erk2 and substantially more Ca2+ flux compared to HuT78 cells and APBTs. In part, these effects appear to be due to an overexpression of Itk in Jurkat E6.1 cells compared to HuT78 cells and APBTs. Both cell lines differ from APBTs in the expression and function of costimulatory receptors and in the range of cytokines and chemokines released upon TCR and costimulatory receptor activation. CONCLUSIONS/SIGNIFICANCE Both Jurkat E6.1 and HuT78 T cells had distinct similarities and differences compared to APBTs. Both cell lines have advantages and disadvantages, which must be taken into account when choosing them as a model T cell line.
Collapse
Affiliation(s)
- Rebekah R. Bartelt
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Noemi Cruz-Orcutt
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Michaela Collins
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon C. D. Houtman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
27
|
Uddin S, Hussain A, Ahmed M, Belgaumi A, Al-Dayel F, Ajarim D, Bavi P, Al-Kuraya KS. S-phase kinase protein 2 is an attractive therapeutic target in a subset of diffuse large B-cell lymphoma. J Pathol 2008; 216:483-494. [PMID: 18850583 DOI: 10.1002/path.2433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 08/15/2008] [Indexed: 11/10/2022]
Abstract
S-phase kinase protein 2 (SKP2), an F-box protein, targets cell-cycle regulators including cycle-dependent kinase inhibitor p27KiP1 via ubiquitin-mediated degradation. SKP2 is frequently overexpressed in a variety of cancer cells and has been implicated in oncogenesis; however, its role in diffuse large B-cell lymphoma (DLBCL) has not been elucidated. Therefore, we investigated the role of SKP2 and its ubiquitin-proteasome pathway in a large series (301) of DLBCL patient samples and a panel of DLBCL cell lines. Using immunohistochemistry, SKP2 was detected in 41.6% of DLBCL tumours and was inversely associated with p27Kip1 protein level. The DLBCL subset with high SKP2 and low p27Kip1 showed a strong correlation with the proliferating index marker Ki-67 (p < 0.0001) and also with the germinal centre phenotype (p = 0.0147). Treatment of DLBCL cell lines with bortezomib or expression of SKP2-specific siRNA causes down-regulation of SKP2 and accumulation of p27Kip1, leading to suppression of growth by inducing apoptosis. Furthermore, treatment of DLBCL cells with bortezomib causes apoptosis via involving the mitochondrial pathway and activation of caspases. Finally, treatment of DLBCL cells with bortezomib down-regulated the expression of XIAP, cIAP1, and survivin. Altogether, these results suggest that SKP2 and the ubiquitin-proteasome pathway may be a potential target for therapeutic intervention in DLBCL.
Collapse
Affiliation(s)
- S Uddin
- Department of Human Cancer Genomic Research, Research Center, King Fahad National Center for Children's Cancer & Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12:1139-65. [PMID: 18694380 DOI: 10.1517/14728222.12.9.1139] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. OBJECTIVE This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. METHODS We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. RESULTS/CONCLUSIONS The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Collapse
Affiliation(s)
- Linda S Steelman
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA, Barata JT. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118:3762-74. [PMID: 18830414 PMCID: PMC2556239 DOI: 10.1172/jci34616] [Citation(s) in RCA: 357] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 08/20/2008] [Indexed: 12/13/2022] Open
Abstract
Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment.
Collapse
Affiliation(s)
- Ana Silva
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J. Andrés Yunes
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bruno A. Cardoso
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leila R. Martins
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Patrícia Y. Jotta
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Miguel Abecasis
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexandre E. Nowill
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nick R. Leslie
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Angelo A. Cardoso
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joao T. Barata
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil.
Serviço de Cardiologia Pediátrica, Hospital de Santa Cruz, Carnaxide, Portugal.
Centro Integrado de Pesquisas Oncohematologicas da Infancia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom.
