1
|
Gimenez AM, Gesumaría MC, Schoijet AC, Alonso GD, Flawiá MM, Racagni GE, Machado EE. Phosphatidylinositol kinase activities in Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2015; 203:14-24. [DOI: 10.1016/j.molbiopara.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
|
2
|
Henriques C, Miller MP, Catanho M, de Carvalho TMU, Krieger MA, Probst CM, de Souza W, Degrave W, Amara SG. Identification and functional characterization of a novel arginine/ornithine transporter, a member of a cationic amino acid transporter subfamily in the Trypanosoma cruzi genome. Parasit Vectors 2015; 8:346. [PMID: 26109388 PMCID: PMC4486710 DOI: 10.1186/s13071-015-0950-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/13/2015] [Indexed: 01/03/2023] Open
Abstract
Background Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for arginine. It obtains this amino acid from the host through transporters expressed on the plasma membrane and on the membranes of intracellular compartments. A few cationic amino acid transporters have been characterized at the molecular level, such as the novel intracellular arginine/ornithine transporter, TcCAT1.1, a member of the TcCAT subfamily that is composed of four almost identical open reading frames in the T. cruzi genome. Methods The functional characterization of the TcCAT1.1 isoform was performed in two heterologous expression systems. TcCAT subfamily expression was evaluated by real-time PCR in polysomal RNA fractions, and the cellular localization of TcCAT1.1 fused to EGFP was performed by confocal and immunoelectron microscopy. Results In the S. cerevisiae expression system, TcCAT1.1 showed high affinity for arginine (Km = 0.085 ± 0.04 mM) and low affinity for ornithine (Km = 1.7 ± 0.2 mM). Xenopus laevis oocytes expressing TcCAT1.1 showed a 7-fold increase in arginine uptake when they were pre-loaded with arginine, indicating that transport is enhanced by substrates on the trans side of the membrane (trans-stimulation). Oocytes that were pre-loaded with [3H]-arginine displayed a 16-fold higher efflux of [3H]-arginine compared with that of the control. Analysis of polysomal RNA fractions demonstrated that the expression of members of the arginine transporter TcCAT subfamily is upregulated under nutritional stress and that this upregulation precedes metacyclogenesis. To investigate the cellular localization of the transporter, EGFP was fused to TcCAT1.1, and fluorescence microscopy and immunocytochemistry revealed the intracellular labeling of vesicles in the anterior region, in a network of tubules and vesicles. Conclusions TcCAT1.1 is a novel arginine/ornithine transporter, an exchanger expressed in intracellular compartments that is physiologically involved in arginine homeostasis throughout the T. cruzi life cycle. The properties and estimated kinetic parameters of TcCAT1.1 can be extended to other members of the TcCAT subfamily.
Collapse
Affiliation(s)
- Cristina Henriques
- Fundação Oswaldo Cruz, Fiocruz-Mato Grosso do Sul, Rua Gabriel Abrão 92-Jardim das Nações, Campo Grande, MS, 89081-746, Brazil. .,Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, 21949-900, Brazil. .,Nucleo de Biologia Estrutural e Biomagens, Universidade Federal do Rio de Janeiro-CENABIO, Rio de Janeiro, RJ, Brazil.
| | - Megan P Miller
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| | - Marcos Catanho
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Técia Maria Ulisses de Carvalho
- Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, 21949-900, Brazil.
| | | | | | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, 21949-900, Brazil. .,Nucleo de Biologia Estrutural e Biomagens, Universidade Federal do Rio de Janeiro-CENABIO, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens-INBEB, Rio de Janeiro, Brazil.
