1
|
Micheletti G, Boga C, Drius G, Bordoni S, Calonghi N. Suberoylanilide Hydroxamic Acid Analogs with Heteroaryl Amide Group and Different Chain Length: Synthesis and Effect on Histone Deacetylase. Molecules 2024; 29:238. [PMID: 38202821 PMCID: PMC10781187 DOI: 10.3390/molecules29010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.
Collapse
Affiliation(s)
- Gabriele Micheletti
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Carla Boga
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Giacomo Drius
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Silvia Bordoni
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Tilekar K, Hess JD, Upadhyay N, Schweipert M, Flath F, Gutierrez DA, Loiodice F, Lavecchia A, Meyer‐Almes F, Aguilera RJ, Ramaa CS. HDAC4 Inhibitors with Cyclic Linker and Non‐hydroxamate Zinc Binding Group: Design, Synthesis, HDAC Screening and
in
vitro
Cytotoxicity evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| | - Jessica D. Hess
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Felix Flath
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science University of Bari “Aldo Moro” Via E. Orabona, 4 70126 Bari Italy
| | - Antonio Lavecchia
- Department of Pharmacy “Drug Discovery” Laboratory University of Napoli “Federico II” Via D. Montesano, 49 80131 Napoli Italy
| | - Franz‐Josef Meyer‐Almes
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| |
Collapse
|
4
|
Interest of new alkylsulfonylhydrazide-type compound in the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1835-1844. [PMID: 29713786 DOI: 10.1007/s00213-018-4917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
RATIONALE Recent preclinical research suggested that histone deacetylase inhibitors (HDACIs) and specifically class I HDAC selective inhibitors might be useful to treat alcohol use disorders (AUDs). OBJECTIVE The objective of this study was to find a new inhibitor of the HDAC-1 isoenzyme and to test its efficacy in an animal model of AUDs. METHODS In the present study, we prepared new derivatives bearing sulfonylhydrazide-type zinc-binding group (ZBG) and evaluated these compounds in vitro on HDAC-1 isoenzyme. The most promising compound was tested on ethanol operant self-administration and relapse in rats. RESULTS We showed that the alkylsulfonylhydrazide-type compound (ASH) reduced by more than 55% the total amount of ethanol consumed after one intracerebroventricular microinjection, while no effect was observed on motivation of the animals to consume ethanol. In addition, one ASH injection in the central amygdala reduced relapse. CONCLUSIONS Our study demonstrated that a new compound designed to target HDAC-1 is effective in reducing ethanol intake and relapse in rats and further confirm the interest of pursuing research to study the exact mechanism by which such inhibitor may be useful to treat AUDs.
Collapse
|
5
|
Simões-Pires CA, Zwick V, Cretton S, Cuendet M. Simultaneous Measurement of HDAC1 and HDAC6 Activity in HeLa Cells Using UHPLC-MS. J Vis Exp 2017. [PMID: 28829415 DOI: 10.3791/55878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The search for new histone deacetylase (HDAC) inhibitors is of increasing interest in drug discovery. Isoform selectivity has been in the spotlight since the approval of romidepsin, a class I HDAC inhibitor for cancer therapy, and the clinical investigation of HDAC6-specific inhibitors for multiple myeloma. The present method is used to determine the inhibitory activity of test compounds on HDAC1 and HDAC6 in cells. The isoform activity is measured using the ultra-high-performance liquid chromatography - mass spectrometry (UHPLC-MS) analysis of specific substrates incubated with treated and untreated HeLa cells. The method has the advantage of reflecting the endogenous HDAC activity within the cell environment, in contrast to cell-free biochemical assays conducted on isolated isoforms. Moreover, because it is based on the quantification of synthetic substrates, the method does not require the antibody recognition of endogenous acetylated proteins. It is easily adaptable to several cell lines and an automated process. The method has already proved useful in finding HDAC6-selective compounds in neuroblasts. Representative results are shown here with the standard HDAC inhibitors trichostatin A (non-specific), MS275 (HDAC1-specific), and tubastatin A (HDAC6-specific) using HeLa cells.
Collapse
Affiliation(s)
| | - Vincent Zwick
- Section des Sciences Pharmaceutiques, Universités des Geneva-Lausanne (EPGL)
| | - Sylvian Cretton
- Section des Sciences Pharmaceutiques, Universités des Geneva-Lausanne (EPGL)
| | - Muriel Cuendet
- Section des Sciences Pharmaceutiques, Universités des Geneva-Lausanne (EPGL);
| |
Collapse
|
6
|
Sotolongo A, Zakia Mónica F, Kots A, Xiao H, Liu J, Seto E, Bian K, Murad F. Epigenetic regulation of soluble guanylate cyclase (sGC) β1 in breast cancer cells. FASEB J 2016; 30:3171-80. [DOI: 10.1096/fj.201600339r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Alex Sotolongo
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Fabiola Zakia Mónica
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
- Department of PharmacologyFaculty of Medical SciencesState University of Campinas Campinas Sao Paulo Brazil
| | - Alex Kots
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Haijie Xiao
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Jun Liu
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Edward Seto
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
- Department of PharmacologyFaculty of Medical SciencesState University of Campinas Campinas Sao Paulo Brazil
| | - Ka Bian
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Ferid Murad
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| |
Collapse
|
7
|
Zwick V, Simões-Pires C, Cuendet M. Cell-based multi-substrate assay coupled to UHPLC-ESI-MS/MS for a quick identification of class-specific HDAC inhibitors. J Enzyme Inhib Med Chem 2016; 31:209-214. [PMID: 27149362 DOI: 10.1080/14756366.2016.1180595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Histone deacetylases (HDAC) are involved in several diseases including cancer, cardiovascular and neurodegenerative disorders, and the search for inhibitors is a current topic in drug discovery. Four HDAC inhibitors have already been approved by the FDA for cancer therapy and others are under clinical studies. However, the clinical utility of some of them is limited because of unfavorable toxicities associated with their broad range of HDAC inhibitory effects. Toxicity could be decreased by using HDAC inhibitors with improved specificity. To date, the most popular screening assays are based on fluorescence-labeled substrates incubated with an enzymatic source (cells extracts or recombinant isoforms). Here, we describe a high-throughput cell-based UHPLC-ESI-MS/MS assay able to rapidly predict activity against HDAC1 and HDAC6 in a cell environment. This method is predicted to be a useful tool to accelerate the search for class-selective HDAC inhibitors in drug discovery.