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Hussain AR, Ahmed M, Al-Jomah NA, Khan AS, Manogaran P, Sultana M, Abubaker J, Platanias LC, Al-Kuraya KS, Uddin S. Curcumin suppresses constitutive activation of nuclear factor-kappa B and requires functional Bax to induce apoptosis in Burkitt's lymphoma cell lines. Mol Cancer Ther 2008; 7:3318-3329. [PMID: 18852135 DOI: 10.1158/1535-7163.mct-08-0541] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We provide evidence that curcumin, a natural compound isolated from rhizomes of plant Curcuma longa, induces apoptosis in several Burkitt's lymphoma cell lines expressing Bax protein (AS283A, KK124, and Pa682PB), whereas it has no effects in cell lines with no Bax expression (BML895 and CA46). Our data show that curcumin treatment results in down-regulation of constitutive activation of nuclear factor-kappaB (NF-kappaB) via generation of reactive oxygen species where it causes conformational changes in Bax protein leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol. This leads to activation of caspase-9, caspase-3, and poly(ADP)-ribose polymerase cleavage leading to caspase-dependent apoptosis. In addition, curcumin treatment of Burkitt's lymphoma cell lines also causes up-regulation of DR5; however, this up-regulation does not result in apoptosis. Importantly, cotreatment with curcumin and TRAIL induces apoptosis in Bax-deficient cell lines. Taken together, our findings suggest that curcumin is able to induce apoptosis in Bax-positive cell lines, whereas combinations with TRAIL result in apoptosis in Bax-negative cell lines. These findings also raise the possibility that incorporation of curcumin in treatment regimens may provide a novel approach for the treatment of Burkitt's lymphomas and provide the molecular basis for such future translational efforts.
Collapse
Affiliation(s)
- Azhar R Hussain
- Department of Human Cancer Genomic Research, King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Center, MBC 98-16, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Falà F, Blalock WL, Tazzari PL, Cappellini A, Chiarini F, Martinelli G, Tafuri A, McCubrey JA, Cocco L, Martelli AM. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-cell acute lymphoblastic leukemia. Mol Pharmacol 2008; 74:884-95. [PMID: 18577685 PMCID: PMC2659779 DOI: 10.1124/mol.108.047639] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutively activated AKT kinase is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that the novel AKT inhibitor (2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) leads to rapid cell death of T-ALL lines and patient samples. Treatment of CEM, Jurkat, and MOLT-4 cells with nanomolar doses of the inhibitor led to AKT phosphorylation accompanied by dephosphorylation and activation of the downstream target, glycogen synthase kinase-3beta. Effects were time- and dose-dependent, resulting in apoptotic cell death. Treatment of Jurkat cells with A443654 resulted in activation of caspase-2, -3, -6, -8, and -9. Apoptotic cell death was mostly dependent on caspase-2 activation, as demonstrated by preincubation with a selective pharmacological inhibitor. It is remarkable that A443654 was highly effective against the drug-resistant cell line CEM-VBL100, which expresses 170-kDa P-glycoprotein. Moreover, A443654 synergized with the DNA-damaging agent etoposide in both drug-sensitive and drug-resistant cell lines when coadministered [combination index (CI) = 0.39] or when pretreated with etoposide followed by A443654 (CI = 0.689). The efficacy of A443654 was confirmed using blasts from six patients with T-ALL, all of whom displayed low levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and constitutive phosphorylation of Akt on Ser473. At 1 microM, the inhibitor was able to induce apoptotic cell death of T-ALL blast cells, as indicated by flow cytometric analysis of samples immunostained for active (cleaved) caspase-3. Because activated AKT is seen in a large percentage of patients with T-ALL, A443654, either alone or in combination with existing drugs, may be a useful therapy for primary and drug-resistant T-ALL.
Collapse
Affiliation(s)
- Federica Falà
- Department of Human Anatomical Sciences, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Van Vlierberghe P, Pieters R, Beverloo HB, Meijerink JPP. Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia. Br J Haematol 2008; 143:153-68. [PMID: 18691165 DOI: 10.1111/j.1365-2141.2008.07314.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paediatric T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy of thymocytes that accounts for about 15% of ALL cases and for which treatment outcome remains inferior compared to B-lineage acute leukaemias. In T-ALL, leukemic transformation of maturating thymocytes is caused by a multistep pathogenesis involving numerous genetic abnormalities that drive normal T-cells into uncontrolled cell growth and clonal expansion. This review provides an overview of the current knowledge on onco- and tumor suppressor genes in T-ALL and suggests a classification of these genetic defects into type A and type B abnormalities. Type A abnormalities may delineate distinct molecular-cytogenetic T-ALL subgroups, whereas type B abnormalities are found in all major T-ALL subgroups and synergize with these type A mutations during T-cell pathogenesis.
Collapse
Affiliation(s)
- Pieter Van Vlierberghe
- Department of Paediatric Oncology/Haematology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Cardoso BA, Gírio A, Henriques C, Martins LR, Santos C, Silva A, Barata JT. Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications. ACTA ACUST UNITED AC 2008; 41:344-50. [PMID: 18488097 DOI: 10.1590/s0100-879x2008005000016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/31/2008] [Indexed: 02/14/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.
