1
|
Zhao G, Xu H, Li H, Zhang J, Gao J, Cai M, Wang H, Shi Y, Wang H. Regulatory Mechanisms of SNAP-25-Associated Insulin Release Revealed by Live-Cell Confocal and Single-Molecule Localization Imaging. Anal Chem 2022; 94:15307-15314. [DOI: 10.1021/acs.analchem.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanfang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
2
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
3
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
4
|
Saddala MS, Lennikov A, Grab DJ, Liu GS, Tang S, Huang H. Proteomics reveals ablation of PlGF increases antioxidant and neuroprotective proteins in the diabetic mouse retina. Sci Rep 2018; 8:16728. [PMID: 30425286 PMCID: PMC6233167 DOI: 10.1038/s41598-018-34955-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Placental growth factor (PlGF or PGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a crucial role in pathological angiogenesis and inflammation. However, the underlying molecular mechanisms that PlGF mediates regarding the complications of non-proliferative diabetic retinopathy (DR) remain elusive. Using an LC-MS/MS-based label-free quantification proteomic approach we characterized the alterations in protein expression caused by PlGF ablation in the retinas obtained from C57BL6, Akita, PlGF-/- and Akita.PlGF-/- mice. After extraction and enzymatic digestion with Trypsin/LysC, the retinal proteins were analyzed by Q-Exactive hybrid Quadrupole-Orbitrap mass spectrometry. Differentially expressed proteins (DEPs) were identified in four comparisons based on Z-score normalization and reproducibility by Pearson's correlation coefficient. The gene ontology (GO), functional pathways, and protein-protein network interaction analysis suggested that several proteins involved in insulin resistance pathways (Gnb1, Gnb2, Gnb4, Gnai2, Gnao1, Snap2, and Gngt1) were significantly down-regulated in PlGF ablated Akita diabetic mice (Akita.PlGF-/- vs. Akita) but up-regulated in Akita vs. C57 and PlGF-/- vs. C57 conditions. Two proteins involved in the antioxidant activity and neural protection pathways, Prdx6 and Map2 respectively, were up-regulated in the Akita.PlGF-/- vs. Akita condition. Overall, we predict that down-regulation of proteins essential for insulin resistance, together with the up-regulation of antioxidant and neuroprotection proteins highlight and epitomize the potential mechanisms important for future anti-PlGF therapies in the treatment of DR.
Collapse
Affiliation(s)
- Madhu Sudhana Saddala
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anton Lennikov
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Dennis J Grab
- The Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- The Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan, China
| | - Hu Huang
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America.
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
5
|
Strodthoff D, Ma Z, Wirström T, Strawbridge RJ, Ketelhuth DFJ, Engel D, Clarke R, Falkmer S, Hamsten A, Hansson GK, Björklund A, Lundberg AM. Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion. Diabetes 2015; 64:3425-38. [PMID: 25918231 DOI: 10.2337/db14-0838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 04/17/2015] [Indexed: 11/13/2022]
Abstract
Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes-related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3(-/-) mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3(-/-) islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation.
Collapse
Affiliation(s)
- Daniela Strodthoff
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Metabolism Unit, Department of Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska Institutet at Karolinska University Hospital Huddinge, Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center and Center for Innovative Medicine, NOVUM, Stockholm, Sweden
| | - Zuheng Ma
- Endocrinology and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tina Wirström
- Endocrinology and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Engel
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, U.K
| | - Sture Falkmer
- Laboratory of Pathology and Clinical Cytology, Ryhov Hospital, Jönköping, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Göran K Hansson
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anneli Björklund
- Endocrinology and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna M Lundberg
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Bachiller S, Rybkina T, Porras-García E, Pérez-Villegas E, Tabares L, Armengol JA, Carrión AM, Ruiz R. The HERC1 E3 Ubiquitin Ligase is essential for normal development and for neurotransmission at the mouse neuromuscular junction. Cell Mol Life Sci 2015; 72:2961-71. [PMID: 25746226 PMCID: PMC11113414 DOI: 10.1007/s00018-015-1878-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/15/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a fundamental role in protein degradation in neurons, and there is strong evidence that it fulfills a key role in synaptic transmission. The aim of the present work was to study the implication of one component of the UPS, the HERC1 E3 Ubiquitin Ligase, in motor function and neuromuscular transmission. The tambaleante (tbl) mutant mouse carries a spontaneous mutation in HERC1 E3 Ubiquitin Ligase, provoking an ataxic phenotype that develops in the second month of life. Our results show that motor performance in mutant mice is altered at postnatal day 30, before the cerebellar neurodegeneration takes place. This defect is associated with by: (a) a reduction of the motor end-plate area, (b) less efficient neuromuscular activity in vivo, and (c) an impaired evoked neurotransmitter release. Together, these data suggest that the HERC1 E3 Ubiquitin Ligase is fundamental for normal muscle function and that it is essential for neurotransmitter release at the mouse neuromuscular junction.