Collapse
Affiliation(s)
- Vincent Zwick
- a School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Geneva , Switzerland
| | - Claudia Simões-Pires
- a School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Geneva , Switzerland
| | - Muriel Cuendet
- a School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Geneva , Switzerland
| |
Collapse
|
8
|
Levine MH, Wang Z, Bhatti TR, Wang Y, Aufhauser DD, McNeal S, Liu Y, Cheraghlou S, Han R, Wang L, Hancock WW. Class-specific histone/protein deacetylase inhibition protects against renal ischemia reperfusion injury and fibrosis formation. Am J Transplant 2015; 15:965-73. [PMID: 25708614 PMCID: PMC5493154 DOI: 10.1111/ajt.13106] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of renal dysfunction and renal failure. Histone/protein deacetylases (HDACs) regulate gene accessibility and higher order protein structures and may alter cellular responses to a variety of stresses. We investigated whether use of pan- and class-specific HDAC inhibitors (HDACi) could improve IRI tolerance in the kidney. Using a model of unilateral renal IRI, we investigated early renal function after IRI, and calculated fibrosis after IRI using an automated scoring system. We found that pan-HDAC inhibition using trichostatin (TSA) yielded significant renal functional benefit at 24-96 hours (p < 0.001). Treated mice developed significantly less fibrosis at 30 days (p < 0.0004). Class I HDAC inhibition with MS-275 yielded similar effects. Protection from fibrosis formation was also noted in a cold ischemia transplant model (p < 0.008) with a trend toward improved cold ischemic survival in TSA-treated mice. These effects were not accompanied by induction of typical ischemic tolerance pathways or by priming of heat shock protein expression. In fact, heat shock protein 70 deletion or overexpression did not alter renal ischemia tolerance. Micro-RNA 21, known to be enhanced in vitro in renal tubular cells that survive stress, was enhanced by treatment with HDACi, pointing to possible mechanism.
Collapse
Affiliation(s)
- M. H. Levine
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA,Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Z. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - T. R. Bhatti
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Y. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - D. D. Aufhauser
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - S. McNeal
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - Y. Liu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - S. Cheraghlou
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - R. Han
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - L. Wang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - W. W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Ogura M, Ando K, Suzuki T, Ishizawa K, Oh SY, Itoh K, Yamamoto K, Au WY, Tien HF, Matsuno Y, Terauchi T, Yamamoto K, Mori M, Tanaka Y, Shimamoto T, Tobinai K, Kim WS. A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol 2014; 165:768-76. [PMID: 24617454 PMCID: PMC4282031 DOI: 10.1111/bjh.12819] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/15/2013] [Indexed: 01/21/2023]
Abstract
Although initial rituximab-containing chemotherapies achieve high response rates, indolent B-cell non-Hodgkin lymphoma (B-NHL), such as follicular lymphoma (FL), is still incurable. Therefore, new effective agents with novel mechanisms are anticipated. In this multicentre phase II study, patients with relapsed/refractory indolent B-NHL and mantle cell lymphoma (MCL) received vorinostat 200 mg twice daily for 14 consecutive days in a 21-d cycle until disease progression or unacceptable toxicity occurred. The primary endpoint was overall response rate (ORR) in FL patients and safety and tolerability in all patients. Secondary endpoints included progression-free survival (PFS). Fifty-six eligible patients were enrolled; 50 patients (39 with FL, seven with other B-NHL, and four with MCL) were evaluable for ORR, and 40 patients had received rituximab-containing prior chemotherapeutic regimens. For the 39 patients with FL, the ORR was 49% [95% confidence interval (CI): 32·4, 65·2] and the median PFS was 20 months (95% CI: 11·2, 29·7). Major toxicities were manageable grade 3/4 thrombocytopenia and neutropenia. Vorinostat offers sustained antitumour activity in patients with relapsed or refractory FL with an acceptable safety profile. Further investigation of vorinostat for clinical efficacy is warranted.
Collapse
Affiliation(s)
- Michinori Ogura
- Department of Haematology and Oncology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lemper M, Snykers S, Vanhaecke T, De Paepe K, Rogiers V. Current Status of Healthy Human Skin Models: Can Histone Deacetylase Inhibitors Potentially Improve the Present Replacement Models? Skin Pharmacol Physiol 2014; 27:36-46. [DOI: 10.1159/000351363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
|
11
|
Update on clinical trials: genetic targets in breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:35-54. [PMID: 23288634 DOI: 10.1007/978-1-4614-6176-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer in women in United States. From data of American Cancer Society from 2007 reported total of 178,480 women diagnosed with breast cancer. The death rate from breast cancer has decreased in North America over time, but still accounts for second highest cancer death, following lung cancer. Breast cancer is staged based on tumor size, nodal involvement, and distant metastasis like any other solid tumors. However clinical staging is not the only important factor in management of breast cancer. Various molecular features divides breast cancer into many subgroups - that act differently, and respond differently from therapy. Thus the focus of breast cancer treatment has evolved focusing on specific targets. The most important biologic markers in subtyping of breast cancer so far are hormone receptor positivity and HER2/neu protein expression. Five molecular subtypes using intrinsic gene set include Basal mRNA, HER2 + mRNA, Luminal AmRNA, Luminal B mRNA, and Normal-like mRNA. In addition, better understanding of genetic target of breast cancer has given us arsenal of personalized, and more effective treatment approach.This review will focus on examples that highlight several mechanism of tumorigenesis, giving us not just understanding of gene pathways and the molecular biology, that could lead us to therapeutic target. Several important molecular targets have been investigated in preclinical and clinical trials, others are yet to be explored. We will also describe genetic mechanisms discovery related to overcoming resistance to current targeted therapies in breast cancer, including hormone receptor expression and HER 2- neu amplification. We will also review other exciting developments in understanding of breast cancer, the tumor microenvironment and cancer stem cells, and targeting agents in that area.