Collapse
Affiliation(s)
- B A Cardoso
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
34
|
Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I, Follo MY, McCubrey JA, Martelli AM. The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22:1106-16. [PMID: 18385752 DOI: 10.1038/leu.2008.79] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A significant impediment to the success of cancer chemotherapy is the occurrence of multidrug resistance, which, in many cases, is attributable to overexpression of membrane transport proteins, such as the 170-kDa P-glycoprotein (P-gp). Also, upregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway is known to play an important role in drug resistance, and has been implicated in the aggressiveness of a number of different cancers, including T-acute lymphoblastic leukemia (T-ALL). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine (a synthetic alkylphospholipid), on human T-ALL CEM cells (CEM-R), characterized by both overexpression of P-gp and constitutive upregulation of the PI3K/Akt network. Perifosine treatment induced death by apoptosis in CEM-R cells. Apoptosis was characterized by caspase activation, Bid cleavage and cytochrome c release from mitochondria. The proapoptotic effect of perifosine was in part dependent on the Fas/FasL interactions and c-Jun NH(2)-terminal kinase (JNK) activation, as well as on the integrity of lipid rafts. Perifosine downregulated the expression of P-gp mRNA and protein and this effect required JNK activity. Our findings indicate that perifosine is a promising therapeutic agent for treatment of T-ALL cases characterized by both upregulation of the PI3K/Akt survival pathway and overexpression of P-gp.
Collapse
Affiliation(s)
- F Chiarini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Università, di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
36
|
Calzavara E, Chiaramonte R, Cesana D, Basile A, Sherbet GV, Comi P. Reciprocal regulation of Notch and PI3K/Akt signalling in T-ALL cells In Vitro. J Cell Biochem 2008; 103:1405-12. [PMID: 17849443 DOI: 10.1002/jcb.21527] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Notch signalling plays an important role in hematopoiesis and in the pathogenesis of T-ALL. Notch is known to interact with Ras and PTEN/PI3K (phosphoinositide-3 kinase)/Akt pathways. We investigated the interaction of Notch with these pathways and the possible reciprocal regulation of these signalling systems in T-ALL cells in vitro. Our analyses indicate that the PI3K/Akt pathway is constitutively active in the four T-ALL cell lines tested. Akt phosphorylation was not altered by the sequestration of growth factors, that is, Akt activation seems to be less dependent on but not completely independent of growth factors, possibly being not subject to negative feedback regulation. PTEN expression was not detected in 3/4 cell lines tested, suggesting the loss of PTEN-mediated Akt activation. Inhibition of the PI3K/Akt pathway arrests growth and enhances apoptosis, but with no modulation of expression of Bax-alpha and Bcl-2 proteins. We analysed the relationship between Notch-1 and the PI3K/Akt signalling and show that inhibition of the Akt pathway changes Notch expression; Notch-1 protein decreased in all the cell lines upon treatment with the inhibitor. Our studies strongly suggest that Notch signalling interacts with PI3K/Akt signalling and further that this occurs in the absence of PTEN expression. The consequences of this to the signalling outcome are yet unclear, but we have uncovered a significant inverse relationship between Notch and PI3K/Akt pathway, which leads us to postulate the operation of a reciprocal regulatory loop between Notch and Ras-PI3K/Akt in the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- Elisabetta Calzavara
- Department of Biomedical Sciences and Technologies, University of Milano, LITA, via Fratelli Cevi 93, 20090 Segrate (MI), Italy
| | | | | | | | | | | |
Collapse
|
37
|
Hagenbeek TJ, Spits H. T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 2007; 22:608-19. [PMID: 18046443 DOI: 10.1038/sj.leu.2405056] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (Pten) is a tumor suppressor protein whose loss of lipid phosphatase activity is associated with lymphomagenesis. We made use of the Cre-loxP system to delete Pten expression in Lck- or CD4-expressing T-lineage cells. Mice initially showed modest thymic hyperplasia and subsequently developed expanding and infiltrating T-cell lymphomas, leading to a premature death within 5 to 23 weeks. Frequently, all thymocyte and peripheral T-cell populations displayed phenotypes characteristic for immature developing thymocyte precursors and shared elevated levels of clonally rearranged T-cell receptor (TCR) beta chains. In concert, CD2, CD5, CD3epsilon and CD44, proteins associated with increased expression and signaling capacity of both the immature pre-TCR and the mature alphabetaTCR, were more abundantly expressed, reflecting a constitutive state of activation. Although most T-cell lymphomas had acquired the capability to infiltrate the periphery, not all populations left the thymus and expanded clonally exclusively in the thymus. In line with this, only transplantation of thymocytes with infiltrating capacity gave rise to T-cell lymphoma in immunodeficient recipients. These results indicate that T-cell-specific Pten deletion during various stages of thymocyte development gives rise to clonally expanding T-cell lymphomas that frequently infiltrate the periphery, but originate in the thymus.
