1
|
Thakur B, Verma R, Bhatia A. Mutations in Necroptosis-Related Genes Reported in Breast Cancer: A Cosmic and Uniport Database-Based Study. Clin Breast Cancer 2025; 25:e341-e359. [PMID: 39794252 DOI: 10.1016/j.clbc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Breast cancer (BC) now holds the top position as the primary reason of cancer-related fatalities worldwide, overtaking lung cancer. BC is classified into diverse categories depending on histopathological type, hormone receptor status, and gene expression profile, with ongoing evolution in their classifications. Cancer initiates and advances when there is a disruption in cell death pathways. In BC, the primary cell death pathway, apoptosis, experiences dysregulation across multiple stages. Ongoing studies aim to discover therapeutic targets that enhance cancer cell susceptibility to apoptosis. However, resistance to this therapy remains a significant challenge in treating BC. If apoptosis is hindered, investigating alternative pathways for cell death that can effectively eradicate BC cells during treatment becomes a valuable endeavor. In this context, necroptosis is gaining considerable focus as an alternative cell death pathway. Necroptosis represents a programmed version of necrosis which shares its key regulators with apoptosis. When apoptosis is hampered, necroptosis serves as an alternative cell death pathway even in physiological conditions like formation of limbs during embryonic development. Additionally, it comes into play during bacterial and viral infections when the apoptosis machinery is hijacked and inhibited by proteins from these pathogens. Studies reveal that in BC, mutations significantly impact molecules in the apoptosis pathway, contributing to the onset, advancement, and multiplication of cancer cells. Although some studies do indicate that the functionality of necroptosis pathway may be compromised in malignancy the status of its key molecules remains largely unknown. In this article, we aim to gather the known mutations present in key molecules of necroptosis among various subtypes of BC, utilizing data from the Cosmic and UniProt databases. The same may help to enhance the development of therapeutic strategies to effectively induce necroptosis in apoptosis-resistant BCs.
Collapse
Affiliation(s)
- Banita Thakur
- Department of General Surgery, Stanford university, CA, USA
| | - Rohit Verma
- Department of Neurosurgery, Stanford University, CA, USA
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| |
Collapse
|
2
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
3
|
Horvath C, Jarabicova I, Kura B, Kalocayova B, Faurobert E, Davidson SM, Adameova A. Novel, non-conventional pathways of necroptosis in the heart and other organs: Molecular mechanisms, regulation and inter-organelle interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119534. [PMID: 37399908 DOI: 10.1016/j.bbamcr.2023.119534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca2+/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death. However, the role and relationship between these novel non-conventional signalling and the well-accepted canonical pathway in terms of tissue- and/or disease-specific prioritisation is completely unknown. In this review, we provide current knowledge on some necroptotic pathways being not directly associated with RIPK3-MLKL execution and report studies showing the role of respective microRNAs in the regulation of necroptotic injury in the heart and in some other tissues having a high expression of the pro-necroptotic proteins.
Collapse
Affiliation(s)
- Csaba Horvath
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | - Izabela Jarabicova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Eva Faurobert
- French National Centre for Scientific Research, Institute for Advanced Biosciences, France.
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, United Kingdom.
| | - Adriana Adameova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovak Republic; Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Zheng Y, Zhong G, He C, Li M. Targeted splicing therapy: new strategies for colorectal cancer. Front Oncol 2023; 13:1222932. [PMID: 37664052 PMCID: PMC10470845 DOI: 10.3389/fonc.2023.1222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
RNA splicing is the process of forming mature mRNA, which is an essential phase necessary for gene expression and controls many aspects of cell proliferation, survival, and differentiation. Abnormal gene-splicing events are closely related to the development of tumors, and the generation of oncogenic isoform in splicing can promote tumor progression. As a main process of tumor-specific splicing variants, alternative splicing (AS) can promote tumor progression by increasing the production of oncogenic splicing isoforms and/or reducing the production of normal splicing isoforms. This is the focus of current research on the regulation of aberrant tumor splicing. So far, AS has been found to be associated with various aspects of tumor biology, including cell proliferation and invasion, resistance to apoptosis, and sensitivity to different chemotherapeutic drugs. This article will review the abnormal splicing events in colorectal cancer (CRC), especially the tumor-associated splicing variants arising from AS, aiming to offer an insight into CRC-targeted splicing therapy.