Collapse
|
12
|
Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med 2012; 18:1249-60. [PMID: 22811066 DOI: 10.2119/molmed.2012.00077] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/17/2012] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms show universally a 24-h oscillation pattern in metabolic, physiological and behavioral functions of almost all species. This pattern is due to a fundamental adaptation to the rotation of Earth around its own axis. Molecular mechanisms of generation of circadian rhythms organize a biochemical network in suprachiasmatic nucleus and peripheral tissues, building cell autonomous clock pacemakers. Rhythmicity is observed in transcriptional expression of a wide range of clock-controlled genes that regulate a variety of normal cell functions, such as cell division and proliferation. Desynchrony of this rhythmicity seems to be implicated in several pathologic conditions, including tumorigenesis and progression of cancer. In 2007, the International Agency for Research on Cancer (IARC) categorized "shiftwork that involves circadian disruption [as] probably carcinogenic to humans" (Group 2A in the IARC classification system of carcinogenic potency of an agentagent) (Painting, Firefighting, and Shiftwork; IARC; 2007). This review discusses the potential relation between disruptions of normal circadian rhythms with genetic driving machinery of cancer. Elucidation of the role of clockwork disruption, such as exposure to light at night and sleep disruption, in cancer biology could be important in developing new targeted anticancer therapies, optimizing individualized chronotherapy and modifying lighting environment in workplaces or homes.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology and Metabolism, Hippocration General Hospital, Athens, Greece.
| | | |
Collapse
|
13
|
Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med Chem 2012; 4:1439-60. [PMID: 22857533 DOI: 10.4155/fmc.12.80] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are one of the last frontiers in pharmaceutical research. Several classes of HDACi have been identified. Although more than 20 HDACi are under preclinical and clinical investigation as single agents and in combination therapies against different cancers, just two of them were approved by the US FDA: Zolinza(®) and Istodax(®), both licensed for the treatment of cutaneous T-cell lymphoma, the latter also of peripheral T-cell lymphoma. Since HDAC enzymes act by forming multiprotein complexes (clusters), containing cofactors, the main problem in designing new HDACi is that the inhibition activity evaluated on isolated enzyme isoforms does not match the in vivo outcomes. In the coming years, the research will be oriented toward a better understanding of the functioning of these protein complexes as well as the development of new screening assays, with the final goal to obtain new drug candidates for the treatment of cancer.
Collapse
|
14
|
Foley AG, Gannon S, Rombach-Mullan N, Prendergast A, Barry C, Cassidy AW, Regan CM. Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology 2012; 63:750-60. [DOI: 10.1016/j.neuropharm.2012.05.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/19/2022]
|
15
|
Towne DL, Nicholl EE, Comess KM, Galasinski SC, Hajduk PJ, Abraham VC. Development of a High-Content Screening Assay Panel to Accelerate Mechanism of Action Studies for Oncology Research. ACTA ACUST UNITED AC 2012; 17:1005-17. [DOI: 10.1177/1087057112450050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Efficient elucidation of the biological mechanism of action of novel compounds remains a major bottleneck in the drug discovery process. To address this need in the area of oncology, we report the development of a multiparametric high-content screening assay panel at the level of single cells to dramatically accelerate understanding the mechanism of action of cell growth–inhibiting compounds on a large scale. Our approach is based on measuring 10 established end points associated with mitochondrial apoptosis, cell cycle disruption, DNA damage, and cellular morphological changes in the same experiment, across three multiparametric assays. The data from all of the measurements taken together are expected to help increase our current understanding of target protein functions, constrain the list of possible targets for compounds identified using phenotypic screens, and identify off-target effects. We have also developed novel data visualization and phenotypic classification approaches for detailed interpretation of individual compound effects and navigation of large collections of multiparametric cellular responses. We expect this general approach to be valuable for drug discovery across multiple therapeutic areas.
Collapse
Affiliation(s)
- Danli L. Towne
- Abbott Laboratories, Global Pharmaceutical Research & Development, Lead Discovery Technologies, Abbott Park, IL USA
| | - Emily E. Nicholl
- Abbott Laboratories, Global Pharmaceutical Research & Development, Lead Discovery Technologies, Abbott Park, IL USA
| | - Kenneth M. Comess
- Abbott Laboratories, Global Pharmaceutical Research & Development, Lead Discovery Technologies, Abbott Park, IL USA
| | - Scott C. Galasinski
- Abbott Laboratories, Global Pharmaceutical Research & Development, Lead Discovery Technologies, Abbott Park, IL USA
| | - Philip J. Hajduk
- Abbott Laboratories, Global Pharmaceutical Research & Development, Lead Discovery Technologies, Abbott Park, IL USA
| | - Vivek C. Abraham
- Abbott Laboratories, Global Pharmaceutical Research & Development, Lead Discovery Technologies, Abbott Park, IL USA
| |
Collapse
|
16
|
Abstract
Combined treatment with tyrosine kinase inhibitors (TKi) and additional drugs is emerging as a promising strategy for cancer therapy. TKi and histone-deacetylase inhibitors (HDI) are two classes of anti-tumor agents with distant mechanisms of action. We have designed and synthesized chimeric compounds, which comprise structural elements of the TKi imatinib, and of prototypical HDI compounds. These compounds retain TKi activity similar to imatinib, exemplified by the inhibition of the platelet-derived growth factor receptor, and c-Kit kinase in intact cells. In addition, the chimeric compounds have in vitro and cellular HDI activity, and potently inhibit growth of cancer cell lines, including that of imatinib-resistant cell lines. Chimeric molecules with combined TKi and HDI activity may simplify combination treatment and be applicable to overcome clinical resistance to TKi single-agent therapy.
Collapse
|
17
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
18
|
Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3:5. [PMID: 20132536 PMCID: PMC2827364 DOI: 10.1186/1756-8722-3-5] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (HDACs) can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL) for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents.