Collapse
Affiliation(s)
- T J Hagenbeek
- Department of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Renné C, Willenbrock K, Martin-Subero JI, Hinsch N, Döring C, Tiacci E, Klapper W, Möller P, Küppers R, Hansmann ML, Siebert R, Bräuninger A. High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia 2007; 21:780-7. [PMID: 17375124 DOI: 10.1038/sj.leu.2404594] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mediastinal large B-cell (MBL) and classical Hodgkin lymphoma (HL) have several pathogenic mechanisms in common. As we recently observed aberrant tyrosine kinase (TK) activities in HL, we now analysed also MBL for such activities. Indeed, MBL and HL were the only B-cell lymphomas where elevated cellular phospho-tyrosine contents were typical features. Three TKs, JAK2, RON and TIE1, not expressed in normal B cells, were each expressed in about 30% of MBL cases, and 75% of cases expressed at least one of the TKs. Among the intracellular pathways frequently triggered by TKs, the PI3K/AKT pathway was activated in about 40% of MBLs and essential for survival of MBL cell lines, whereas the RAF/mitogen-activated protein kinase pathway seemed to be inhibited. No activating mutations were detected in the three TKs in MBL cell lines and primary cases. RON and TIE1 were each also expressed in about 35% and JAK2 in about 53% of HL cases. JAK2 genomic gains are frequent in MBL and HL but we observed no strict correlation of JAK2 genomic status with JAK2 protein expression. In conclusion, aberrant TK activities are a further shared pathogenic mechanism of MBL and HL and may be interesting targets for therapeutic intervention.
Collapse
Affiliation(s)
- C Renné
- Senckenberg Institute for Pathology, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Zhang L, Yan M, Zheng X. Inhibition of phosphatidylinositol 3-kinase causes cell death in rat osteoblasts through inactivation of Akt. Biomed Pharmacother 2007; 61:277-84. [PMID: 17433610 DOI: 10.1016/j.biopha.2007.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Accepted: 02/12/2007] [Indexed: 12/29/2022] Open
Abstract
Previous evidences indicated that phosphatidylinositol 3-kinase (PI3-kinase) is an important regulatory molecule that is involved in the cell growth and survival, and inhibition of the PI3-kinase activity enhances apoptotic cell death. However, the relationship between PI3-kinase activity and osteoblasts, capable of new bone formation, remained unknown. In the present study, pharmacological inhibitor of PI3-kinase LY294002 was used to observe the role of the PI3-kinase in the growth of rat osteoblasts. To identify its molecular mechanism, Western blots analysis and immunocytochemistry were applied to examine changes of Akt phosphorylation and its distribution. Our data showed that inhibition of PI3-kinase activity significantly triggered the decrease of cell growth, cell apoptosis and loss of mitochondrial membrane potential (Deltapsi(m)). Osteoblastic dysfunction stimulated by LY294002 was accompanied by inactivation of Akt and its redistribution. In all these results demonstrated that inhibition of PI3-kinase induced apoptotic cell death, which was mediated by inactivation of Akt pathway in rat osteoblasts.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | | | | | | |
Collapse
|
40
|
Bornhauser BC, Bonapace L, Lindholm D, Martinez R, Cario G, Schrappe M, Niggli FK, Schäfer BW, Bourquin JP. Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood 2007; 110:2084-91. [PMID: 17537996 DOI: 10.1182/blood-2006-12-060970] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Incorporation of apoptosis-inducing agents into current therapeutic regimens is an attractive strategy to improve treatment for drug-resistant leukemia. We tested the potential of arsenic trioxide (ATO) to restore the response to dexamethasone in glucocorticoid (GC)-resistant acute lymphoblastic leukemia (ALL). Low-dose ATO markedly increased in vitro GC sensitivity of ALL cells from T-cell and precursor B-cell ALL patients with poor in vivo response to prednisone. In GC-resistant cell lines, this effect was mediated, at least in part, by inhibition of Akt and affecting downstream Akt targets such as Bad, a proapoptotic Bcl-2 family member, and the X-linked inhibitor of apoptosis protein (XIAP). Combination of ATO and dexamethasone resulted in increased Bad and rapid down-regulation of XIAP, while levels of the antiapoptotic regulator Mcl-1 remained unchanged. Expression of dominant-active Akt, reduction of Bad expression by RNA interference, or overexpression of XIAP abrogated the sensitizing effect of ATO. The inhibitory effect of XIAP overexpression was reduced when the Akt phosphorylation site was mutated (XIAP-S87A). These data suggest that the combination of ATO and glucocorticoids could be advantageous in GC-resistant ALL and reveal additional targets for the evaluation of new antileukemic agents.
