1
|
Pessôa MTC, Valadares JMM, Rocha SC, Silva SC, McDermott JP, Sánchez G, Varotti FP, Scavone C, Ribeiro RIMA, Villar JAFP, Blanco G, Barbosa LA. 21-Benzylidene digoxin decreases proliferation by inhibiting the EGFR/ERK signaling pathway and induces apoptosis in HeLa cells. Steroids 2020; 155:108551. [PMID: 31812624 PMCID: PMC7028499 DOI: 10.1016/j.steroids.2019.108551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Cardiotonic steroids (CTS) are agents traditionally known for their capacity to bind to the Na,K-ATPase (NKA), affecting the ion transport and the contraction of the heart. Natural CTS have been shown to also have effects on cell signaling pathways. With the goal of developing a new CTS derivative, we synthesized a new digoxin derivative, 21-benzylidene digoxin (21-BD). Previously, we have shown that this compound binds to NKA and has cytotoxic actions on cancer, but not on normal cells. Here, we further studied the mechanisms of actions of 21-BD. Working with HeLa cells, we found that 21-BD decreases the basal, as well as the insulin stimulated proliferation. 21-BD reduces phosphorylation of the epidermal growth factor receptor (EGFR) and extracellular-regulated kinase (ERK), which are involved in pathways that stimulate cell proliferation. In addition, 21-BD promotes apoptosis, which is mediated by the translocation of Bax from the cytosol to mitochondria and the release of mitochondrial cytochrome c to the cytosol. 21-BD also activated caspases-8, -9 and -3, and induced the cleavage of poly (ADP-ribose) polymerase-1 (PARP-1). Altogether, these results show that the new compound that we have synthesized exerts cytotoxic actions on HeLa cells by inhibition of cell proliferation and the activation of both the extrinsic and intrinsic apoptotic pathways. These results support the relevance of the cardiotonic steroid scaffold as modulators of cell signaling pathways and potential agents for their use in cancer.
Collapse
Affiliation(s)
- Marco Túlio C Pessôa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Jéssica M M Valadares
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Sayonarah C Rocha
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Simone C Silva
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Jeff P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Gladis Sánchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Fernando P Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Cristóforo Scavone
- Laboratório de Neurofarmacologia Molecular, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Rosy I M A Ribeiro
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - José A F P Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|
2
|
de Laat MA, Spence RJ, Sillence MN, Pollitt CC. An investigation of the equine epidermal growth factor system during hyperinsulinemic laminitis. PLoS One 2019; 14:e0225843. [PMID: 31805097 PMCID: PMC6894753 DOI: 10.1371/journal.pone.0225843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Equine laminitis is a disease of the digital epidermal lamellae typified by epidermal cell proliferation and structural collapse. Most commonly the disease is caused by hyperinsulinemia, although the pathogenesis is incompletely understood. Insulin can activate the epidermal growth factor (EGF) system in other species and the present study tested the hypothesis that upregulation of EGF receptor (EGFR) signalling is a key factor in laminitis pathophysiology. First, we examined lamellar tissue from healthy Standardbred horses and those with induced hyperinsulinemia and laminitis for EGFR distribution and quantity using immunostaining and gene expression, respectively. Phosphorylation of EGFR was also quantified. Next, plasma EGF concentrations were compared in healthy and insulin-infused horses, and in healthy and insulin-dysregulated ponies before and after feeding. The EGFR were localised to the secondary epidermal lamellae, with stronger staining in parabasal, rather than basal, cells. No change in EGFR gene expression occurred with laminitis, although the receptor showed some phosphorylation. No difference was seen in EGF concentrations in horses, but in insulin-dysregulated ponies mean, post-prandial EGF concentrations were almost three times higher than in healthy ponies (274 ± 90 vs. 97.4 ± 20.9 pg/mL, P = 0.05). Although the EGFR does not appear to play a major pathogenic role in hyperinsulinemic laminitis, the significance of increased EGF in insulin-dysregulated ponies deserves further investigation.
