1
|
Chagraoui A, Thibaut F, De Deurwaerdère P. 5-HT6 receptors: Contemporary views on their neurobiological and pharmacological relevance in neuropsychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2025; 27:112-128. [PMID: 40347153 PMCID: PMC12068339 DOI: 10.1080/19585969.2025.2502028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/02/2025] [Accepted: 04/30/2025] [Indexed: 05/12/2025]
Abstract
Despite the relatively limited number of serotonergic neurons in humans, serotonin plays a key role in neurophysiological functions, including sleep, pain perception, learning, memory, cognition, emotion, reward, and mood regulation. Altered serotonergic neurotransmission is linked to conditions such as anxiety, depression, anorexia, migraine, insomnia, schizophrenia, Alzheimer's disease (AD), and cognitive impairments. The 5-HT6 receptor (5-HT6R), mainly found in brain regions involved in cognition, is a promising therapeutic target for cognitive deficits in neuropsychiatric disorders, particularly AD and schizophrenia. Preclinical studies have shown that 5-HT6R antagonists improve cognitive function. 5-HT6R interacts dynamically with an extensive intracellular protein network, regulating the localisation, trafficking, and signalling of these proteins. Proteomic and genetic studies have revealed interactions with mTOR kinase and neurofibromin, both of which are crucial for synaptic plasticity, learning, and memory. Fyn kinase is also associated with 5-HT6Rs, reinforcing receptor expression and G-protein coupling. Notably, the G protein-regulated inducer of neurite outgrowth 1 (GPRIN1) interacts with 5-HT6Rs independently of agonists, enhancing receptor activity. This review highlights the clinical testing of 5-HT6R ligands as regulators of these complex signalling properties, underscoring their therapeutic potential in addressing cognitive impairments associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France
- University of Rouen, Faculty of Medicine and Pharmacy, Inserm U1239, Neuroendocrine, Endocrine, and Germinal Differentiation and Communication (NorDiC), Mont-Saint-Aignan, France
| | - Florence Thibaut
- Department of Psychiatry and Addictive Disorders, University Hospital Cochin (site Tarnier) AP-HP, Paris, France
- INSERM U1266, Institute of Psychiatry and Neurosciences, University of Paris, Cité, Paris, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d’Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
2
|
Abstract
Pepducins are lipidated peptides that target the intracellular loops of G protein-coupled receptors (GPCRs) in order to modulate transmembrane signaling to internally located effectors. With a wide array of potential activities ranging from partial, biased, or full agonism to antagonism, pepducins represent a versatile class of compounds that can be used to potentially treat diverse human diseases or be employed as novel tools to probe complex mechanisms of receptor activation and signaling in cells and in animals. Here, we describe a number of different pepducins including an advanced compound, PZ-128, that has successfully progressed through phase 2 clinical trials in cardiac patients demonstrating safety and efficacy in suppressing myonecrosis and arterial thrombosis.
Collapse
Affiliation(s)
- Emily Michael
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lidija Covic
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Athan Kuliopulos
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
A human antibody against human endothelin receptor type A that exhibits antitumor potency. Exp Mol Med 2021; 53:1437-1448. [PMID: 34588605 PMCID: PMC8492878 DOI: 10.1038/s12276-021-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the β-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin βA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer. A therapeutic antibody that targets a receptor involved in cancer progression shows significant anti-cancer effects in trials in mice. Endothelin receptor A (ETA) promotes the progression and metastasis of several cancers, and patients with high ETA expression often have poor survival rates. Several small molecule drugs that target ETA are currently undergoing trials. Now, Sang Taek Jung at the Korea University in Seoul, together with scientists across South Korea, have identified and isolated a human antibody that specifically binds to ETA. The team developed an antigen that mimics ETA, and identified and isolated the antibody it bound to. The antibody exhibited potent anti-tumor effects in cell cultures and trials in mice. Such therapeutic antibodies show higher affinity for their targets than other drugs, resulting in fewer side effects and higher efficacy.