| | - Wim Degrave
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Susan Gaye Amara
- National Institute of Mental Health, NIH Building 10 Center Driver, Room 4N222, MSC 1381, Bethesda, MD, 20892-1381, USA. .,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Abstract
Background Clathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T. cruzi (epimastigotes, trypomastigotes and amastigotes), using both polyclonal and monoclonal antibodies raised against T. cruzi recombinant proteins. Results Analysis by confocal microscopy revealed an accumulation of TcCHC and TcCLC at the cell anterior, where the flagellar pocket and Golgi complex are located. TcCLC partially colocalized with the Golgi marker TcRAB7-GFP and with ingested albumin, but did not colocalize with transferrin, a protein mostly ingested via uncoated vesicles at the cytostome/cytopharynx complex. Conclusion Clathrin heavy and light chains are expressed in T. cruzi. Both proteins typically localize anterior to the kinetoplast, at the flagellar pocket and Golgi complex region. Our data also indicate that in T. cruzi epimastigotes clathrin-mediated endocytosis of albumin occurs at the flagellar pocket, while clathrin-independent endocytosis of transferrin occurs at the cytostome/cytopharynx complex.
Collapse
|
4
|
Bayer-Santos E, Cunha-e-Silva NL, Yoshida N, Franco da Silveira J. Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasit Vectors 2013; 6:127. [PMID: 23634710 PMCID: PMC3652755 DOI: 10.1186/1756-3305-6-127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The transformation of noninfective epimastigotes into infective metacyclic trypomastigotes (metacyclogenesis) is a fundamental step in the life cycle of Trypanosoma cruzi, comprising several morphological and biochemical changes. GP82 and GP90 are glycoproteins expressed at the surface of metacyclic trypomastigote, with opposite roles in mammalian cell invasion. GP82 is an adhesin that promotes cell invasion, while GP90 acts as a negative regulator of parasite internalization. Our understanding of the synthesis and intracellular trafficking of GP82 and GP90 during metacyclogenesis is still limited. Therefore, we decided to determine whether GP82 and GP90 are expressed only in fully differentiated metacyclic forms or they start to be expressed in intermediate forms undergoing differentiation. Methods Parasite populations enriched in intermediate forms undergoing differentiation were analyzed by quantitative real-time PCR, Western blot, flow cytometry and immunofluorescence to assess GP82 and GP90 expression. Results We found that GP82 and GP90 mRNAs and proteins are expressed in intermediate forms and reach higher levels in fully differentiated metacyclic forms. Surprisingly, GP82 and GP90 presented distinct cellular localizations in intermediate forms compared to metacyclic trypomastigotes. In intermediate forms, GP82 is localized in organelles at the posterior region and colocalizes with cruzipain, while GP90 is localized at the flagellar pocket region. Conclusions This study discloses new aspects of protein expression and trafficking during T. cruzi differentiation by showing that the machinery involved in GP82 and GP90 gene expression starts to operate early in the differentiation process and that different secretion pathways are responsible for delivering these glycoproteins toward the cell surface.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | | | | | | |
Collapse
|
5
|
Batista CM, Kalb LC, Moreira CMDN, Batista GTH, Eger I, Soares MJ. Identification and subcellular localization of TcHIP, a putative Golgi zDHHC palmitoyl transferase of Trypanosoma cruzi. Exp Parasitol 2013; 134:52-60. [PMID: 23428831 DOI: 10.1016/j.exppara.2013.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.1047053508199.50), a putative T. cruzi zDHHC palmitoyl transferase. Analysis of the deduced protein sequence indicates that it contains ankyrin repeats (Ank and Ank2) and the zDHHC conserved domain, typical of zDHHC palmitoyl transferases. A TcHIP polyclonal antiserum obtained from mice immunized with the purified recombinant protein was used to study the presence and subcellular localization of the native enzyme. In western blots this antiserum recognized a protein of about 95 kDa, consistent with the predicted molecular mass of TcHIP (95.4 kDa), in whole extracts of T. cruzi epimastigotes, metacyclic trypomastigotes and intracellular amastigotes. Immunolocalization by confocal microscopy showed TcHIP labeling at the Golgi complex, co-localizing with the T. cruzi Golgi marker TcRab7-GFP. Transfectant T. cruzi epimastigotes containing a construct encoding TcHIP fused to proteins A and C (TcHIP/AC) were obtained. In western blotting experiments, the TcHIP polyclonal antiserum recognized both native and TcHIP/AC proteins in extracts of the transfectants. Confocal microscopy showed co-localization of native TcHIP with TcHIP/AC. These findings demonstrate the presence of a putative zDHHC palmitoyl transferase (TcHIP) containing ankyrin and zDHHC domains in different developmental forms of T. cruzi, and its association with the Golgi complex.