Collapse
Affiliation(s)
| | | | - Chengcheng He
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
5
|
Xue H, Shi H, Zhang F, Li H, Li C, Han Q. RIP3 Contributes to Cardiac Hypertrophy by Influencing MLKL-Mediated Calcium Influx. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5490553. [PMID: 35464769 PMCID: PMC9023175 DOI: 10.1155/2022/5490553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
Abstract
Receptor-interacting protein 3(RIP3), a RIP family member, has been reported as a critical regulator of necroptosis and involves in the pathogenesis of various heart diseases. However, its role in the development of myocardial hypertrophy after pressure overload is unclear. We aimed to investigate the roles of RIP3 in pathological cardiac hypertrophy. A rat model of myocardial hypertrophy induced by the aortic banding method was used in this study. Neonatal rat cardiomyocytes (NRCMs) were stimulated with angiotensin II (Ang-II) or phenylephrine (PE) to induce neurohumoral stress. Our results showed that RIP3 level was significantly elevated in the hypertrophic myocardium tissues from patients, rats subjected to AB surgery, and NRCMs treated with Ang-II or PE. After downregulation of RIP3 expression in NRCMs, the phenotypes of myocardial hypertrophy were obviously alleviated. In mechanism, we demonstrated that RIP3 interacts with mixed lineage kinase domain-like protein (MLKL) and promotes its cell membrane localization to increase the influx of calcium within cells, thereby mediating the development of myocardial hypertrophy. More interestingly, we found the blockage of calcium influx by 2-aminoethoxydiphenyl borate, and lanthanum chloride efficiently reverses RIP3-induced cardiac remodeling in NRCMs. Taken together, our findings indicate a key role of the RIP3-MLKL signaling pathway in myocardial hypertrophy, which may be a novel promising treatment strategy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Honghong Xue
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
6
|
Liao KC, Garcia-Blanco MA. Role of Alternative Splicing in Regulating Host Response to Viral Infection. Cells 2021; 10:1720. [PMID: 34359890 PMCID: PMC8306335 DOI: 10.3390/cells10071720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023] Open
Abstract
The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host-virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77550, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
7
|
Zhang H, Wu X, Li X, Li M, Li F, Wang L, Zhang X, Zhang Y, Luo Y, Wang H, Jiang Y, Zhang H. Crucial Roles of the RIP Homotypic Interaction Motifs of RIPK3 in RIPK1-Dependent Cell Death and Lymphoproliferative Disease. Cell Rep 2021; 31:107650. [PMID: 32433959 DOI: 10.1016/j.celrep.2020.107650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) has been identified as an essential regulator of necroptosis, apoptosis, and inflammatory signaling. RIPK3 contains an N-terminal kinase domain and a C-terminal RIP homotypic interaction motif (RHIM). However, the physiological roles of RIPK3 RHIM remain unclear. Here we generate knockin mice endogenously expressing the RIPK3 RHIM mutant, RIPK3V448P. Cells expressing RIPK3V448P are resistant to RIPK1 kinase-dependent apoptosis and necroptosis, and Ripk3V448P/V448P mice rescue embryonic lethality of Fadd-deficient mice by intercrossing. Strikingly, Ripk3V448P/V448PFadd-/- mice display more severe lymphoproliferative disease with a marked increase in abnormal CD3+B220+ lymphocytes compared with Ripk3-/-Fadd-/- mice. More importantly, these inflammatory morbidities in Ripk3V448P/V448PFadd-/- mice are profoundly inhibited by additional deletion of Ripk1. Taken together, these results reveal a previously unidentified physiological function of RHIM of RIPK3 in regulating RIPK1-dependent cell death and lymphoproliferative disease.