Collapse
Affiliation(s)
- Beat C Bornhauser
- Department of Oncology, Children's Hospital, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hussain AR, Al-Jomah NA, Siraj AK, Manogaran P, Al-Hussein K, Abubaker J, Platanias LC, Al-Kuraya KS, Uddin S. Sanguinarine-dependent induction of apoptosis in primary effusion lymphoma cells. Cancer Res 2007; 67:3888-3897. [PMID: 17440103 DOI: 10.1158/0008-5472.can-06-3764] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary effusion lymphoma (PEL) is an incurable, aggressive B-cell malignancy that develops rapid resistance to conventional chemotherapy. In efforts to identify novel approaches to block proliferation of PEL cells, we found that sanguinarine, a natural compound isolated from the root plant Sanguinaria canadendid, inhibits cell proliferation and induces apoptosis in a dose-dependent manner in several PEL cell lines. Our data show that sanguinarine treatment of PEL cells results in up-regulation of death receptor 5 (DR5) expression via generation of reactive oxygen species (ROS) and causes activation of caspase-8 and truncation of Bid (tBid). Subsequently, tBid translocates to the mitochondria causing conformational changes in Bax, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol. Sanguinarine-induced release of cytochrome c results in activation of caspase-9 and caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage, leading to induction of caspase-dependent apoptosis. In addition, we show that pretreatment of PEL cells with carbobenzoxy-Val-Ala-Asp-fluoromethylketone, a universal inhibitor of caspases, abrogates caspase and PARP activation and prevents cell death induced by sanguinarine. Moreover, treatment of PEL cells with sanguinarine down-regulates expression of inhibitor of apoptosis proteins (IAP). Finally, N-acetylcysteine, an inhibitor of ROS, inhibits sanguinarine-induced generation of ROS, up-regulation of DR5, Bax conformational changes, activation of caspase-3, and down-regulation of IAPs. Taken together, our findings suggest that sanguinarine is a potent inducer of apoptosis of PEL cells via up-regulation of DR5 and raise the possibility that this agent may be of value in the development of novel therapeutic approaches for the treatment of PEL.
Collapse
Affiliation(s)
- Azhar R Hussain
- Human Cancer Genomic Research, King Fahad National Center for Children's Cancer and Research, Biological and Medical Research, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Suzuki E, Umezawa K, Bonavida B. Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines: involvement in chemosensitization to drug-induced apoptosis. Oncogene 2007; 26:6184-93. [PMID: 17420722 DOI: 10.1038/sj.onc.1210448] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rituximab (chimeric anti-CD20 monoclonal antibody) is currently being used, alone or in combination with chemotherapy, in the treatment of B-non-Hodgkin's lymphoma (B-NHL). We have reported that rituximab treatment of B-NHL cell lines sensitizes the drug-resistant tumor cells to apoptosis by various chemotherapeutic drugs and chemosensitization was, in large part, owing to the selective inhibition of the anti-apoptotic Bcl-(XL) gene product. The constitutive activation of the Akt pathway in B-NHL results in overexpression and functional activation of Bcl-(xL). Hence, we hypothesized that rituximab-induced inhibition of Bcl-(xL) expression and chemosensitization may result, in part, from its inhibitory activity of the Akt pathway. This hypothesis was tested using the drug-resistant Ramos and Daudi B-NHL cell lines. Time kinetic analysis revealed that treatment with rituximab inhibited phosphorylation of Akt, but not unphosphorylated Akt, and the inhibition was first detected at 6 h post-rituximab treatment. Similar time kinetics revealed rituximab-induced inhibition of p-PDK1, p-Bad, p-IKKalpha/beta and p-Ikappabetaalpha and no inhibition of unphosphorylated proteins. In addition, rituximab treatment resulted in significant increase of Bcl-(xL)-Bad heterodimeric complexes as compared to untreated cells. The role of the Akt pathway in the regulation of resistance was corroborated by the use of the Akt inhibitor, LY294002, and by transfection with siRNA Akt. Treatment of tumor cells with LY294002 or with Akt siRNA, but not control siRNA, resulted in inhibition of Bcl-(xL) expression and sensitization to drug-induced apoptosis. Although rituximab did not inhibit the Akt pathway nor sensitized the rituximab-resistant Ramos RR1 clone, treatment with LY294002 or Akt siRNA sensitized the clone to drug-induced apoptosis. The present findings demonstrate for the first time that rituximab inhibits the constitutively activated Akt pathway in B-NHL cell lines, and this inhibition contributes to sensitization of drug-resistant cells to apoptosis by chemotherapeutic drugs. The findings also identify the Akt pathway as target for therapeutic intervention in the reversal of rituximab and drug-resistant B-NHL.