Collapse
Affiliation(s)
- Melody A. de Laat
- Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| | - Robert J. Spence
- Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin N. Sillence
- Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher C. Pollitt
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
3
|
Tarchick MJ, Cutler AH, Trobenter TD, Kozlowski MR, Makowski ER, Holoman N, Shao J, Shen B, Anand-Apte B, Samuels IS. Endogenous insulin signaling in the RPE contributes to the maintenance of rod photoreceptor function in diabetes. Exp Eye Res 2018; 180:63-74. [PMID: 30543793 DOI: 10.1016/j.exer.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023]
Abstract
In diabetes, there are two major physiological aberrations: (i) Loss of insulin signaling due to absence of insulin (type 1 diabetes) or insulin resistance (type 2 diabetes) and (ii) increased blood glucose levels. The retina has a high proclivity to damage following diabetes, and much of the pathology seen in diabetic retinopathy has been ascribed to hyperglycemia and downstream cascades activated by increased blood glucose. However, less attention has been focused on the direct role of insulin on retinal physiology, likely due to the fact that uptake of glucose in retinal cells is not insulin-dependent. The retinal pigment epithelium (RPE) is instrumental in maintaining the structural and functional integrity of the retina. Recent studies have suggested that RPE dysfunction is a precursor of, and contributes to, the development of diabetic retinopathy. To evaluate the role of insulin on RPE cell function directly, we generated a RPE specific insulin receptor (IR) knockout (RPEIRKO) mouse using the Cre-loxP system. Using this mouse, we sought to determine the impact of insulin-mediated signaling in the RPE on retinal function under physiological control conditions as well as in streptozotocin (STZ)-induced diabetes. We demonstrate that loss of RPE-specific IR expression resulted in lower a- and b-wave electroretinogram amplitudes in diabetic mice as compared to diabetic mice that expressed IR on the RPE. Interestingly, RPEIRKO mice did not exhibit significant differences in the amplitude of the RPE-dependent electroretinogram c-wave as compared to diabetic controls. However, loss of IR-mediated signaling in the RPE reduced levels of reactive oxygen species and the expression of pro-inflammatory cytokines in the retina of diabetic mice. These results imply that IR-mediated signaling in the RPE regulates photoreceptor function and may play a role in the generation of oxidative stress and inflammation in the retina in diabetes.
Collapse
Affiliation(s)
- Matthew J Tarchick
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alecia H Cutler
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Timothy D Trobenter
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michael R Kozlowski
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Emily R Makowski
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nicholas Holoman
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jianning Shao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bailey Shen
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Department of Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ivy S Samuels
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
4
|
Sharabi O, Ventura T, Manor R, Aflalo ED, Sagi A. Epidermal growth factor receptor in the prawn Macrobrachium rosenbergii: function and putative signaling cascade. Endocrinology 2013; 154:3188-96. [PMID: 23825131 DOI: 10.1210/en.2013-1259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidermal growth factor receptors (EGFRs) are highly conserved members of the tyrosine kinase receptor superfamily found in metazoans and plants. In arthropods, EGFRs are vital for the proper development of embryos and of adult limbs, gonads, and eyes as well as affecting body size. In searching for genes involved in the growth and development of our model organism, the decapod crustacean (Macrobrachium rosenbergii), a comprehensive transcript library was established using next-generation sequencing. Using this library, the expression of several genes assigned to the signal transduction pathways mediated by EGFRs was observed, including a transcript encoding M. rosenbergii EGFR (Mr-EGFR), several potential ligands upstream to the receptor, and most of the putative downstream signal transducer genes. The deduced protein encoded by Mr-EGFR, representing the first such receptor reported thus far in crustaceans, shows sequence similarity to other arthropod EGFRs. The M. rosenbergii gene is expressed in most tested tissues. The role of Mr-EGFR was revealed by temporarily silencing the transcript through weekly injections of double-stranded Mr-EGFR RNA. Such treatment resulted in a significant reduction in growth and a delay in the appearance of a male secondary sexual characteristic, namely the appendix masculina. An additional function of Mr-EGFR was revealed with respect to eye development. Although the optic ganglion appeared to have retained its normal morphology, Mr-EGFR-silenced individuals developed abnormal eyes that presented irregular organization of the ommatidia, reflected by unorganized receptor cells occupying large areas of the dioptric portion and by a shortened crystalline tract layer.
Collapse
Affiliation(s)
- Omri Sharabi
- Department of Life Sciences and the National Institute for Biotechnology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
5
|
Boller S, Joblin BA, Xu L, Item F, Trüb T, Boschetti N, Spinas GA, Niessen M. From signal transduction to signal interpretation: an alternative model for the molecular function of insulin receptor substrates. Arch Physiol Biochem 2012; 118:148-55. [PMID: 22515179 DOI: 10.3109/13813455.2012.671333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The insulin receptor (IR) recruits adaptor proteins, so-called insulin receptor substrates (IRS), to connect with downstream signalling pathways. A family of IRS proteins was defined based on three major common structural elements: Amino-terminal PH and PTB domains that mediate protein-lipid or protein-protein interactions, mostly carboxy-terminal multiple tyrosine residues that serve as binding sites for proteins that contain one or more SH2 domains and serine/threonine-rich regions which may be recognized by negative regulators of insulin action. The current model for the role of IRS proteins therefore combines an adaptor function with the integration of mostly negative input from other signal transduction cascades allowing for modulation of signalling amplitude. In this review we propose an extended version of the adaptor model that can explain how signalling specificity could be implemented at the level of IRS proteins.