Collapse
|
19
|
Casero RA, Woster PM. Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 2009; 52:4551-73. [PMID: 19534534 DOI: 10.1021/jm900187v] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
20
|
Abstract
More than 60 years after the first description of differentiation in cell culture and 40 years after the synthesis of 5-azacytidine, epigenetic therapies have been added to the anticancer armamentarium. DNA methyltransferase (DNMT) inhibitors such as 5-aza-2'-deoxycytidine or 5-azacytidine have been approved in myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML), whereas the histone deacetylase inhibitors (HDIs) including vorinostat, romidepsin, panobinostat, belinostat, and entinostat have been shown to be active in cutaneous and peripheral T-cell lymphoma. Although the range of malignancies in which monotherapy with DNMT inhibitors or HDIs are effective has been limited to date, the possibility remains that a broader spectrum of activity will be identified as combination studies are completed. Meanwhile, basic science has provided a steadily increasing understanding of the complexity of the epigenome, including the histone code and triggers for aberrant methylation, and their contribution to oncogenesis. As our basic understanding of the epigenetics of cancer increases, the number of potential therapeutic targets will also increase, offering more hope in the quest to treat cancer by normalizing the epigenome. This issue of CCR Focus is dedicated to understanding the clinical and translational aspects of epigenetics research.
Collapse
Affiliation(s)
- Richard L Piekarz
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
21
|
Acquired vorinostat resistance shows partial cross-resistance to ‘second-generation’ HDAC inhibitors and correlates with loss of histone acetylation and apoptosis but not with altered HDAC and HAT activities. Anticancer Drugs 2009; 20:321-33. [DOI: 10.1097/cad.0b013e3283262a32] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
de Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, Karavasilis V, Mita M, Shaw H, Workman P, Kaye S, Rowinsky EK, Aherne W, Atadja P, Scott JW, Patnaik A. Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res 2008; 14:6663-73. [PMID: 18927309 DOI: 10.1158/1078-0432.ccr-08-0376] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To determine the safety, maximum tolerated dose, and pharmacokinetic-pharmacodynamic profile of a histone deacetylase inhibitor, LAQ824, in patients with advanced malignancy. PATIENTS AND METHODS LAQ824 was administered i.v. as a 3-h infusion on days 1, 2, and 3 every 21 days. Western blot assays of peripheral blood mononuclear cell lysates and tumor biopsies pretherapy and posttherapy evaluated target inhibition and effects on heat shock protein-90 (HSP90) client proteins and HSP72. RESULTS Thirty-nine patients (22 male; median age, 53 years; median Eastern Cooperative Oncology Group performance status 1) were treated at seven dose levels (mg/m(2)): 6 (3 patients), 12 (4 patients), 24 (4 patients), 36 (4 patients), 48 (4 patients), 72 (19 patients), and 100 (1 patient). Dose-escalation used a modified continual reassessment method. Dose-limiting toxicities were transaminitis, fatigue, atrial fibrillation, raised serum creatinine, and hyperbilirubinemia. A patient with pancreatic cancer treated at 100 mg/m(2) died on course one at day 18 with grade 3 hyperbilirubinemia and neutropenia, fever, and acute renal failure. The area under the plasma concentration curve increased proportionally with increasing dose; median terminal half-life ranged from 8 to 14 hours. Peripheral blood mononuclear cell lysates showed consistent accumulation of acetylated histones posttherapy from 24 mg/m(2); higher doses resulted in increased and longer duration of pharmacodynamic effect. Changes in HSP90 client protein and HSP72 levels consistent with HSP90 inhibition were observed at higher doses. No objective response was documented; 3 patients had stable disease lasting up to 14 months. Based on these data, future efficacy trials should evaluate doses ranging from 24 to 72 mg/m(2). CONCLUSIONS LAQ824 was well tolerated at doses that induced accumulation of histone acetylation, with higher doses inducing changes consistent with HSP90 inhibition.
Collapse
Affiliation(s)
- Johann S de Bono
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research , Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7:854-68. [PMID: 18827828 DOI: 10.1038/nrd2681] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs)--enzymes that affect the acetylation status of histones and other important cellular proteins--have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Pharmacological manipulations using small-molecule HDAC inhibitors--which may restore transcriptional balance to neurons, modulate cytoskeletal function, affect immune responses and enhance protein degradation pathways--have been beneficial in various experimental models of brain diseases. Although mounting data predict a therapeutic benefit for HDAC-based therapy, drug discovery and development of clinical candidates face significant challenges. Here, we summarize the current state of development of HDAC therapeutics and their application for the treatment of human brain disorders such as Rubinstein-Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Aleksey G Kazantsev
- Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129-4404, USA.
| | | |
Collapse
|
24
|
Hepatoprotection and lethality rescue by histone deacetylase inhibitor valproic acid in fatal hemorrhagic shock. ACTA ACUST UNITED AC 2008; 65:554-65. [PMID: 18784568 DOI: 10.1097/ta.0b013e31818233ef] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pharmacological histone deacetylase (HDAC) inhibitors, such as known anticonvulsant valproic acid (VPA), demonstrate cytoprotective effects and increase acetylation of nuclear histones, promoting transcriptional activation of deregulated genes. Therefore, we examined protective effects of VPA administration in lethal hemorrhage and analyzed the patterns of hepatic histone acetylation. METHODS Male Wistar Kyoto rats were pretreated with VPA (n = 10) and 2-methyl-2-pentenoic acid (2M2P), structural VPA analog with limited HDAC inhibiting activity (2M2P; n = 8), at 300 mg/kg/dose, administered subcutaneously, 24 hour and immediately before lethal, if untreated, hemorrhage was induced by removing the 60% of total blood volume. Both drugs were dissolved in normal saline (NS) and rats pretreated with corresponding volume of NS served as control group (n = 8). Time to death, the degree of histone acetylation in liver, HDAC activity and markers of cytotoxicity (alpha-glutathione S-transferase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and lactate), and apoptosis were analyzed. RESULTS VPA-pretreated animals demonstrated five-fold increase in survival duration. At 12 hours posthemorrhage, 70% (VPA) and 12% (2M2P) pretreated rats were alive versus 0% in NS group. Hyperacetylation of histones H2A, H3, and H4 indicated the presence of active genes and correlated with survival (VPA > 2M2P > NS). Hemorrhage-induced increases in lactate, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were alleviated by VPA. Moreover, alpha-glutathione S-transferase release, indicative of liver damage, was completely abolished. CONCLUSION VPA offers considerable protection in severe hemorrhagic shock. The role of HDAC inhibition is suggested in mediating prosurvival actions of VPA.