Collapse
|
4
|
Mimicry of Dopamine 1 Receptor Signaling with Cell-Penetrating Peptides. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractIn this study, through the use of protein mimicry, a peptide was developed to activate the dopamine 1 receptor signaling pathway from the inside of the cell and in absence of the natural extracellular ligand. The sequence was initially derived from the intracellular interaction site between the activated receptor and the alpha domain of its associated G-protein and subsequently modified to increase its cell-penetrating properties. The peptide was then synthesized via solid phase peptide synthesis, purified and tested on cell models. This novel lipopeptide proved to be capable of efficiently ubiquitously penetrating the cell without the need for transfection agents or chiral recognition by specific pathways. Furthermore, the peptide induced the cellular response normally achieved through the activation of the receptor in cells that had not been treated with the natural ligand. The peptide could work as a candidate substitute to l-DOPA, leading the way for a peptides-based treatment for Parkinson’s disease.
Collapse
|
5
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
6
|
Cilia function is associated with axon initial segment morphology. Biochem Biophys Res Commun 2019; 516:15-21. [DOI: 10.1016/j.bbrc.2019.05.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
|
7
|
Lesiak AJ, Brodsky M, Cohenca N, Croicu AG, Neumaier JF. Restoration of Physiological Expression of 5-HT 6 Receptor into the Primary Cilia of Null Mutant Neurons Lengthens Both Primary Cilia and Dendrites. Mol Pharmacol 2018; 94:731-742. [PMID: 29678909 PMCID: PMC5987994 DOI: 10.1124/mol.117.111583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
5-HT6 (serotonin) receptors are promising targets for a variety of neuropsychiatric disorders and have been linked to several cellular signaling cascades. Endogenous 5-HT6 receptors are restricted to the primary neuronal cilium, a small sensory organelle stemming from the cell body that receives numerous extrasynaptic signals. Inhibition of 5-HT6 receptors decreases cilia length in primary neuronal cultures, but the signaling mechanisms involved are still unclear. Intense overexpression of exogenous 5-HT6 receptors increases the probability for receptors to localize outside the primary cilium and have been associated with changes in cilia morphology and dendritic outgrowth. In the present study, we explore the role of 5-HT6R rescue on neuronal morphology in primary neuronal cultures from 5-HT6R-KO mice, at the same time maintaining a more physiologic level of expression, wherein the receptor localizes to cilia in 80%-90% of neurons (similar to endogenous 5-HT6R localization). We found that rescue of 5-HT6R expression is sufficient to increase cilia length and dendritic outgrowth, but primarily in neurons in which the receptor is located exclusively in the primary cilia. Additionally, we found that expression of 5-HT6R mutants deficient in agonist-stimulated cAMP or without the predicted Fyn kinase binding domain maintained constitutive activity for stimulating cAMP and still increased the length of cilia, and that the proposed Fyn kinase domain was required for stimulating dendritic outgrowth. These findings highlight the complexity of 5-HT6R function and localization, particularly with the use of exogenous overexpression, and provide greater understanding and potential mechanisms for 5-HT6R drug therapies.
Collapse
Affiliation(s)
- Atom J Lesiak
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Matthew Brodsky
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Nathalie Cohenca
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Alexandra G Croicu
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - John F Neumaier
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Yano A, Takahashi Y, Moriguchi H, Inazumi T, Koga T, Otaka A, Sugimoto Y. An aromatic amino acid within intracellular loop 2 of the prostaglandin EP2 receptor is a prerequisite for selective association and activation of Gαs. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:615-622. [PMID: 28336329 DOI: 10.1016/j.bbalip.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
We previously demonstrated that the aromatic moiety of Tyr143 within the intracellular loop 2 (ICL2) region of the prostaglandin EP2 receptor plays a crucial role in Gs coupling. Here we investigated whether the ICL2 of the EP2 receptor directly binds to Gαs and whether an aromatic moiety affects this interaction. In Chinese hamster ovary cells, mutations of Tyr143 reduced the ability of the EP2 receptor to interact with G proteins as demonstrated by GTPγS sensitivity, as well as the ability of agonist-induced cAMP formation, with the rank order of Phe>Tyr (wild-type)=Trp>Leu>Ala (=0). We found that the wild-type ICL2 peptide (i2Y) and its mutant with Phe at Tyr143 (i2F) inhibited receptor-G protein complex formation of wild-type EP2 in membranes, whereas the Ala-substituted mutant (i2A) did not. Specific interactions between these peptides and the Gαs protein were detected by surface plasmon resonance, but Gαs showed different association rates, with a rank order of i2F>i2Y≫i2A, with similar dissociation rates. Moreover, i2F and i2Y, but not i2A activated membrane adenylyl cyclase. These results indicate that the ICL2 region of the EP2 receptor is its potential interaction site with Gαs, and that the aromatic side chain moiety at position 143 is a determinant for the accessibility of the ICL2 to the Gαs protein.