Collapse
Affiliation(s)
- E Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1747, USA
| | | | | |
Collapse
|
43
|
Silbermann K, Grassmann R. Human T cell leukemia virus type 1 Tax-induced signals in cell survival, proliferation, and transformation. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T, Martinelli G, Conte R, Cocco L, McCubrey JA, Martelli AM. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007; 21:427-38. [PMID: 17215852 DOI: 10.1038/sj.leu.2404523] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A high incidence of relapses following induction chemotherapy is a major hindrance to patient survival in acute myelogenous leukemia (AML). There is strong evidence that activation of the phosphoinositide 3 kinase (PI3K)/Akt signaling network plays a significant role in rendering AML blasts drug resistant. An important mechanism underlying drug resistance is represented by overexpression of membrane drug transporters such as multidrug resistance-associated protein 1 (MRP1) or 170-kDa P-glycoprotein (P-gp). Here, we present evidence that MRP1, but not P-gp, expression is under the control of the PI3K/Akt axis in AML blasts. We observed a highly significant correlation between levels of phosphorylated Akt and MRP1 expression in AML cells. Furthermore, incubation of AML blasts with wortmannin, a PI3K pharmacological inhibitor, resulted in lower levels of phosphorylated Akt, downregulated MRP1 expression, and decreased Rhodamine 123 extrusion in an in vitro functional dye efflux assay. We also demonstrate that wortmannin-dependent PI3K/Akt inhibition upregulated p53 protein levels in most AML cases, and this correlated with diminished MRP1 expression and enhanced phosphorylation of murine double minute 2 (MDM2). Taken together, these data suggest that PI3K/Akt activation may lead to the development of chemoresistance in AML blasts through a mechanism involving a p53-dependent suppression of MRP1 expression.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Acute Disease
- Adult
- Aged
- Aged, 80 and over
- Androstadienes/pharmacology
- Bone Neoplasms/pathology
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Drug Resistance, Neoplasm/genetics
- Female
- Fluorescent Dyes/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Gene Expression Regulation, Leukemic/physiology
- Genes, p53
- Humans
- Jurkat Cells/drug effects
- Jurkat Cells/metabolism
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Male
- Middle Aged
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Osteosarcoma/pathology
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/physiology
- Proto-Oncogene Proteins c-mdm2/biosynthesis
- Proto-Oncogene Proteins c-mdm2/genetics
- Rhodamine 123/metabolism
- Tumor Suppressor Protein p53/biosynthesis
- Wortmannin
Collapse
Affiliation(s)
- P L Tazzari
- Servizio di Immunoematologia e Trasfusionale, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A, Atizado V, Al-Dayel F, Belgaumi A, El-Solh H, Ezzat A, Bavi P, Al-Kuraya KS. Role of phosphatidylinositol 3'-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 2006; 108:4178-4186. [PMID: 16946303 DOI: 10.1182/blood-2006-04-016907] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylinositol 3'-kinase (PI3K) is a key player in cell-growth signaling in a number of lymphoid malignancies, but its role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated. Therefore, we investigated the role of the PI3K/AKT pathway in a panel of 5 DLBCL cell lines and 100 clinical samples. Inhibition of PI3K by a specific inhibitor, LY294002, induced apoptosis in SUDHL4, SUDHL5, and SUDHL10 (LY-sensitive) cells, whereas SUDHL8 and OCI-LY19 (LY-resistant) cells were refractory to LY294002-induced apoptosis. AKT was phosphorylated in 5 of 5 DLBCL cell lines and inhibition of PI3K caused dephosphorylation/inactivation of constitutively active AKT, FOXO transcription factor, and GSK3 in LY-sensitive cell lines. In addition, there was a decrease in the expression level of inhibitory apoptotic protein, XIAP, in the DLBCL cell lines sensitive to LY294002 after treatment. However, no effect was observed in XIAP protein levels in the resistant DLBCL cell lines following LY294002 treatment. Finally, using immunohistochemistry, p-AKT was detected in 52% of DLBCL tumors tested. Furthermore, in univariate analysis, high p-AKT expression was associated with short survival. In multivariate analysis, this correlation was no longer significant. Altogether, these results suggest that the PI3K/AKT pathway may be a potential target for therapeutic intervention in DLBCL.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Line, Tumor
- Chromones/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Morpholines/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Shahab Uddin