Collapse
Affiliation(s)
- Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxia Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xixi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Colijn S, Muthukumar V, Xie J, Gao S, Griffin CT. Cell-specific and athero-protective roles for RIPK3 in a murine model of atherosclerosis. Dis Model Mech 2020; 13:dmm041962. [PMID: 31953345 PMCID: PMC6994951 DOI: 10.1242/dmm.041962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) was recently implicated in promoting atherosclerosis progression through a proposed role in macrophage necroptosis. However, RIPK3 has been connected to numerous other cellular pathways, which raises questions about its actual role in atherosclerosis. Furthermore, RIPK3 is expressed in a multitude of cell types, suggesting that it may be physiologically relevant to more than just macrophages in atherosclerosis. In this study, Ripk3 was deleted in macrophages, endothelial cells, vascular smooth muscle cells or globally on the Apoe-/- background using Cre-lox technology. To induce atherosclerosis progression, male and female mice were fed a Western diet for three months before tissue collection and analysis. Surprisingly, necroptosis markers were nearly undetectable in atherosclerotic aortas. Furthermore, en face lesion area was increased in macrophage- and endothelial-specific deletions of Ripk3 in the descending and abdominal regions of the aorta. Analysis of bone-marrow-derived macrophages and cultured endothelial cells revealed that Ripk3 deletion promotes expression of monocyte chemoattractant protein 1 (MCP-1) and E-selectin in these cell types, respectively. Western blot analysis showed upregulation of MCP-1 in aortas with Ripk3-deficient macrophages. Altogether, these data suggest that RIPK3 in macrophages and endothelial cells protects against atherosclerosis through a mechanism that likely does not involve necroptosis. This protection may be due to RIPK3-mediated suppression of pro-inflammatory MCP-1 expression in macrophages and E-selectin expression in endothelial cells. These findings suggest a novel and unexpected cell-type specific and athero-protective function for RIPK3.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jun Xie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
10
|
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019; 44:771-786. [PMID: 31198981 PMCID: PMC6658002 DOI: 10.3892/ijmm.2019.4244] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor‑interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3‑dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3‑mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3‑mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Yuping Liu
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Dingding Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
- Key Laboratory for Genetics of Human Disease, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Lea Girani
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Chen Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
11
|
Hu D, Huang J, Hu S, Zhang Y, Li S, Sun Y, Li C, Cui G, Wang DW. A common variant of RIP3 promoter region is associated with poor prognosis in heart failure patients by influencing SOX17 binding. J Cell Mol Med 2019; 23:5317-5328. [PMID: 31148336 PMCID: PMC6652837 DOI: 10.1111/jcmm.14408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023] Open
Abstract
Receptor‐interacting protein kinase 3 (RIP3) is a key determinant of necroptosis and participates in ischaemia—and oxidative stress‐induced necroptosis, myocardial remodelling and heart failure (HF). In this study, we tested the hypothesis that common variants in RIP3 gene were associated with the risk and prognosis of HF in the Chinese Han population. By re‐sequencing and luciferase assays, we identified a common functional variant in the RIP3 promoter region. The rs3212247‐T allele suppressed RIP3 promoter activity by facilitating transcription factor SOX17 binding, but not the C allele. We further recruited 2961 control participants and 3194 HF patients who underwent a mean follow‐up of 19 months (6‐31 months) for this study. Rs3212247 and another missense variant rs3212254 were genotyped. Although rs3212247 did not significantly associate with increased risk of HF (odds ratio = 1.00, 95% CI = 0.92‐1.08, P = 0.91), it raised the risk for cardiovascular death and cardiac transplantation (hazard ratio = 1.47, 95% CI = 1.13‐1.91, P = 0.004). Moreover, participants carrying the rs3212247 CC genotype had higher plasma levels of RIP3 than those carrying the TT or TC genotype (p for trend = 0.02) in New York Heart Association class III HF group. No association was found between the RIP3 missense variant rs3212254 and risk or prognosis of HF after adjustment for traditional risk factors. In conclusion, genetic variant in RIP3 promoter region is associated with increased RIP3 transcription, thus contributed to the poor prognosis of HF patients. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT03461107?term=03461107&cond=Heart+Failure&cntry=CN&rank=1. Unique identifier: NCT03461107.
Collapse
Affiliation(s)
- Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Senlin Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ying Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.,Division of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Guanglin Cui
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
12
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Abstract
Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to tumor necrosis factor alpha. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibiting necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug- resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.
Collapse
Affiliation(s)
- Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu 42601, Korea
| |
Collapse
|
14
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
15
|
Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis 2018; 9:261. [PMID: 29449584 PMCID: PMC5833675 DOI: 10.1038/s41419-018-0301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022]
Abstract
The necroptotic cell death pathway is a key component of human pathogen defense that can become aberrantly derepressed during tissue homeostasis to contribute to multiple types of tissue damage and disease. While formation of the necrosome kinase signaling complex containing RIPK1, RIPK3, and MLKL has been extensively characterized, additional mechanisms of its regulation and effector functions likely remain to be discovered. We screened 19,883 mouse protein-coding genes by CRISPR/Cas9-mediated gene knockout for resistance to cytokine-induced necroptosis and identified 112 regulators and mediators of necroptosis, including 59 new candidate pathway components with minimal or no effect on cell growth in the absence of necroptosis induction. Among these, we further characterized the function of PTBP1, an RNA binding protein whose activity is required to maintain RIPK1 protein abundance by regulating alternative splice-site selection.