Collapse
Affiliation(s)
- S. Bachiller
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - T. Rybkina
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - E. Porras-García
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - E. Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - L. Tabares
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - J. A. Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
- School of Medicine, University of Cartagena de Indias, Cartagena, Colombia
| | - A. M. Carrión
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - R. Ruiz
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| |
Collapse
|
7
|
Németh N, Kerékgyártó M, Sasvári-Székely M, Rónai Z, Guttman A. Rapid identification of human SNAP-25 transcript variants by a miniaturized capillary electrophoresis system. Electrophoresis 2013; 35:379-84. [DOI: 10.1002/elps.201300221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Nóra Németh
- Department of Medical Chemistry; Molecular Biology and Pathobiochemistry, Semmelweis University; Budapest Hungary
| | - Márta Kerékgyártó
- Horváth Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry; Molecular Biology and Pathobiochemistry, Semmelweis University; Budapest Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry; Molecular Biology and Pathobiochemistry, Semmelweis University; Budapest Hungary
| | - András Guttman
- Horváth Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
- MTA-PE Translational Glycomics Group; University of Pannonia; Veszprém Hungary
| |
Collapse
|
8
|
Hogins J, Crawford DC, Jiang X, Mennerick S. Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 2011; 43:516-25. [PMID: 21605675 DOI: 10.1016/j.nbd.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 12/20/2022] Open
Abstract
Glutamate release is a root cause of acute and delayed neuronal damage in response to hypoxic/ischemic insults. Nevertheless, therapeutics that target the postsynaptic compartment have been disappointing clinically. Here we explored whether presynaptic silencing (muting) of glutamatergic terminals is sufficient to reduce excitotoxic damage resulting from hypoxia and oxygen/glucose deprivation. Our evidence suggests that strong depolarization, previously shown to mute glutamate synapses, protects neurons by a presynaptic mechanism that is sensitive to inhibition of the proteasome. Postsynaptic Ca2+ rises in response to glutamate application and toxicity in response to exogenous glutamate treatment were unaffected by depolarization preconditioning. These features strongly suggest that reduced glutamate release explains preconditioning protection. We addressed whether hypoxic depolarization itself induces presynaptic silencing, thereby participating in the damage threshold for hypoxic insult. Indeed, we found that the hypoxic insult increased the percentage of mute glutamate synapses in a proteasome-dependent manner. Furthermore, proteasome inhibition exacerbated neuronal loss to mild hypoxia and prevented hypoxia-induced muting. In total our results suggest that presynaptic silencing is an endogenous neuroprotective mechanism that could be exploited to reduce damage from insults involving excess synaptic glutamate release.
Collapse
Affiliation(s)
- Joshua Hogins
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
9
|
Torrejón-Escribano B, Escoriza J, Montanya E, Blasi J. Glucose-dependent changes in SNARE protein levels in pancreatic β-cells. Endocrinology 2011; 152:1290-9. [PMID: 21285315 DOI: 10.1210/en.2010-0898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged exposure to high glucose concentration alters the expression of a set of proteins in pancreatic β-cells and impairs their capacity to secrete insulin. The cellular and molecular mechanisms that lie behind this effect are poorly understood. In this study, three either in vitro or in vivo models (cultured rat pancreatic islets incubated in high glucose media, partially pancreatectomized rats, and islets transplanted to streptozotozin-induced diabetic mice) were used to evaluate the dependence of the biological model and the treatment, together with the cell location (insulin granule or plasma membrane) of the affected proteins and the possible effect of sustained insulin secretion, on the glucose-induced changes in protein expression. In all three models, islets exposed to high glucose concentrations showed a reduced expression of secretory granule-associated vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptobrevin/vesicle-associated membrane protein 2 and cellubrevin but minor or no significant changes in the expression of the membrane-associated target-SNARE proteins syntaxin1 and synaptosomal-associated protein-25 and a marked increase in the expression of synaptosomal-associated protein-23 protein. The inhibition of insulin secretion by the L-type voltage-dependent calcium channel nifedipine or the potassium channel activator diazoxide prevented the glucose-induced reduction in islet insulin content but not in vesicle-SNARE proteins, indicating that the granule depletion due to sustained exocytosis was not involved in the changes of protein expression induced by high glucose concentration. Altogether, the results suggest that high glucose has a direct toxic effect on the secretory pathway by decreasing the expression of insulin granule SNARE-associated proteins.
Collapse
Affiliation(s)
- Benjamín Torrejón-Escribano
- Departamento de Patologia i Terapèutica Experimental, Institut d'Investigació Biomèdica de Bellvitge-Universitat de Barcelona, Laboratori 4145, Campus de Bellvitge, Edifici del Pavelló de Govern, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Santos MS, Li H, Voglmaier SM. Synaptic vesicle protein trafficking at the glutamate synapse. Neuroscience 2008; 158:189-203. [PMID: 18472224 DOI: 10.1016/j.neuroscience.2008.03.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/25/2008] [Accepted: 03/08/2008] [Indexed: 11/27/2022]
Abstract
Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle pools, and the release of glutamate in response to changing physiological requirements.
Collapse
Affiliation(s)
- M S Santos
- Department of Psychiatry, University of California School of Medicine, 401 Parnassus Avenue, LPPI-A101, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
11
|
Willeumier K, Pulst SM, Schweizer FE. Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons. J Neurosci 2006; 26:11333-41. [PMID: 17079661 PMCID: PMC2665188 DOI: 10.1523/jneurosci.1684-06.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ubiquitin proteasome system, generally known for its function in protein degradation, also appears to play an important role in regulating membrane trafficking. A role for the proteasome in regulating presynaptic release and vesicle trafficking has been proposed for invertebrates, but it remains to be tested in mammalian presynaptic terminals. We used the fluorescent styrylpyridinium dye FM4-64 to visualize changes in the recycling pool of vesicles in hippocampal culture under pharmacological inhibition of the proteasome. We found that a 2 h inhibition increases the recycling pool of vesicles by 76%, with no change in the rate or total amount of dye release. Interestingly, enhancement did not depend on protein synthesis but did depend on synaptic activity; blocking action potentials during proteasome inhibition abolished the effect whereas increasing neuronal activity accelerated the effect with an increased recycling pool evident after 15 min. We propose that the proteasome acts as a negative-feedback regulator of synaptic transmission, possibly serving a homeostatic role.
Collapse
Affiliation(s)
- Kristen Willeumier
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|