- King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20:1496-510. [PMID: 16826225 DOI: 10.1038/sj.leu.2404302] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For long, T-cell acute lymphoblastic leukemia (T-ALL) remained in the shadow of precursor B-ALL because it was more seldom, and showed a normal karyotype in more than 50% of cases. The last decennia, intense research has been carried out on different fronts. On one side, development of normal thymocyte and its regulation mechanisms have been studied in multiple mouse models and subsequently validated. On the other side, molecular cytogenetics (fluorescence in situ hybridization) and mutation analysis revealed cytogenetically cryptic aberrations in almost all cases of T-ALL. Also, expression microarray analysis disclosed gene expression signatures that recapitulate specific stages of thymocyte development. Investigations are still very much actual, fed by the discovery of new genetic aberrations. In this review, we present a summary of the current cytogenetic changes associated with T-ALL. The genes deregulated by translocations or mutations appear to encode proteins that are also implicated in T-cell development, which prompted us to review the 'normal' and 'leukemogenic' functions of these transcription regulators. To conclude, we show that the paradigm of multistep leukemogenesis is very much applicable to T-ALL and that the different genetic insults collaborate to maintain self-renewal capacity, and induce proliferation and differentiation arrest of T-lymphoblasts. They also open perspectives for targeted therapies.
Collapse
Affiliation(s)
- C Graux
- Department of Hematology, Cliniques Universitaires St Luc, Catholic University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
47
|
Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, Al Kuraya K, Uddin S. Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell leukemias. Apoptosis 2006; 11:245-254. [PMID: 16502262 DOI: 10.1007/s10495-006-3392-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Curcumin has been shown to possess variety of biological functions including anti-tumor activity. The mechanism by which curcumin inhibit cell proliferation remains poorly understood. In the present report, we investigated the effect of curcumin on the activation of apoptotic pathway in T-cell acute lymphoblastic leukemia (T-ALL) malignant cells. Our data demonstrate that curcumin causes dose dependent suppression of proliferation in several T cell lines. Curcumin treatment causes the de-phosphorylation/inactivation of constitutively active AKT, FOXO transcription factor and GSK3. Curcumin also induces release of cytochrome c accompanied by activation of caspase-3 and PARP cleavage. In addition, zVAD-fmk, a universal inhibitor of caspases, prevents caspase-3 activation and abrogates cell death induced by curcumin treatment. Finally, treatment of T-ALL cells with curcumin down-regulated the expression of inhibitor of apoptosis protein (IAPs). Taken together, our finding suggest that curcumin suppresses constitutively activated targets of PI3'-kinase (AKT, FOXO and GSK3) in T cells leading to the inhibition of proliferation and induction of caspase-dependent apoptosis.
Collapse
Affiliation(s)
- A R Hussain
- King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
48
|
Mantovani I, Cappellini A, Tazzari PL, Papa V, Cocco L, Martelli AM. Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. J Cell Physiol 2006; 207:836-44. [PMID: 16526059 DOI: 10.1002/jcp.20628] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) mediated by the drug efflux protein, 170-kDa P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape cell death induced by chemotherapeutic drugs. Moreover, evidence suggests that cell lines expressing high levels of 170-kDa P-gp are less sensitive to caspase-mediated apoptosis induced by a wide range of death stimuli, including Fas ligand, tumor necrosis factor, and ultraviolet irradiation. However, the fate of 170-kDa P-gp during apoptosis is unknown. In this study, we demonstrate for the first time that 170-kDa P-gp is cleaved during apoptosis of VBL100 human T-lymphoblastoid CEM cells. Apoptotic cell death was induced by LY294002 (a pharmacological inhibitor of the phosphoinositide 3-kinase/Akt survival pathway), H2O2, and Z-LEHD-FMK (a caspase-9 inhibitor which has been recently reported to induce apoptosis in CEM cells). Using an antibody to a common epitope present in both the third and the sixth extracellular loop of P-gp, two cleavage products were detected, with an apparent molecular weight of 80 and 85 kDa. DEVD-FMK (a caspase-3 inhibitor), but not VEID-CHO (a caspase-6 inhibitor), blocked 170-kDa P-gp cleavage. Recombinant caspase-3 was able to cleave in vitro 170-kDa P-gp yielding two fragments of equal size to those generated in vivo. Considering the size of the cleaved fragments and their reactivity with antibodies, which recognize either the N-half or the C-half region of the protein, it is conceivable that the cleavage occurs intracytoplasmically. Since 170-kDa P-gp has been reported to counteract apoptosis, its cleavage may be a mechanism aimed at blocking an important cell survival component.