Collapse
|
6
|
Batista M, Marchini FK, Celedon PAF, Fragoso SP, Probst CM, Preti H, Ozaki LS, Buck GA, Goldenberg S, Krieger MA. A high-throughput cloning system for reverse genetics in Trypanosoma cruzi. BMC Microbiol 2010; 10:259. [PMID: 20942965 PMCID: PMC3020659 DOI: 10.1186/1471-2180-10-259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The three trypanosomatids pathogenic to men, Trypanosoma cruzi, Trypanosoma brucei and Leishmania major, are etiological agents of Chagas disease, African sleeping sickness and cutaneous leishmaniasis, respectively. The complete sequencing of these trypanosomatid genomes represented a breakthrough in the understanding of these organisms. Genome sequencing is a step towards solving the parasite biology puzzle, as there are a high percentage of genes encoding proteins without functional annotation. Also, technical limitations in protein expression in heterologous systems reinforce the evident need for the development of a high-throughput reverse genetics platform. Ideally, such platform would lead to efficient cloning and compatibility with various approaches. Thus, we aimed to construct a highly efficient cloning platform compatible with plasmid vectors that are suitable for various approaches. RESULTS We constructed a platform with a flexible structure allowing the exchange of various elements, such as promoters, fusion tags, intergenic regions or resistance markers. This platform is based on Gateway® technology, to ensure a fast and efficient cloning system. We obtained plasmid vectors carrying genes for fluorescent proteins (green, cyan or yellow), and sequences for the c-myc epitope, and tandem affinity purification or polyhistidine tags. The vectors were verified by successful subcellular localization of two previously characterized proteins (TcRab7 and PAR 2) and a putative centrin. For the tandem affinity purification tag, the purification of two protein complexes (ribosome and proteasome) was performed. CONCLUSIONS We constructed plasmids with an efficient cloning system and suitable for use across various applications, such as protein localization and co-localization, protein partner identification and protein expression. This platform also allows vector customization, as the vectors were constructed to enable easy exchange of its elements. The development of this high-throughput platform is a step closer towards large-scale trypanosome applications and initiatives.
Collapse
Affiliation(s)
- Michel Batista
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sant'Anna C, Nakayasu ES, Pereira MG, Lourenço D, de Souza W, Almeida IC, Cunha-E-Silva NL. Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics 2009; 9:1782-94. [PMID: 19288526 DOI: 10.1002/pmic.200800730] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reservosomes are the endpoint of the endocytic pathway in Trypanosoma cruzi epimastigotes. These organelles have the particular ability to concentrate proteins and lipids obtained from medium together with the main proteolytic enzymes originated from the secretory pathway, being at the same time a storage organelle and the main site of protein degradation. Subcellular proteomics have been extensively used for profiling organelles in different cell types. Here, we combine cell fractionation and LC-MS/MS analysis to identify reservosome-resident proteins. Starting from a purified reservosome fraction, we established a protocol to isolate reservosome membranes. Transmission electron microscopy was applied to confirm the purity of the fractions. To achieve a better coverage of identified proteins we analyzed the fractions separately and combined the results. LC-MS/MS analysis identified in total 709 T. cruzi-specific proteins; of these, 456 had predicted function and 253 were classified as hypothetical proteins. We could confirm the presence of most of the proteins validated by previous work and identify new proteins from different classes such as enzymes, proton pumps, transport proteins, and others. The definition of the reservosome protein profile is a good tool to assess their molecular signature, identify molecular markers, and understand their relationship with different organelles.