Collapse
|
25
|
Kozikowski AP, Chen Y, Gaysin AM, Savoy DN, Billadeau DD, Kim KH. Chemistry, biology, and QSAR studies of substituted biaryl hydroxamates and mercaptoacetamides as HDAC inhibitors-nanomolar-potency inhibitors of pancreatic cancer cell growth. ChemMedChem 2008; 3:487-501. [PMID: 18181121 DOI: 10.1002/cmdc.200700314] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The histone deacetylases (HDACs) are able to regulate gene expression, and inhibitors of the HDACs (HDACIs) hold promise in the treatment of cancer as well as a variety of neurodegenerative diseases. To investigate the potential for isoform selectivity in the inhibition of HDACs, we prepared a small series of 2,4'-diaminobiphenyl ligands functionalized at the para-amino group with an appendage containing either a hydroxamate or a mercaptoacetamide group and coupled to an amino acid residue at the ortho-amino group. A smaller series of substituted phenylthiazoles was also explored. Some of these newly synthesized ligands show low-nanomolar potency in HDAC inhibition assays and display micromolar to low-nanomolar IC(50) values in tests against five pancreatic cancer cell lines. The isoform selectivity of these ligands for class I HDACs (HDAC1-3 and 8) and class IIb HDACs (HDAC6 and 10) together with QSAR studies of their correlation with lipophilicity are presented. Of particular interest is the selectivity of the mercaptoacetamides for HDAC6.
Collapse
Affiliation(s)
- Alan P Kozikowski
- Drug Discovery Program, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Blackwell L, Norris J, Suto CM, Janzen WP. The use of diversity profiling to characterize chemical modulators of the histone deacetylases. Life Sci 2008; 82:1050-8. [PMID: 18455194 DOI: 10.1016/j.lfs.2008.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/25/2008] [Accepted: 03/03/2008] [Indexed: 11/25/2022]
Abstract
Target specificity and off-target liabilities are routinely monitored during the early phases of drug discovery for most kinase projects. Typically these criteria are evaluated using a profiling panel comprised of a diverse collection of in vitro kinase assays and relates compound structure to potency and selectivity. The success of these efforts has led to the design of similar panels for phosphatase, protease, and epigenetic targets. Here the implementation of an epigenetic profiling panel, comprised of eleven histone deacetylases (HDACs) and one histone acetyltransferase (HAT), was used to evaluate chemical modulators of these enzymes. HDAC inhibitors (HDACi) such as sodium butyrate and trichostatin A demonstrate diverse biological effects which have led to broad speculation about their therapeutic potential in multiple disease states. Some HDACi have demonstrated tumor suppression in vivo and recently Zolinza was the first HDACi approved by the FDA for the treatment of cutaneous T-cell lymphoma. While HDACi have demonstrated therapeutic utility, many of the first generation compounds are pan-inhibitors. Thus, use of an HDAC profiling panel will be essential in achieving isoform specificity of the next generation of inhibitors. To this end, twenty-one compounds, twelve of which are known to have activities against the HDACs, were tested to evaluate the utility of the epigenetic panel. Additionally, these compounds were tested against a larger 72 member enzyme panel comprised of kinase, phosphatase and protease activities. This effort represents the first time these compounds have been profiled with such a broad range of biochemical activities.
Collapse
Affiliation(s)
- Leonard Blackwell
- Amphora Discovery Corp., Research Triangle Park, Durham, NC 27713, USA
| | | | | | | |
Collapse
|
27
|
Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem 2008; 312:47-60. [DOI: 10.1007/s11010-008-9720-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/29/2008] [Indexed: 12/25/2022]
|
28
|
Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 2008; 409:581-9. [PMID: 17868033 DOI: 10.1042/bj20070779] [Citation(s) in RCA: 574] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human HDAC (histone deacetylase) family, a well-validated anticancer target, plays a key role in the control of gene expression through regulation of transcription. While HDACs can be subdivided into three main classes, the class I, class II and class III HDACs (sirtuins), it is presently unclear whether inhibiting multiple HDACs using pan-HDAC inhibitors, or targeting specific isoforms that show aberrant levels in tumours, will prove more effective as an anticancer strategy in the clinic. To address the above issues, we have tested a number of clinically relevant HDACis (HDAC inhibitors) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rhHDAC3 and rhHDAC8) and class II HDAC isoforms (rhHDAC4, rhHDAC6, rhHDAC7 and rhHDAC9) was determined. MS-275 was HDAC1-selective, MGCD0103 was HDAC1- and HDAC2-selective, apicidin was HDAC2- and HDAC3-selective and valproic acid was a specific inhibitor of class I HDACs. The hydroxamic acid-derived compounds (trichostatin A, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat) were potent pan-HDAC inhibitors. The growth-inhibitory effect of the HDACis on HeLa cells showed that both pan-HDAC and class-I-specific inhibitors inhibited cell growth. The results also showed that both pan-HDAC and class-I-specific inhibitor treatment resulted in increased acetylation of histones, but only pan-HDAC inhibitor treatment resulted in increased tubulin acetylation, which is in agreement with their activity towards the HDAC6 isoform.
Collapse
Affiliation(s)
- Nagma Khan
- Topotarget UK Ltd, 87a Milton Park, Abingdon, Oxon, OX14 4RY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qian DZ, Kachhap SK, Collis SJ, Verheul HMW, Carducci MA, Atadja P, Pili R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res 2007; 66:8814-21. [PMID: 16951198 DOI: 10.1158/0008-5472.can-05-4598] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1 alpha) plays a critical role in transcriptional gene activation involved in tumor angiogenesis. A novel class of agents, the histone deacetylase (HDAC) inhibitors, has been shown to inhibit tumor angiogenesis and HIF-1 alpha protein expression. However, the molecular mechanism responsible for this inhibition remains to be elucidated. In the current study, we investigated the molecular link between HIF-1 alpha inhibition and HDAC inhibition. Treatment of the VHL-deficient human renal cell carcinoma cell line UMRC2 with the hydroxamic HDAC inhibitor LAQ824 resulted in a dose-dependent inhibition of HIF-1 alpha protein via a VHL-independent mechanism and reduction of HIF-1 alpha transcriptional activity. HIF-1 alpha inhibition by LAQ824 was associated with HIF-1 alpha acetylation and polyubiquitination. HIF-1 alpha immunoprecipitates contained HDAC activity. Then, we tested different classes of HDAC inhibitors with diverse inhibitory activity of class I versus class II HDACs and assessed their capability of targeting HIF-1 alpha. Hydroxamic acid derivatives with known activity against both class I and class II HDACs were effective in inhibiting HIF-1 alpha at low nanomolar concentrations. In contrast, valproic acid and trapoxin were able to inhibit HIF-1 alpha only at concentrations that are effective against class II HDACs. Coimmunoprecipitation studies showed that class II HDAC4 and HDAC6 were associated with HIF-1 alpha protein. Inhibition by small interfering RNA of HDAC4 and HDAC6 reduced HIF-1 alpha protein expression and transcriptional activity. Taken together, these results suggest that class II HDACs are associated with HIF-1 alpha stability and provide a rationale for targeting HIF-1 alpha with HDAC inhibitors against class II isozymes.