Collapse
Affiliation(s)
- Simone Boller
- Endocrinology, Diabetes and Clinical Nutrition, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang X, Nath A, Yang X, Portis A, Walton SP, Chan C. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells. PLoS One 2011; 6:e28138. [PMID: 22132232 PMCID: PMC3223234 DOI: 10.1371/journal.pone.0028138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 11/02/2011] [Indexed: 12/27/2022] Open
Abstract
The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves cooperative interactions between genes. While previous approaches have largely focused on identifying individual target genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to reconstruct a “gene-cooperativity” network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP) as its top neighbor. We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Xuewei Wang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Aritro Nath
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Xuerui Yang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Amanda Portis
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Venkatesh M, Wang H, Cayer J, Leroux M, Salvail D, Das B, Wrobel JE, Mani S. In vivo and in vitro characterization of a first-in-class novel azole analog that targets pregnane X receptor activation. Mol Pharmacol 2011; 80:124-35. [PMID: 21464197 PMCID: PMC3127530 DOI: 10.1124/mol.111.071787] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/23/2011] [Indexed: 11/22/2022] Open
Abstract
The pregnane X receptor (PXR) is a master regulator of xenobiotic clearance and is implicated in deleterious drug interactions (e.g., acetaminophen hepatotoxicity) and cancer drug resistance. However, small-molecule targeting of this receptor has been difficult; to date, directed synthesis of a relatively specific PXR inhibitor has remained elusive. Here we report the development and characterization of a first-in-class novel azole analog [1-(4-(4-(((2R,4S)-2-(2,4-difluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methoxy)phenyl)piperazin-1-yl)ethanone (FLB-12)] that antagonizes the activated state of PXR with limited effects on other related nuclear receptors (i.e., liver X receptor, farnesoid X receptor, estrogen receptor α, peroxisome proliferator-activated receptor γ, and mouse constitutive androstane receptor). We investigated the toxicity and PXR antagonist effect of FLB-12 in vivo. Compared with ketoconazole, a prototypical PXR antagonist, FLB-12 is significantly less toxic to hepatocytes. FLB-12 significantly inhibits the PXR-activated loss of righting reflex to 2,2,2-tribromoethanol (Avertin) in vivo, abrogates PXR-mediated resistance to 7-ethyl-10-hydroxycamptothecin (SN-38) in colon cancer cells in vitro, and attenuates PXR-mediated acetaminophen hepatotoxicity in vivo. Thus, relatively selective targeting of PXR by antagonists is feasible and warrants further investigation. This class of agents is suitable for development as chemical probes of PXR function as well as potential PXR-directed therapeutics.
Collapse
Affiliation(s)
- Madhukumar Venkatesh
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 2009; 5:256. [PMID: 19357636 PMCID: PMC2683723 DOI: 10.1038/msb.2009.19] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 02/23/2009] [Indexed: 01/01/2023] Open
Abstract
Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal-regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin-induced increase in the phosphatidylinositol-3,4,5-triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin-induced amplification of mitogenic signaling is abolished by disrupting PIP3-mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non-linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.