Collapse
Affiliation(s)
- Akiko Yano
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuko Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Moriguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; AMED-CREST, Tokyo 100-0004, Japan
| | - Tomoaki Koga
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Akira Otaka
- Department of Bioorganic Synthetic Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yukihiko Sugimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; AMED-CREST, Tokyo 100-0004, Japan.
| |
Collapse
|
9
|
Press O, Zvagelsky T, Vyazmensky M, Kleinau G, Engel S. Construction of Structural Mimetics of the Thyrotropin Receptor Intracellular Domain. Biophys J 2016; 111:2620-2628. [PMID: 28002738 PMCID: PMC5192603 DOI: 10.1016/j.bpj.2016.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022] Open
Abstract
The signaling of a G protein-coupled receptor (GPCR) is dictated by the complementary responsiveness of interacting intracellular effectors such as G proteins. Many GPCRs are known to couple to more than one G protein subtype and induce a multitude of signaling pathways, although the in vivo relevance of particular pathways is mostly unrecognized. Dissecting GPCR signaling in terms of the pathways that are activated will boost our understanding of the molecular fundamentals of hormone action. The structural determinants governing the selectivity of GPCR/G protein coupling, however, remain obscure. Here, we describe the design of soluble GPCR mimetics to study the details of the interplay between G-proteins and activators. We constructed functional mimetics of the intracellular domain of a model GPCR, the thyrotropin receptor. We based the construction on a unique scaffold, 6-Helix, an artificial protein that was derived from the elements of the trimer-of-hairpins structure of HIV gp41 and represents a bundle of six α-helices. The 6-Helix scaffold, which endowed the substituted thyrotropin receptor intracellular domain elements with spatial constraints analogous to those found in native receptors, enabled the reconstitution of a microdomain that consists of intracellular loops 2 and 3, and is capable of binding and activating Gα-(s). The 6-Helix-based mimetics could be used as a platform to study the molecular basis of GPCR/G protein recognition. Such knowledge could help investigators develop novel therapeutic strategies for GPCR-related disorders by targeting the GPCR/G protein interfaces and counteracting cellular dysfunctions via focused tuning of GPCR signaling.
Collapse
Affiliation(s)
- Olga Press
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tatiana Zvagelsky
- Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria Vyazmensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Li S, Lee SY, Chung KY. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry. Methods Enzymol 2015; 557:261-78. [PMID: 25950969 DOI: 10.1016/bs.mie.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system.