Collapse
Affiliation(s)
- Marinella G Callow
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Kummerfield
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Julie Weng
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | | | - Honglin Chen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
16
|
Moriwaki K, Balaji S, Bertin J, Gough PJ, Chan FKM. Distinct Kinase-Independent Role of RIPK3 in CD11c + Mononuclear Phagocytes in Cytokine-Induced Tissue Repair. Cell Rep 2017; 18:2441-2451. [PMID: 28273458 DOI: 10.1016/j.celrep.2017.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 12/28/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Receptor interacting protein kinase 3 (RIPK3) induces necroptosis, a type of regulated necrosis, through its kinase domain and receptor interacting protein (RIP) homotypic interaction motif (RHIM). In addition, RIPK3 has been shown to regulate NLRP3 inflammasome and nuclear factor κB (NF-κB) activation. However, the relative contribution of these signaling pathways to RIPK3-dependent inflammation in distinct immune effectors is unknown. To investigate these questions, we generated RIPK3-GFP reporter mice. We found that colonic CD11c+CD11b+CD14+ mononuclear phagocytes (MNPs) expressed the highest level of RIPK3 in the lamina propria. Consequently, deletion of the RIPK3 RHIM in CD11c+ cells alone was sufficient to impair dextran sodium sulfate (DSS)-induced interleukin (IL)-23 and IL-1β expression, leading to severe intestinal inflammation. In contrast, mice expressing kinase inactive RIPK3 were not hypersensitive to DSS. Thus, a key physiological function of RIPK3 is to promote reparative cytokine expression through intestinal CD11c+ MNPs in a kinase- and necroptosis-independent manner.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sakthi Balaji
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422, USA
| | - Peter J Gough
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area, GlaxoSmithKline, Collegeville, PA 19422, USA
| | - Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
López-Urrutia E, Campos-Parra A, Herrera LA, Pérez-Plasencia C. Alternative splicing regulation in tumor necrosis factor-mediated inflammation. Oncol Lett 2017; 14:5114-5120. [PMID: 29113151 PMCID: PMC5656035 DOI: 10.3892/ol.2017.6905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
It is generally accepted that alternative splicing has an effect on disease when it leads to conspicuous changes in relevant proteins, but that the combinatorial effect of several small modifications can have marked outcomes as well. Inflammation is a complex process involving numerous signaling pathways, among which the tumor necrosis factor (TNF) pathway is one of the most studied. Signaling pathways are commonly represented as intricate cascades of molecular interactions that eventually lead to the activation of one or several genes. Alternative splicing is a common means of controlling protein expression in time and space; therefore, it can modulate the outcome of signaling pathways through small changes in their elements. Notably, the overall process is tightly regulated, which is easily overlooked when analyzing the pathway as a whole. The present review summarizes recent studies of the alternative splicing of key players of the TNF pathway leading to inflammation, and hypothesizes on the cumulative results of those modifications and the impact on cancer development.