Collapse
Affiliation(s)
- Irina Mantovani
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università di Bologna, via Irnerio 48, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Hausherr CK, Schiffer IB, Gebhard S, Banić A, Tanner B, Kolbl H, Thoenes E, Beckers T, Spangenberg C, Prawitt D, Trost T, Zabel B, Oesch F, Hermes M, Hengstler JG. Dephosphorylation of p-ERK1/2 in relation to tumor remission after HER-2 and Raf1 blocking therapy in a conditional mouse tumor model. Mol Carcinog 2006; 45:302-8. [PMID: 16496387 DOI: 10.1002/mc.20157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several studies have shown that HER-2/neu (erbB-2) blocking therapy strategies can cause tumor remission. However, the responsible molecular mechanisms are not yet known. Both ERK1/2 and Akt/PKB are critical for HER-2-mediated signal transduction. Therefore, we used a mouse tumor model that allows downregulation of HER-2 in tumor tissue by administration of anhydrotetracycline (ATc). Switching-off HER-2 caused a rapid tumor remission by more than 95% within 7 d of ATc administration compared to the volume before switching-off HER-2. Interestingly, HER-2 downregulation caused a dephosphorylation of p-ERK1/2 by more than 80% already before tumor remission occurred. Levels of total ERK protein were not influenced. In contrast, dephosphorylation of p-Akt occurred later, when the tumor was already in remission. These data suggest that in our HER-2 tumor model dephosphorylation of p-ERK1/2 may be more critical for tumor remission than dephosphorylation of p-Akt. To test this hypothesis we used a second mouse tumor model that allows ATc controlled expression of BXB-Raf1 because the latter constitutively signals to ERK1/2, but cannot activate Akt/PKB. As expected, downregulation of BXB-Raf1 in tumor tissue caused a strong dephosphorylation of p-ERK1/2, but did not decrease levels of p-Akt. Interestingly, tumor remission after switching-off BXB-Raf1 was similarly efficient as the effect of HER-2 downregulation, despite the lack of p-Akt dephosphorylation. In conclusion, two lines of evidence strongly suggest that dephosphorylation of p-ERK1/2 and not that of p-Akt is critical for the rapid tumor remission after downregulation of HER-2 or BXB-Raf1 in our tumor model: (i) dephosphorylation of p-ERK1/2 but not that of p-Akt precedes tumor remission after switching-off HER-2 and (ii) downregulation of BXB-Raf1 leads to a similarly efficient tumor remission as downregulation of HER-2, although no p-Akt dephosphorylation was observed after switching-off BXB-Raf1.
Collapse
|
50
|
Uddin S, Hussain AR, Manogaran PS, Al-Hussein K, Platanias LC, Gutierrez MI, Bhatia KG. Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene 2005; 24:7022-7030. [PMID: 16044161 DOI: 10.1038/sj.onc.1208864] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/09/2022]
Abstract
The mechanisms that regulate induction of the antiapoptotic state and mitogenic signals in primary effusion lymphoma (PEL) are not well known. In efforts to identify novel approaches to block the proliferation of PEL cells, we found that curcumin (diferuloylmethane), a natural compound isolated from the plant Curcuma Ionga, inhibits cell proliferation and induces apoptosis in a dose dependent manner in several PEL cell lines. Such effects of curcumin appear to result from suppression of the constitutively active STAT3 through inhibition of Janus kinase 1 (JAK1). Our data also demonstrate that curcumin induces loss of mitochondrial membrane potential with subsequent release of cytochrome c and activation of caspase-3, followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. Altogether, our findings suggest a novel function for curcumin, acting as a suppressor of JAK-1 and STAT3 activation in PEL cells, leading to inhibition of proliferation and induction of caspase-dependent apoptosis. Therefore, curcumin may have a future therapeutic role in PEL and possibly other malignancies with constitutive activation of STAT3.
Collapse
Affiliation(s)
- Shahab Uddin
- King Fahad National Center for Children's Cancer and Research, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|