Collapse
Affiliation(s)
- Sheng Li
- Department of Medicine, University of California at San Diego, San Diego, California, USA
| | - Su Youn Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
11
|
Ha CM, Park D, Kim Y, Na M, Panda S, Won S, Kim H, Ryu H, Park ZY, Rasenick MM, Chang S. SNX14 is a bifunctional negative regulator for neuronal 5-HT6 receptor signaling. J Cell Sci 2015; 128:1848-61. [PMID: 25795301 DOI: 10.1242/jcs.169581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/13/2015] [Indexed: 02/01/2023] Open
Abstract
The 5-hydroxytryptamine (5-HT, also known as serotonin) subtype 6 receptor (5-HT6R, also known as HTR6) plays roles in cognition, anxiety and learning and memory disorders, yet new details concerning its regulation remain poorly understood. In this study, we found that 5-HT6R directly interacted with SNX14 and that this interaction dramatically increased internalization and degradation of 5-HT6R. Knockdown of endogenous SNX14 had the opposite effect. SNX14 is highly expressed in the brain and contains a putative regulator of G-protein signaling (RGS) domain. Although its RGS domain was found to be non-functional as a GTPase activator for Gαs, we found that it specifically bound to and sequestered Gαs, thus inhibiting downstream cAMP production. We further found that protein kinase A (PKA)-mediated phosphorylation of SNX14 inhibited its binding to Gαs and diverted SNX14 from Gαs binding to 5-HT6R binding, thus facilitating the endocytic degradation of the receptor. Therefore, our results suggest that SNX14 is a dual endogenous negative regulator in 5-HT6R-mediated signaling pathway, modulating both signaling and trafficking of 5-HT6R.
Collapse
Affiliation(s)
- Chang Man Ha
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu 700-100, South Korea
| | - Daehun Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Yoonju Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea Neuroscience Institute, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Myeongsu Na
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Surabhi Panda
- Departments of Physiology & Biophysics and Psychiatry, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60680, USA
| | - Sehoon Won
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Hoon Ryu
- Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Zee Yong Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Mark M Rasenick
- Departments of Physiology & Biophysics and Psychiatry, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60680, USA
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea Neuroscience Institute, Seoul National University College of Medicine, Seoul 110-799, South Korea
| |
Collapse
|
12
|
Giulietti M, Vivenzio V, Piva F, Principato G, Bellantuono C, Nardi B. How much do we know about the coupling of G-proteins to serotonin receptors? Mol Brain 2014; 7:49. [PMID: 25011628 PMCID: PMC4105882 DOI: 10.1186/s13041-014-0049-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis.
Collapse
Affiliation(s)
| | | | - Francesco Piva
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | |
Collapse
|
13
|
The serotonin 5-HT7 receptors: two decades of research. Exp Brain Res 2013; 230:555-68. [PMID: 24042216 DOI: 10.1007/s00221-013-3694-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023]
Abstract
Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.
Collapse
|
14
|
Arborization of dendrites by developing neocortical neurons is dependent on primary cilia and type 3 adenylyl cyclase. J Neurosci 2013; 33:2626-38. [PMID: 23392690 DOI: 10.1523/jneurosci.2906-12.2013] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of primary cilia is a highly choreographed process that can be disrupted in developing neurons by overexpressing neuromodulatory G-protein-coupled receptors GPCRs or by blocking intraflagellar transport. Here, we examined the effects of overexpressing the ciliary GPCRs, 5HT6 and SSTR3, on cilia structure and the differentiation of neocortical neurons. Neuronal overexpression of 5HT6 and SSTR3 was achieved by electroporating mouse embryo cortex in utero with vectors encoding these receptors. We found that overexpression of ciliary GPCRs in cortical neurons, especially 5HT6, induced the formation of long (>30 μm) and often forked cilia. These changes were associated with increased levels of intraflagellar transport proteins and accelerated ciliogenesis in neonatal neocortex, the induction of which required Kif3a, an anterograde motor critical for cilia protein trafficking and growth. GPCR overexpression also altered the complement of signaling molecules within the cilia. We found that SSTR3 and type III adenylyl cyclase (ACIII), proteins normally enriched in neuronal cilia, were rarely detected in 5HT6-elongated cilia. Intriguingly, the changes in cilia structure were accompanied by changes in neuronal morphology. Specifically, disruption of normal ciliogenesis in developing neocortical neurons, either by overexpressing cilia GPCRs or a dominant-negative form of Kif3a, significantly impaired dendrite outgrowth. Remarkably, coexpression of ACIII with 5HT6 restored ACIII to cilia, normalized cilia structure, and restored dendrite outgrowth, effects that were not observed in neurons coexpressing ACIII and dominant-negative form of Kif3a. Collectively, our data suggest the formation of neuronal dendrites in developing neocortex requires structurally normal cilia enriched with ACIII.