Collapse
Affiliation(s)
- Eduardo López-Urrutia
- Genomics Laboratory, UBIMED, Faculty of Higher Studies-Iztacala, National Autonomous University, Tlalnepantla, 54090 State of Mexico, Mexico
| | - Alma Campos-Parra
- Genomics Laboratory, National Cancer Institute of Mexico, Tlalpan, 14680 Mexico City, Mexico
| | - Luis Alonso Herrera
- Epigenetics Laboratory, National Cancer Institute of Mexico, Tlalpan, 14680 Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, UBIMED, Faculty of Higher Studies-Iztacala, National Autonomous University, Tlalnepantla, 54090 State of Mexico, Mexico.,Genomics Laboratory, National Cancer Institute of Mexico, Tlalpan, 14680 Mexico City, Mexico
| |
Collapse
|
18
|
Abstract
Receptor-interacting protein kinase-3 (RIP3, or RIPK3) is an essential protein in the "programmed", or "regulated" necrosis cell death pathway that is activated in response to death receptor ligands and other types of cellular stress. Programmed necrotic cell death is distinguished from its apoptotic counterpart in that it is not characterized by the activation of caspases; unlike apoptosis, programmed necrosis results in plasma membrane rupture, thus spilling the contents of the cell and triggering the activation of the immune system and inflammation. Here we discuss findings, including our own recent data, which show that RIP3 protein expression is absent in many cancer cell lines. The recent data suggests that the lack of RIP3 expression in a majority of these deficient cell lines is due to methylation-dependent silencing, which limits the responses of these cells to pro-necrotic stimuli. Importantly, RIP3 expression may be restored in many cancer cells through the use of hypomethylating agents, such as decitabine. The potential implications of loss of RIP3 expression in cancer are explored, along with possible consequences for chemotherapeutic response.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, 3Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
19
|
Yu X, Deng Q, Bode AM, Dong Z, Cao Y. The role of necroptosis, an alternative form of cell death, in cancer therapy. Expert Rev Anticancer Ther 2014; 13:883-93. [PMID: 23875666 DOI: 10.1586/14737140.2013.811180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed cell death plays an important role in animal development, tissue homeostasis and eliminating harmful or virally infected cells. Necroptosis, a novel form of programmed cell death, is caspase independent but RIPK and RIPK3 dependent. Moreover, it is suggested that necroptosis can be specifically inhibited by small molecular inhibitors such as necrostatin-1. Its signaling pathways have something in common with apoptosis, although the molecular mechanisms of necroptosis need to be further elucidated. Previous evidences suggest that necroptosis has significant effects in regulating various physiological processes and disease, such as ischemic brain injury, immune system disorders and cancer. In this review, the molecular mechanism of necroptosis is described and how it could be manipulated in the treatment of cancer is summarized.
Collapse
Affiliation(s)
- Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiang Ya Road, Changsha 410078, Hunan, China
| | | | | | | | | |
Collapse
|
20
|
Long JS, Ryan KM. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 2012; 31:5045-60. [PMID: 22310284 DOI: 10.1038/onc.2012.7] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/24/2011] [Accepted: 12/24/2011] [Indexed: 12/12/2022]
Abstract
Cancer is a multifaceted disease comprising a combination of genetic, metabolic and signalling aberrations, which severely disrupt the normal homeostasis of cell growth and death. Many oncogenic events while promoting tumour development also increase the sensitivity of cells to cell death stimuli including chemotherapeutic drugs. As a result, tumour cells often acquire the ability to evade death by inactivating cell death pathways that normally function to eliminate damaged and harmful cells. The impairment of cell death function is also often the reason for the development of chemotherapeutic resistance encountered during treatment. It is therefore necessary to achieve a comprehensive understanding of existing cell death pathways and the relevant regulatory components involved, with the intention of identifying new strategies to kill cancer cells. This review provides an insightful overview of the common forms of cell death signalling pathways, the interactions between these pathways and the ways in which these pathways are deregulated in cancer. We also discuss the emerging therapies targeted at activating or restoring cell death pathways to induce tumour cell death, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- J S Long
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, UK
| | | |
Collapse
|
21
|
XU Y, ZHAO XH. RIP3: a Possible Trigger of Apoptosis or Necrosis*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Berge EO, Staalesen V, Straume AH, Lillehaug JR, Lønning PE. Chk2 splice variants express a dominant-negative effect on the wild-type Chk2 kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:386-95. [DOI: 10.1016/j.bbamcr.2010.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
|
23
|