Collapse
Affiliation(s)
- David Z Qian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
R306465 is a novel potent inhibitor of class I histone deacetylases with broad-spectrum antitumoral activity against solid and haematological malignancies. Br J Cancer 2007; 97:1344-53. [PMID: 18000499 PMCID: PMC2360244 DOI: 10.1038/sj.bjc.6604025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
R306465 is a novel hydroxamate-based histone deacetylase (HDAC) inhibitor with broad-spectrum antitumour activity against solid and haematological malignancies in preclinical models. R306465 was found to be a potent inhibitor of HDAC1 and -8 (class I) in vitro. It rapidly induced histone 3 (H3) acetylation and strongly upregulated expression of p21waf1,cip1, a downstream component of HDAC1 signalling, in A2780 ovarian carcinoma cells. R306465 showed class I HDAC isotype selectivity as evidenced by poor inhibition of HDAC6 (class IIb) confirmed by the absence of downregulation of Hsp90 chaperone c-raf protein expression and tubulin acetylation. This distinguished it from other HDAC inhibitors currently in clinical development that were either more potent towards HDAC6 (e.g. vorinostat) or had a broader HDAC inhibition spectrum (e.g. panobinostat). R306465 potently inhibited cell proliferation of all main solid tumour indications, including ovarian, lung, colon, breast and prostate cancer cell lines, with IC50 values ranging from 30 to 300 nM. Haematological cell lines, including acute lymphoblastic leukaemia, acute myeloid leukaemia, chronic lymphoblastic leukaemia, chronic myeloid leukaemia, lymphoma and myeloma, were potently inhibited at a similar concentration range. R306465 induced apoptosis and inhibited angiogenesis in cell-based assays and had potent oral in vivo antitumoral activity in xenograft models. Once-daily oral administration of R306465 at well-tolerated doses inhibited the growth of A2780 ovarian, H460 lung and HCT116 colon carcinomas in immunodeficient mice. The high activity of R306465 in cell-based assays and in vivo after oral administration makes R306465 a promising novel antitumoral agent with potential applicability in a broad spectrum of human malignancies.
Collapse
|
31
|
Itoh Y, Suzuki T, Kouketsu A, Suzuki N, Maeda S, Yoshida M, Nakagawa H, Miyata N. Design, Synthesis, Structure−Selectivity Relationship, and Effect on Human Cancer Cells of a Novel Series of Histone Deacetylase 6-Selective Inhibitors. J Med Chem 2007; 50:5425-38. [DOI: 10.1021/jm7009217] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Akiyasu Kouketsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Nobuaki Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Satoko Maeda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Minoru Yoshida
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| |
Collapse
|
32
|
Golay J, Cuppini L, Leoni F, Micò C, Barbui V, Domenghini M, Lombardi L, Neri A, Barbui AM, Salvi A, Pozzi P, Porro G, Pagani P, Fossati G, Mascagni P, Introna M, Rambaldi A. The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells. Leukemia 2007; 21:1892-900. [PMID: 17637810 DOI: 10.1038/sj.leu.2404860] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have investigated the activity of ITF2357, a novel hydroxamate histone deacetylase inhibitor, on multiple myeloma (MM) and acute myelogenous leukemia (AML) cells in vitro and in vivo. ITF2357 induced apoptosis in 8/9 MM and 6/7 AML cell lines, as well as 4/4 MM and 18/20 AML freshly isolated cases, with a mean IC(50) of 0.2 microM. ITF2357 activated the intrinsic apoptotic pathway, upregulated p21 and downmodulated Bcl-2 and Mcl-1. The drug induced hyperacetylation of histone H3, H4 and tubulin. When studied in more physiological conditions, ITF2357 was still strongly cytotoxic for the interleukin-6 (IL-6)-dependent MM cell line CMA-03, or for AML samples maximally stimulated by co-culture on mesenchymal stromal cells (MSCs), but not for the MSCs themselves. Interestingly, ITF2357 inhibited the production of IL-6, vascular endothelial growth factor (VEGF) and interferon-gamma by MSCs by 80-95%. Finally, the drug significantly prolonged survival of severe combined immunodeficient mice inoculated with the AML-PS in vivo passaged cell line already at the 10 mg/kg oral dose. These data demonstrate that ITF2357 has potent anti-neoplastic activity in vitro and in vivo through direct induction of leukemic cell apoptosis. Furthermore, the drug inhibits production of growth and angiogenic factors by bone marrow stromal cells, in particular IL-6 and VEGF.
Collapse
Affiliation(s)
- J Golay
- Division of Haematology, Ospedali Riuniti, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 2007; 74:659-71. [PMID: 17498667 DOI: 10.1016/j.bcp.2007.04.007] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
Recently, the role of transcriptional repression through epigenetic modulation in carcinogenesis has been clinically validated with several inhibitors of histone deacetylases and DNA methyltransferases. It has long been recognized that epigenetic alterations of tumor suppressor genes was one of the contributing factors in carcinogenesis. Inhibitors of histone deacetylase (HDAC) de-repress genes that subsequently result in growth inhibition, differentiation and apoptosis of cancer cells. Vorinostat (SAHA), romidepsin (depsipeptide, FK-228), belinostat (PXD101) and LAQ824/LBH589 have demonstrated therapeutic benefit as monotherapy in cutaneous T-cell lymphoma (CTCL) and have also demonstrated some therapeutic benefit in other malignancies. The approval of the HDAC inhibitor vorinostat (Zolinzatrade mark) was based on the inherent sensitivity of this type of lymphoma to alterations in acetylation patterns that resulted in the induction of repressed apoptotic pathways. However, the full potential of these inhibitors (epigenetic modulators) is still on the horizon, as the true breadth of their utility as anti-cancer agents will be determined by the careful analysis of gene expression changes generated by these inhibitors and then combined with conventional chemotherapy to synergistically improve response and toxicity for an overall enhanced therapeutic benefit to the patient. The question that must be considered is whether the current HDACIs are being utilized to their fullest potential in clinical trials based on their mechanism-based alterations in disease processes.