Collapse
|
15
|
|
16
|
5-HT6 receptor signal transduction second messenger systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 94:89-110. [PMID: 21081203 DOI: 10.1016/b978-0-12-384976-2.00004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
Shpakov AO, Tarasenko II, Shpakova EA. Peptides derived from the third cytoplasmic loop of type 6 serotonin receptor as regulators of serotonin-sensitive adenylyl cyclase signaling system. DOKL BIOCHEM BIOPHYS 2010; 431:94-7. [PMID: 20514872 DOI: 10.1134/s1607672910020110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Morisa Toreza 44, St. Petersburg 194223, Russia
| | | | | |
Collapse
|
18
|
Shpakov AO, Shpakova EA, Tarasenko II, Derkach KV, Vlasov GP. The Peptides Mimicking the Third Intracellular Loop of 5-Hydroxytryptamine Receptors of the Types 1B and 6 Selectively Activate G Proteins and Receptor-Specifically Inhibit Serotonin Signaling via the Adenylyl Cyclase System. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9208-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Yun HM, Baik JH, Kang I, Jin C, Rhim H. Physical interaction of Jab1 with human serotonin 6 G-protein-coupled receptor and their possible roles in cell survival. J Biol Chem 2010; 285:10016-10029. [PMID: 20093369 DOI: 10.1074/jbc.m109.068759] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5-HT(6) receptor (5-HT(6)R) is one of the most recently cloned serotonin receptors, and it plays important roles in Alzheimer disease, depression, and learning and memory disorders. However, unlike the other serotonin receptors, the cellular mechanisms of 5-HT(6)R are poorly elucidated relative to its significance in human brain diseases. Here, using a yeast two-hybrid assay, we found that the human 5-HT(6)R interacts with Jun activation domain-binding protein-1 (Jab1). We also confirmed a physical interaction between 5-HT(6)R and Jab1 using glutathione S-transferase pulldown, fluorescence resonance energy transfer, co-immunoprecipitation, and immunocyto(histo)chemistry assays. The manipulation of Jab1 expression using Jab1 small interference RNA decreased 5-HT(6)R-mediated activity and cell membrane expression of 5-HT(6)R, whereas overexpression of Jab1 produced no significant effect. In addition, we demonstrated that the activation of 5-HT(6)R induced the translocation of Jab1 into the nucleus and increased c-Jun phosphorylation and the interaction between Jab1 and c-Jun. Furthermore, we found that 5-HT(6)R and Jab1 were up-regulated in middle cerebral artery occlusion-induced focal cerebral ischemic rats and in cultured cells exposed to hypoxic insults, suggesting possible protective roles for 5-HT(6)R and Jab1. These findings suggest that Jab1 provides a novel signal transduction pathway for 5-HT(6)R and may play an important role in 5-HT(6)R-mediated behavior changes in the brain.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Life Sciences Division, Korea Institute of Science and Technology, Seoul 136-791; School of Life Sciences and Biotechnology, Korea University, Seoul 136-701
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701
| | - Insug Kang
- College of Medicine, KyungHee University, Seoul 130-702
| | - Changbae Jin
- Doping Control Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyewhon Rhim
- Life Sciences Division, Korea Institute of Science and Technology, Seoul 136-791.