Collapse
Affiliation(s)
- Celso Sant'Anna
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Brasil
| |
Collapse
|
9
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|
10
|
Souza WD. Electron microscopy of trypanosomes: a historical view. Mem Inst Oswaldo Cruz 2008; 103:313-25. [DOI: 10.1590/s0074-02762008000400001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Normalização e Qualidade Industrial, Brasil
| |
Collapse
|
11
|
Leishmania requires Rab7-mediated degradation of endocytosed hemoglobin for their growth. Proc Natl Acad Sci U S A 2008; 105:3980-5. [PMID: 18319337 DOI: 10.1073/pnas.0800404105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania is unable to synthesize heme and must acquire it from exogenous source, the mechanism of which is not known. We have shown that Leishmania endocytoses hemoglobin (Hb) and subsequently degrade it probably to generate heme. To understand how internalized Hb is degraded, we have cloned and expressed Rab7 homolog from Leishmania donovani. Interestingly, Rab7 in Leishmania is found to be localized both on early and late endocytic compartment and regulates both uptake and degradation of endocytosed Hb demonstrating that Rab7 in Leishmania play a very unique role connecting both early and late events of Hb endocytosis. Our data also indicate that overexpression of Rab7:WT in Leishmania induces transport of Hb to lysosomes and rapidly degrade internalized Hb. Whereas Hb transport to lysosomes and its degradation is significantly inhibited in cells overexpressing Rab7:T21N, a GDP locked mutant of Rab7. Moreover, cells overexpressing Rab7:T21N grow at a slower rate (<50%) compared with control Leishmania. Addition of exogenous hemin recovers the growth of Rab7:T21N mutant cells almost to the control level, suggesting that intracellular heme generated by Rab7-mediated Hb degradation is required for optimal growth of the parasites. Thus, our results identify a potential target which might be exploited to suppress the growth of Leishmania.
Collapse
|
12
|
Cunha-e-Silva N, Sant'Anna C, Pereira MG, Porto-Carreiro I, Jeovanio AL, de Souza W. Reservosomes: multipurpose organelles? Parasitol Res 2006; 99:325-7. [PMID: 16794853 DOI: 10.1007/s00436-006-0190-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/09/2006] [Indexed: 12/31/2022]
Abstract
Reservosomes are endocytic organelles from Trypanosoma cruzi epimastigotes that store proteins and lipids for future use. The lack of molecular markers for the compartments of this parasite makes it difficult to clarify all reservosome functions, as they present characteristics of pre-lysosomes, lysosomes and recycling compartments.
Collapse
Affiliation(s)
- Narcisa Cunha-e-Silva
- Instituto de Biofisica Carlos Chagas Filho, CCS, Bloco G, subsolo, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro, RJ, CEP 21949-900, Brazil.
| | | | | | | | | | | |
Collapse
|
13
|
Gomes MT, Monteiro RQ, Grillo LA, Leite-Lopes F, Stroeder H, Ferreira-Pereira A, Alviano CS, Barreto-Bergter E, Neto HCF, Cunha E Silva NL, Almeida IC, Soares RMA, Lopes AH. Platelet-activating factor-like activity isolated from Trypanosoma cruzi. Int J Parasitol 2006; 36:165-73. [PMID: 16337632 DOI: 10.1016/j.ijpara.2005.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 12/01/2022]
Abstract
Platelet-activating factor is a phospholipid mediator that exhibits a wide variety of physiological and pathophysiological effects, including induction of inflammatory response, chemotaxis and cellular differentiation. Trypanosoma cruzi, the etiological agent of Chagas' disease, is transmitted by triatomine insects and while in the triatomine midgut the parasite differentiates from a non-infective epimastigote stage into the pathogenic trypomastigote metacyclic form. We have previously demonstrated that platelet activating factor triggers in vitro cell differentiation of T. cruzi. Here we show a platelet activating factor-like activity isolated from lipid extract of T. cruzi epimastigotes incubated in the presence of [14C]acetate. Trypanosoma cruzi-platelet activating factor-like lipid induced the aggregation of rabbit platelets, which was prevented by platelet activating factor-acetylhydrolase. Mouse macrophage infection by T. cruzi was stimulated when epimastigotes were kept for 5 days in the presence of T. cruzi-platelet activating factor, before interacting with the macrophages. The differentiation of epimastigotes into metacyclic trypomastigotes was also triggered by T. cruzi-platelet activating factor. These effects were abrogated by a platelet activating factor antagonist, WEB 2086. Polyclonal antibody raised against mouse platelet activating factor receptor showed labelling for T. cruzi epimastigotes using immunoblotting and immunofluorescence assays. These data suggest that T. cruzi contain the components of an autocrine platelet activating factor-like ligand-receptor system that modulates cell differentiation towards the infectious stage.