Collapse
Affiliation(s)
- Keith B Glaser
- Department of Cancer Research, R47J-AP9, Abbott Laboratories, Abbott Park, IL 60064-6121, USA.
| |
Collapse
|
34
|
HDAC Inhibition in Cancer Therapy: An Increasingly Intriguing Tale of Chemistry, Biology and Clinical Benefit. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/7355_2006_007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
35
|
Shankar DB, Li J, Tapang P, Owen McCall J, Pease LJ, Dai Y, Wei RQ, Albert DH, Bouska JJ, Osterling DJ, Guo J, Marcotte PA, Johnson EF, Soni N, Hartandi K, Michaelides MR, Davidsen SK, Priceman SJ, Chang JC, Rhodes K, Shah N, Moore TB, Sakamoto KM, Glaser KB. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood 2007; 109:3400-8. [PMID: 17209055 PMCID: PMC1852258 DOI: 10.1182/blood-2006-06-029579] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3-internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC(50) approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC(50) = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G(0)/G(1) phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)-FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC(50) approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC(50) = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML.
Collapse
Affiliation(s)
- Deepa B Shankar
- Division of Hematology/Oncology, Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marson CM, Mahadevan T, Dines J, Sengmany S, Morrell JM, Alao JP, Joel SP, Vigushin DM, Charles Coombes R. Structure–activity relationships of aryloxyalkanoic acid hydroxyamides as potent inhibitors of histone deacetylase. Bioorg Med Chem Lett 2007; 17:136-41. [PMID: 17046252 DOI: 10.1016/j.bmcl.2006.09.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 11/30/2022]
Abstract
Syntheses of aryloxyalkanoic acid hydroxyamides are described, all of which are potent inhibitors of histone deacetylase, some being more potent in vitro than trichostatin A (IC(50)=3 nM). Variation of the substituents on the benzene ring as well as fusion of a second ring have marked effects on potency, in vitro IC(50) values down to 1 nM being obtained.
Collapse
Affiliation(s)
- Charles M Marson
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Flatmark K, Nome RV, Folkvord S, Bratland Å, Rasmussen H, Ellefsen MS, Fodstad Ø, Ree AH. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition. Radiat Oncol 2006; 1:25. [PMID: 16887021 PMCID: PMC1553456 DOI: 10.1186/1748-717x-1-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/03/2006] [Indexed: 11/11/2022] Open
Abstract
Background The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Methods Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. Results In addition to G2/M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G1 population of cells with functional p53 but accumulation of both G1 and G2/M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G2/M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. Conclusion In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified.
Collapse
Affiliation(s)
- Kjersti Flatmark
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
- Department of Surgical Oncology, Rikshospitalet-Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Ragnhild V Nome
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
| | - Sigurd Folkvord
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
| | - Åse Bratland
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
- Department of Medical Oncology and Radiotherapy, Rikshospitalet-Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Heidi Rasmussen
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
| | - Mali Strand Ellefsen
- Department of Radiation Biology, Rikshospitalet-Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
| | - Anne Hansen Ree
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, 0310 Oslo, Norway
- Department of Medical Oncology and Radiotherapy, Rikshospitalet-Radiumhospitalet Medical Center, 0310 Oslo, Norway
| |
Collapse
|
38
|
Suzuki T, Kouketsu A, Itoh Y, Hisakawa S, Maeda S, Yoshida M, Nakagawa H, Miyata N. Highly Potent and Selective Histone Deacetylase 6 Inhibitors Designed Based on a Small-Molecular Substrate. J Med Chem 2006; 49:4809-12. [PMID: 16884291 DOI: 10.1021/jm060554y] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To find novel histone deacetylase 6 (HDAC6)-selective inhibitors and clarify the structural requirements for HDAC6-selective inhibition, we prepared thiolate analogues designed based on the structure of an HDAC6-selective substrate and evaluated the histone/alpha-tubulin acetylation selectivity by Western blot analysis. Aliphatic compounds 17b-20b selectively caused alpha-tubulin acetylation over histone H4 acetylation. In enzyme assays using HDAC1, HDAC4, and HDAC6, compounds 17a-19a exhibited HDAC6-selective inhibition over HDAC1 and HDAC4.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya, Aichi 467-8603, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON. Quantitative Proteomic Analysis of Post-translational Modifications of Human Histones. Mol Cell Proteomics 2006; 5:1314-25. [PMID: 16627869 DOI: 10.1074/mcp.m600007-mcp200] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone proteins are subject to a range of post-transcriptional modifications in living cells. The combinatorial nature of these modifications constitutes the "histone code" that dictates chromatin structure and function during development, growth, differentiation, and homeostasis of cells. Deciphering of the histone code is hampered by the lack of analytical methods for monitoring the combinatorial complexity of reversible multisite modifications of histones, including acetylation and methylation. To address this problem, we used LC-MSMS technology and Virtual Expert Mass Spectrometrist software for qualitative and quantitative proteomic analysis of histones extracted from human small cell lung cancer cells. A total of 32 acetylations, methylations, and ubiquitinations were located in the human histones H2A, H2B, H3, and H4, including seven novel modifications. An LC-MSMS-based method was applied in a quantitative proteomic study of the dose-response effect of the histone deacetylase inhibitor (HDACi) PXD101 on histone acetylation in human cell cultures. Triplicate LC-MSMS runs at six different HDACi concentrations demonstrated that PXD101 affects acetylation of histones H2A, H2B, H3, and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational modifications is a viable approach for functional analysis of candidate drugs, such as HDAC inhibitors.