| |
Collapse
|
20
|
Abstract
Interaction of ligands with their specific receptors is accompanied by conformational shifts culminating in receptor activation and expression of hormonal activity. Using an engineered disulfide bond formation strategy, we characterized the relative conformational changes taking place within the PTH type 1 receptor (PTHR1) at the interface of transmembrane (TM)5 and TM6 on binding the PTH agonist, PTH(1-34), compared with the antagonist PTH(7-34). Cysteines were singly incorporated into a portion of the extracellular-facing region of TM5 (365-370), while simultaneously a second cysteine was introduced at position 420, 423, or 425 at the extracellular end of TM6, leading to a total of 18 double cysteine-containing PTHR1 mutants. All mutants, except P366C/V423C and P366C/M425C, were expressed in the cell membrane preparations. In the presence of agonist, H420C and M425C in TM6 formed disulfide bonds with all and with most, respectively, of the substituted cysteines incorporated in TM5. In contrast to the conformational shift induced (or stabilized) by agonist in activating the receptor, antagonist binding produced no detectable change from the basal (inactive) conformation of PTHR1. Our studies provide physicochemical evidence that the extracellular-facing ligand binding regions of receptor, TM5 and TM6, are dynamic and move relative to each other on ligand binding. The distinct differences in receptor conformation induced (or stabilized) by agonist PTH(1-34) compared with antagonist PTH(7-34) begin to provide insight into the early events in and mechanism of PTHR1 activation.
Collapse
|
21
|
Shpakov AO. Structural functional characteristic of neuronal serotonin receptors and molecular mechanisms of their coupling with G-proteins. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Wacker JL, Feller DB, Tang XB, Defino MC, Namkung Y, Lyssand JS, Mhyre AJ, Tan X, Jensen JB, Hague C. Disease-causing mutation in GPR54 reveals the importance of the second intracellular loop for class A G-protein-coupled receptor function. J Biol Chem 2008; 283:31068-78. [PMID: 18772143 PMCID: PMC2576551 DOI: 10.1074/jbc.m805251200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/26/2008] [Indexed: 11/06/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) GPR54 is essential for the development and maintenance of reproductive function in mammals. A point mutation (L148S) in the second intracellular loop (IL2) of GPR54 causes idiopathic hypogonadotropic hypogonadism, a disorder characterized by delayed puberty and infertility. Here, we characterize the molecular mechanism by which the L148S mutation causes disease and address the role of IL2 in Class A GPCR function. Biochemical, immunocytochemical, and pharmacological analysis demonstrates that the mutation does not affect the expression, ligand binding properties, or protein interaction network of GPR54. In contrast, diverse GPR54 functional responses are markedly inhibited by the L148S mutation. Importantly, the leucine residue at this position is highly conserved among class A GPCRs. Indeed, mutating the corresponding leucine of the alpha(1A)-AR recapitulates the effects observed with L148S GPR54, suggesting the critical importance of this hydrophobic IL2 residue for Class A GPCR functional coupling. Interestingly, co-immunoprecipitation studies indicate that L148S does not hinder the association of Galpha subunits with GPR54. However, fluorescence resonance energy transfer analysis strongly suggests that L148S impairs the ligand-induced catalytic activation of Galpha. Combining our data with a predictive Class A GPCR/Galpha model suggests that IL2 domains contain a conserved hydrophobic motif that, upon agonist stimulation, might stabilize the switch II region of Galpha. Such an interaction could promote opening of switch II of Galpha to facilitate GDP-GTP exchange and coupling to downstream signaling responses. Importantly, mutations that disrupt this key hydrophobic interface can manifest as human disease.