Collapse
Affiliation(s)
- Marta T Gomes
- Instituto de Microbiologia, Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bloco I, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ramos FP, Araripe JR, Urményi TP, Silva R, Cunha e Silva NL, Leite Fontes CF, da Silveira JF, Rondinelli E. Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity. Biochem Biophys Res Commun 2005; 333:808-17. [PMID: 15975556 DOI: 10.1016/j.bbrc.2005.05.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/25/2022]
Abstract
RAB proteins, which belong to the RAS superfamily, regulate exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. Few RAB proteins have been identified in parasites. Molecular markers for cellular compartments are important to studies concerning about the protein traffic in Trypanosoma cruzi, the causal agent of Chagas disease. In this work, we describe the characterization of TcRABL4, the first RAB-like gene identified in T. cruzi (GenBank Accession No.: ), present as a single-copy gene. TcRABL4 contains all five consensus RAB motifs but lacks cysteine residues at the C terminus, which are essential to isoprenylation, an absolute prerequisite for membrane association of these proteins. TcRABL4 is a functional GTPase that is able to bind and hydrolyze GTP, and its gene is transcribed as a single 1.2 kb mRNA in epimastigotes. TcRABL4 appears to be differentially regulated in the three cell forms of the parasite, and the protein is not associated to membranes, unlike other RAB proteins. It is possible that TcRABL4 may be a member of a novel family of small GTPases.
Collapse
Affiliation(s)
- Fabiane Pereira Ramos
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Araripe JR, Ramos FP, Cunha e Silva NL, Urményi TP, Silva R, Leite Fontes CF, da Silveira JF, Rondinelli E. Characterization of a RAB5 homologue in Trypanosoma cruzi. Biochem Biophys Res Commun 2005; 329:638-45. [PMID: 15737633 DOI: 10.1016/j.bbrc.2005.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Indexed: 11/30/2022]
Abstract
RAB proteins are small GTPases involved in exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. RABs show a remarkable specificity in subcellular localization, so they can be used as molecular markers for studying protein trafficking in Trypanosoma cruzi, the causal agent of Chagas' disease. RAB5 is a component of early endosomes. It has been identified in kinetoplastids such as Trypanosoma brucei and Leishmania donovani. In this work, we describe the characterization of the complete coding sequence of a RAB5 gene homologue in T. cruzi (TcRAB5, GenBank Accession No. AY730667). It is present as a single copy gene, located at chromosomal bands XIII and XIV. TcRAB5 shares the highest degrees of similarity (71%) and identity (63%) with Trypanosoma brucei rhodesiense RAB5a and contains all five characteristic RAB motifs. TcRAB5 is transcribed as a single 1.5kb mRNA in epimastigotes. Its transcript was also detected in the other two forms of the parasite, metacyclic trypomastigotes and spheromastigotes. The recombinant TcRAB5 protein was able to bind and hydrolyze GTP. The identification of proteins involved in T. cruzi endo- and exocytic pathways may generate cellular compartment markers, an invaluable tool to better understand the vesicular transport in this parasite.
Collapse
Affiliation(s)
- Júlia Rolão Araripe
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|