Collapse
|
9
|
Ornskov D, Nexo E, Sorensen BS. Insulin-induced proliferation of bladder cancer cells is mediated through activation of the epidermal growth factor system. FEBS J 2006; 273:5479-89. [PMID: 17116246 DOI: 10.1111/j.1742-4658.2006.05539.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism behind the growth-promoting effect of insulin is a subject of debate. Employing RT4 bladder cancer cells, we examined the cross-talk between insulin and the epidermal growth factor system. We found that insulin induced a time- and dose-dependent (25-1000 nmol.L(-1) insulin) increase in mRNA expression of three ligands from the epidermal growth factor system. Times for peak increase and fold increase after incubation with 250 nmol.L(-1) insulin were as follows: heparin-binding epidermal growth factor-like growth factor, 0.5 h, 1.4-fold, P < 0.05; epiregulin, 3 h, 14-fold, P < 0.0001; and amphiregulin, 3 h, 12-fold, P < 0.001. Induction of heparin-binding epidermal growth factor-like growth factor and amphiregulin was verified at the protein level. We demonstrate that incubation of RT4 bladder cancer cells for 24 h with 250 nmol.L(-1) insulin increases proliferation by 43% (P < 0.0001) as compared to untreated cells. At the same time, phosphorylation and thereby activation of the epidermal growth factor receptor (HER1) was observed. Both phosphorylation and insulin-induced proliferation were almost completely inhibited by the HER1 inhibitor Iressa (P < 0.0001). This shows that insulin leads to activation of HER1, and that HER1 plays an essential role in mediating the growth-promoting effect of insulin. Iressa inhibited not only the activation of HER1 caused by insulin but also the insulin-induced increase in the three ligands (heparin-binding epidermal growth factor-like growth factor, epiregulin and amphiregulin). As heparin-binding epidermal growth factor-like growth factor was induced before epiregulin and amphiregulin upon insulin stimulation, we speculated that the insulin-induced heparin-binding epidermal growth factor-like growth factor initiated the activation of HER1, and that this in turn led to increased expression of epiregulin and amphiregulin and thereby to continued activation of HER1. Earlier reports have shown that insulin-like growth factor receptor can activate HER1 via its ligand heparin-binding epidermal growth factor-like growth factor. In accord with this, we found that treatment of RT4 cells with recombinant heparin-binding epidermal growth factor-like growth factor mimicked the effect of insulin, with induction of mRNA for the three ligands. However, the insulin-induced increase in mRNA expression of amphiregulin and epiregulin could not be prevented by the heparin-binding epidermal growth factor-like growth factor inhibitor CRM197, demonstrating that heparin-binding epidermal growth factor-like growth factor is not essential for the insulin-induced increase in the expression of these ligands. In conclusion, we show that insulin-induced growth in RT4 cells requires activated HER1. Furthermore, activation of HER1 is required for the insulin-induced increase in expression of the HER1 ligands heparin-binding epidermal growth factor-like growth factor, amphiregulin and epiregulin.
Collapse
Affiliation(s)
- Dorthe Ornskov
- Department of Clinical Biochemistry, Aarhus Sygehus, University Hospital in Aarhus, Denmark
| | | | | |
Collapse
|
10
|
Emery B, Merson TD, Snell C, Young KM, Ernst M, Kilpatrick TJ. SOCS3 negatively regulates LIF signaling in neural precursor cells. Mol Cell Neurosci 2006; 31:739-47. [PMID: 16497512 DOI: 10.1016/j.mcn.2006.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 12/23/2005] [Accepted: 01/03/2006] [Indexed: 11/26/2022] Open
Abstract
Cytokines that signal through the LIFRbeta/gp130 receptor complex, including LIF and CNTF, promote the self-renewal of embryonic and adult neural precursor cells (NPCs). In non-CNS tissues, the protein suppressor of cytokine signaling-3 (SOCS3) negatively regulates signaling through gp130. Here, we analyze the role of SOCS3 in inhibiting LIF signaling in NPCs in vitro. SOCS3 is rapidly expressed by NPCs in response to LIF stimulation, with this expression largely dependent on recruitment of STAT proteins to the activated gp130 receptor. Proliferating NPC cultures can be generated from SOCS3 knockout (SOCS3KO/KO) embryos and display prolonged STAT3 phosphorylation and induction of the GFAP gene in response to LIF. In comparison with SOCS3 wild-type (SOCS3WT/WT) NPCs, SOCS3KO/KO cultures display enhanced self-renewal capacity. However, the clonal potential of SOCS3WT/WT but not SOCS3KO/KO NPCs is enhanced by exogenous LIF. Thus, SOCS3 acts as a negative regulator of LIF signaling in NPCs.
Collapse
Affiliation(s)
- B Emery
- Multiple Sclerosis Group, The Howard Florey Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Ohshimo S, Yokoyama A, Hattori N, Ishikawa N, Hirasawa Y, Kohno N. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts. Biochem Biophys Res Commun 2005; 338:1845-52. [PMID: 16289035 DOI: 10.1016/j.bbrc.2005.10.144] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/21/2005] [Indexed: 02/03/2023]
Abstract
The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-beta. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases.
Collapse
Affiliation(s)
- Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Osmond RIW, Sheehan A, Borowicz R, Barnett E, Harvey G, Turner C, Brown A, Crouch MF, Dyer AR. GPCR Screening via ERK 1/2: A Novel Platform for Screening G Protein–Coupled Receptors. ACTA ACUST UNITED AC 2005; 10:730-7. [PMID: 16129779 DOI: 10.1177/1087057105277968] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Discovery of novel agonists and antagonists for G protein–coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.
Collapse
Affiliation(s)
- Ronald I W Osmond
- TGR BioSciences Pty Ltd, 31 Dalgleish Street, Thebarton, SA 5031, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|