Collapse
Affiliation(s)
- Jennifer L Wacker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Actions of novel agonists, antagonists and antipsychotic agents at recombinant rat 5-HT6 receptors: a comparative study of coupling to G alpha s. Eur J Pharmacol 2008; 588:170-7. [PMID: 18511034 DOI: 10.1016/j.ejphar.2008.04.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 04/11/2008] [Indexed: 01/27/2023]
Abstract
Though 5-HT6 receptors are targets for the treatment of schizophrenia and other psychiatric disorders, the influence of drugs upon signal transduction has not been extensively characterized. Herein, we employed a Scintillation Proximity Assay (SPA)/antibody-immunocapture procedure of coupling to G alpha s to evaluate the interaction of a broad range of novel agonists, antagonists and antipsychotics at rat 5-HT(6) receptors stably expressed in HEK293 cells. Serotonin (pEC(50), 7.7) increased [35S]GTP gamma S binding to G alpha s by ca 2-fold without affecting binding to Gi/o or Gq. LSD (9.2), 5-MeODMT (7.9), 5-CT (7.0) and tryptamine (6.1) were likewise full agonists. In contrast, the novel sulfonyl derivatives, WAY181,187 (9.1) and WAY208,466 (7.8), behaved as partial agonists and attenuated the actions of 5-HT. SB271,046 and SB258,585 abolished activation of G alpha s by 5-HT with pKb values of 10.2 and 9.9, respectively, actions mimicked by the novel antagonist, SB399,885 (10.9). SB271,046 likewise blocked partial agonist properties of WAY181,187 and WAY208,466 with pKb values of 9.8 and 9.0, respectively. 5-HT-stimulated [35S]GTP gamma S binding to G alpha s was antagonised by various antipsychotics including olanzapine (7.8), asenapine (9.1) and SB737,050 (7.8), whereas aripiprazole and bifeprunox were inactive. Further, antagonist properties of clozapine (8.0) were mimicked by its major metabolite, N-desmethylclozapine (7.9). In conclusion, the novel ligands, WAY208,466 and WAY181,187, behaved as partial agonists at 5-HT6 receptors coupled to G alpha s, while SB399,885 was a potent antagonist. Though 5-HT6 receptor blockade is not indispensable for therapeutic efficacy, it may well play a role in the functional actions of certain antipsychotic agents.
Collapse
|
24
|
Wu J, Feng M, Ruan KH. Assembling NMR structures for the intracellular loops of the human thromboxane A2 receptor: implication of the G protein-coupling pocket. Arch Biochem Biophys 2008; 470:73-82. [PMID: 18073117 PMCID: PMC2295216 DOI: 10.1016/j.abb.2007.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/28/2022]
Abstract
It has been reported that the multiple intracellular loops (iLPs) of the thromboxane A(2) receptor (TP) are involved in the receptor G protein coupling. In this study, a high-resolution 2D NMR technique was used to determine the 3D structures of the first, second, and third iLPs of the TP using synthetic peptides constrained into the loop structures. 2D (1)H NMR spectra, TOCSY and NOESY were obtained for the two peptides from proton NMR experiments. The NMR data was processed and assigned through the Felix 2000 program. Standard methods were used to acquire sequence-specific assignments. Structure calculations were processed through DGII and NMR refinement programs within the Insight II program. We were able to calculate and use the NOE constraints to obtain the superimposed structure of 10 structures for each iLP peptide. The NMR-determined structures of the iLP peptides were used to refine a homology model of the TP. A 3D G-protein-binding cavity, formed by the three intracellular loops, was predicted by the docking of the C-terminal domain of the Galphaq. Based on the structural model and the previous mutagenesis studies, the residues, R130, R60, C223, F138, L360, V361, E358 and Y359, which are important for interaction with the G protein, were further highlighted. These results reveal the possibly important molecular mechanisms in TP signaling and provide structural information to characterize other prostanoid receptor signalings.
Collapse
Affiliation(s)
- Jiaxin Wu
- Pharmacoinformatics Research Center and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204
| | - Mary Feng
- Pharmacoinformatics Research Center and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204
| | - Ke-He Ruan
- Pharmacoinformatics Research Center and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204
| |
Collapse
|
25
|
Dukat M, Mosier PD, Kolanos R, Roth BL, Glennon RA. Binding of serotonin and N1-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies. J Med Chem 2008; 51:603-11. [PMID: 18201064 DOI: 10.1021/jm070910s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A population of 100 graphics models of the human 5-HT6 serotonin receptor was constructed based on the structure of bovine rhodopsin. The endogenous tryptamine-based agonist serotonin (5-HT; 1) and the benzenesulfonyl-containing tryptamine-derived 5-HT6 receptor antagonist MS-245 (4a) were automatically docked with each of the 100 receptor models using a genetic algorithm approach. Similar studies were conducted with the more selective 5-HT6 receptor agonist EMDT (5) and optical isomers of EMDT-related analog 8, as well as with optical isomers of MS-245 (4a)-related and benzenesulfonyl-containing pyrrolidine 6 and aminotetralin 7. Although associated with the same general aromatic/hydrophobic binding cluster, 5-HT (1) and MS-245 (4a) were found to preferentially bind with distinct receptor conformations, and did so with different binding orientations (i.e., poses). A 5-HT pose/model was found to be common to EMDT (5) and its analogs, whereas that identified for MS-245 (4a) was found common to benzenesulfonyl-containing compounds. Specific amino acid residues were identified that can participate in binding, and evaluation of a sulfenamide analog of MS-245 indicates for the first time that the presence of the sulfonyl oxygen atoms enhances receptor affinity. The results indicate that the presence or absence of an N1-benzenesulfonyl group is a major determinant of the manner in which tryptamine-related agents bind at 5-HT6 serotonin receptors.