Collapse
|
40
|
Vanommeslaeghe K, Loverix S, Geerlings P, Tourwé D. DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors. Bioorg Med Chem 2005; 13:6070-82. [PMID: 16006131 DOI: 10.1016/j.bmc.2005.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 06/02/2005] [Accepted: 06/03/2005] [Indexed: 01/13/2023]
Abstract
Histone deacetylases (HDACs) have recently attracted considerable interest as targets in the treatment of cell proliferative diseases such as cancer. In the present work, a general framework is proposed for chemical groups that bind into the HDAC catalytic core. Based on this framework, a series of groups was selected for further investigation. A method was developed to rank the HDAC inhibitory potential of these moieties at the B3LYP/6-31G* level, making use of extra diffuse functions and of the PCM solvation model where appropriate. The resulting binding geometries indicate that very stringent constraints should be satisfied in order to have bidental zinc chelation, and even more so to have a strong binding affinity, which makes it difficult to predict the binding mode and affinity of such zinc-binding groups. The chemical hardness and the pK(a) were identified as important criteria for the binding affinity. Also, the hydrophilicity may have a direct influence on the binding affinity. The calculated binding energies were qualitatively validated with experimental results from the literature, and were shown to be meaningful for the purpose of ranking. Additionally, the insights gained from the present work may be useful for increasing the accuracy of QSAR models by providing a rational basis for selecting descriptors.
Collapse
Affiliation(s)
- K Vanommeslaeghe
- Vrije Universiteit Brussel, Organic Chemistry Group, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | | | |
Collapse
|
41
|
Abstract
Alterations in chromatin structure resulting from aberrant DNA methylation and perturbations of the histone code profoundly influence gene expression during pulmonary carcinogenesis. Recent studies indicate that DNA demethylating agents and histone deacetylase (HDAC) inhibitors synergistically induce gene expression and apoptosis in cultured lung cancer cells, and prevent lung cancer development in animals following exposure to tobacco carcinogens. Preliminary clinical trials have established proof of principle regarding the use of DNA demethylating agents and HDAC inhibitors for enhancing immunogenicity and apoptosis of lung cancer cells, and have revealed the complexities concerning the mechanisms by which chromatin remodeling agents mediate antitumor effects in vivo. These data support additional investigations pertaining to the epigenetics of lung cancer, and the evaluation of chromatin remodeling agents for the treatment and prevention of this disease.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1201, USA.
| | | |
Collapse
|
42
|
Suzuki T, Matsuura A, Kouketsu A, Hisakawa S, Nakagawa H, Miyata N. Design and synthesis of non-hydroxamate histone deacetylase inhibitors: identification of a selective histone acetylating agent. Bioorg Med Chem 2005; 13:4332-42. [PMID: 15927839 DOI: 10.1016/j.bmc.2005.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/04/2005] [Accepted: 04/04/2005] [Indexed: 11/19/2022]
Abstract
A series of suberoylanilide hydroxamic acid (SAHA)-based non-hydroxamates was designed, synthesized, and evaluated for their histone deacetylase (HDAC) inhibitory activity. Among these, methyl sulfoxide 15 inhibited HDACs in enzyme assays and caused hyperacetylation of histone H4 while not inducing the accumulation of acetylated alpha-tubulin in HCT116 cells.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Kristeleit R, Fong P, Aherne GW, de Bono J. Histone Deacetylase Inhibitors: Emerging Anticancer Therapeutic Agents? Clin Lung Cancer 2005; 7 Suppl 1:S19-30. [PMID: 16159416 DOI: 10.3816/clc.2005.s.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors are novel anticancer agents in clinical development that target the family of histone deacetylase (HDAC) enzymes responsible for deacetylating core nucleosomal histones and other proteins. The precise mechanisms resulting in the antiproliferative biologic effects of these agents are not yet known, but there are several proposed mechanistic models, including transcriptional and nontranscriptional processes. Clinical experience with these agents indicates that they are generally well tolerated, and anticancer activity has been observed in early clinical trials in several tumor types including non-small-cell lung cancer. The development of these agents continues, with an emphasis on the discovery of HDAC isoform-selective compounds. Successful future development relies on clearer understanding of the dominant mechanisms involved in the observed antiproliferative effects.
Collapse
|
44
|
Abstract
Chromatin proteins undergo diverse posttranslational modifications, esp. acetylation and methylation, that contribute to the control of transcriptional processes. The result of these modifications in its various states is called the histone code. This review presents an overview of those modifications of chromatin proteins that affect the side chains of lysines and arginines and define variations of the chromatin acetylome and methylome. The relevant enzymes are presented and the feasibility to influence their activity by inhibition or activation is discussed. The manipulation of these enzymes is an exciting strategy towards an increased understanding of their role in the functionality of a cell. Additionally, this may lead to new approaches for the treatment of diseases that are based on a dysregulation of transcription, especially cancer.
Collapse
Affiliation(s)
- Stefan Schäfer
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
45
|
Ryu JK, Lee WJ, Lee KH, Hwang JH, Kim YT, Yoon YB, Kim CY. SK-7041, a new histone deacetylase inhibitor, induces G2-M cell cycle arrest and apoptosis in pancreatic cancer cell lines. Cancer Lett 2005; 237:143-54. [PMID: 16009488 DOI: 10.1016/j.canlet.2005.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/26/2005] [Accepted: 05/30/2005] [Indexed: 12/17/2022]
Abstract
A novel hybrid synthetic histone deacetylase inhibitor, SK-7041, was synthesized from hydroaxamic acid of trichostatin A (TSA) and pyridyl ring of MS-275. TSA and SK-7041 both induced apoptosis and G2-M cell cycle arrest in pancreatic cancer cell lines. The expressions of p21 and cyclin D2 were up-regulated and that of cyclin B1 was down-regulated by TSA or SK-7041. The expression levels of Mcl-1 and Bcl-XL but not those of Bcl-2, Bax, and Bak were suppressed by TSA or SK-7041 treatment. SK-7041 or TSA induced apoptosis and G2-M cell cycle arrest by up-regulating p21 and down-regulating cyclin B1, Mcl-1, and Bcl-XL.
Collapse
Affiliation(s)
- Ji Kon Ryu
- Departments of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 28 Yungun-dong, Chongno-gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Anandan SK, Ward JS, Brokx RD, Bray MR, Patel DV, Xiao XX. Mercaptoamide-based non-hydroxamic acid type histone deacetylase inhibitors. Bioorg Med Chem Lett 2005; 15:1969-72. [DOI: 10.1016/j.bmcl.2005.02.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 02/18/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
|