Krieg A, Le Negrate G, Reed JC. RIP2-β: A novel alternative mRNA splice variant of the receptor interacting protein kinase RIP2. Mol Immunol 2009; 46:1163-70. [DOI: 10.1016/j.molimm.2008.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
|
24
|
Crujeiras AB, Parra D, Milagro FI, Goyenechea E, Larrarte E, Margareto J, Martínez JA. Differential Expression of Oxidative Stress and Inflammation Related Genes in Peripheral Blood Mononuclear Cells in Response to a Low-Calorie Diet: A Nutrigenomics Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 12:251-61. [DOI: 10.1089/omi.2008.0001] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ana B. Crujeiras
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | - Dolores Parra
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | - Estibaliz Goyenechea
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | - J. Alfredo Martínez
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| |
Collapse
|
25
|
Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007; 19:2056-67. [PMID: 17644308 DOI: 10.1016/j.cellsig.2007.05.016] [Citation(s) in RCA: 455] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/20/2007] [Accepted: 05/29/2007] [Indexed: 11/26/2022]
Abstract
RIP3 (Receptor Interacting Protein 3), a member of the Ser/Thr kinase family, is able to induce apoptosis and activate NF-kappaB in various cell types. However, the detailed mechanism of RIP3-induced apoptosis is largely unknown. In this study, we show that RIP3 is cleaved at Asp328 by caspase-8 under apoptotic stimuli, which is blocked by pan-caspase inhibitor Z-VAD-FMK. In addition, full-length RIP3 induces both caspase-dependent and-independent apoptosis, as well as activates NF-kappaB. However, after cleavage, the C-terminus of RIP3 (aa 329-518) that lacks the kinase domain can form punctuate or filaments-like structures in cytoplasm, which induces only caspase-dependent apoptosis and exhibits a markedly higher NF-kappaB-activating activity than full-length RIP3. More importantly, the cleaved product of RIP3 (aa 329-518) displays better stability than wild type RIP3. Additionally, RIP3(K50A), a kinase-dead RIP3 mutant, also induces only caspase-dependent apoptosis along with an increased NF-kappaB-activating activity compared to RIP3, which further demonstrates that kinase activity of RIP3 is essential for its caspase-independent apoptotic activity. These results will help us to understand the mechanism underlying RIP3-induced apoptosis and the different roles of kinase domain and unique domain of RIP3.
Collapse
Affiliation(s)
- Shanshan Feng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cerhan JR, Ansell SM, Fredericksen ZS, Kay NE, Liebow M, Call TG, Dogan A, Cunningham JM, Wang AH, Liu-Mares W, Macon WR, Jelinek D, Witzig TE, Habermann TM, Slager SL. Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 2007; 110:4455-63. [PMID: 17827388 PMCID: PMC2234796 DOI: 10.1182/blood-2007-05-088682] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Smaller-scale evaluations suggest that common genetic variation in candidate genes related to immune function may predispose to the development of non-Hodgkin lymphoma (NHL). We report an analysis of variants within genes associated with immunity and inflammation and risk of NHL using a panel of 9412 single-nucleotide polymorphisms (SNPs) from 1253 genes in a study of 458 patients with NHL and 484 frequency-matched controls. We modeled haplotypes and risk of NHL, as well as the main effects for all independent SNPs from a gene in multivariate logistic regression models; we separately report results for nonsynonymous (ns) SNPs. In gene-level analyses, the strongest findings (P < or = .001) were for CREB1, FGG, MAP3K5, RIPK3, LSP1, TRAF1, DUSP2, and ITGB3. In nsSNP analyses, the strongest findings (P < or = .01) were for ITGB3 L59P (odds ratio [OR] = 0.66; 95% confidence interval [CI] 0.52-0.85), TLR6 V427A (OR = 5.20; CI 1.77-15.3), SELPLG M264V (OR = 3.20; CI 1.48-6.91), UNC84B G671S (OR = 1.50; CI 1.12-2.00), B3GNT3 H328R (OR = 0.74; CI 0.59-0.93), and BAT2 V1883L (OR = 0.64; CI 0.45-0.90). Our results suggest that genetic variation in genes associated with immune response (TRAF1, RIPK3, BAT2, and TLR6), mitogen-activated protein kinase (MAPK) signaling (MAP3K5, DUSP2, and CREB1), lymphocyte trafficking and migration (B3GNT3, SELPLG, and LSP1), and coagulation pathways (FGG and ITGB3) may be important in the etiology of NHL, and should be prioritized in replication studies.
Collapse
Affiliation(s)
- James R Cerhan
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Alternative pre-mRNA splicing leads to distinct products of gene expression in development and disease. Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in a delicate equilibrium that is found to be perturbed in tumours. In several recent examples, splice variants that are overexpressed in cancer are expressed as hyper-oncogenic proteins, which often correlate with poor prognosis, thus suggesting improved diagnosis and follow up treatment. Global gene expression technologies are just beginning to decipher the interplay between alternatively spliced isoforms and protein-splicing factors that will lead to identification of the mutations in these trans-acting factors responsible for pathogenic alternative splicing in cancer.
Collapse
Affiliation(s)
- Julian P Venables
- University of Newcastle-upon-Tyne, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, UK.
| |
Collapse
|