Collapse
Affiliation(s)
- Małgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Ebbs ML, Amrein H. Taste and pheromone perception in the fruit fly Drosophila melanogaster. Pflugers Arch 2007; 454:735-47. [PMID: 17473934 DOI: 10.1007/s00424-007-0246-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/04/2007] [Accepted: 01/15/2007] [Indexed: 01/25/2023]
Abstract
Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.
Collapse
Affiliation(s)
- Michelle L Ebbs
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 252 CARL Bldg./Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Nawoschik SP, Olsen M, Smith DL, Khawaja X. Stable expression of adenylyl cyclase 2 leads to the functional rescue of human 5-HT6 receptor in a CHODUKX cell line. J Pharmacol Toxicol Methods 2006; 55:323-31. [PMID: 17188522 DOI: 10.1016/j.vascn.2006.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/19/2006] [Accepted: 10/19/2006] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The generation and selection of recombinant cell lines specifically designed to express high picomolar levels of heterologous G-protein-coupled receptors can lead to loss of ligand-dependent functional activity. As a result, the clonal selection of a suitable host model and/or lower receptor expression levels within the same cell system becomes important especially when a functional assay is necessary to evaluate the pharmacological potencies of ligands at the receptor site. To address this question, we examined the utility of various signal transducers to restore the functional capacity of a high expressing human 5-HT(6) receptor CHODUKX system. METHODS The plasmids for human 5-HT(6) receptor and full-length human G(s), G(olf) and rat adenylyl cyclase isoforms 2 (rAC2) and 5 were obtained by PCR. The h5-HT(6) receptor pHTop plasmid was stably transfected into a CHODUKX cell line to generate an h5-HT(6) expressing clone. h5-HT(6) CHODUKX cells were transfected with signaling components and functional cAMP responses measured. rAC2 was selected to generate a double stable h5-HT(6) receptor/rAC2 pHTop CHODUKX line. RESULTS The h5-HT(6) receptor CHODUKX line was a high receptor expressor (>2 pmol/mg protein) but an extremely poor ligand-dependent functional responder, failing to produce the appropriate cAMP signal upon addition of selective agonists. We found that stable co-expression of rAC2 with h5-HT(6) receptor in the CHODUKX cell line displayed dose-dependent cAMP accumulation following agonist treatment. The pharmacological profile of several agonists in the h5-HT(6) receptor/rAC2 cell line was consistent with an h5-HT(6)-like receptor-mediated event. DISCUSSION We provide evidence for restoration of functional capacity in a heterologous G(s)-coupled 5-HT(6)/AC2 CHODUKX expression system. We discuss the broader value of a stable AC2-expressing CHODUKX cell line in which the generation of high expressing GPCR receptor/AC2 lines can retain their functional responsiveness and provide pharmacological drug comparisons between the same host line for screening purposes and measurement of multiple cellular parameters.
Collapse
|
29
|
Conner AC, Simms J, Howitt SG, Wheatley M, Poyner DR. The second intracellular loop of the calcitonin gene-related peptide receptor provides molecular determinants for signal transduction and cell surface expression. J Biol Chem 2006; 281:1644-51. [PMID: 16293613 DOI: 10.1074/jbc.m510064200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to G(s), but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general.
Collapse
Affiliation(s)
- Alex C Conner
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|