1
|
Rout S, Amirtham SM, Prasad M, Cherian AG, B SR, Sudhakar Y, Prince N. In Vitro Human Fetal Pancreatic Islets to Redefine Pancreatic Research. Cureus 2023; 15:e43244. [PMID: 37692623 PMCID: PMC10491859 DOI: 10.7759/cureus.43244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND In vitro studies with human fetal islets of different gestational ages (GA) would be a great tool to generate information on the developmental process of the islets as this would help to recontextualize diabetes research and clinical practice. Pancreatic islets from human cadavers and other animal species are extensively researched to explore their suitability for islet transplantation procedure, one of the upcoming treatment strategies for insulin-dependent diabetes mellitus. Although human fetal islets are also considered for islet transplantation, ethical issues and limited knowledge constraints their use. The fetal islets could be explored to address the information lacunae on the maturity process of pancreatic islets and the endocrine-exocrine signaling mechanisms. AIM This study aimed to assess the feasibility of isolating viable islets and study the cytoarchitecture of the fetal pancreas of GA 22-29 weeks, not reported otherwise. METHODOLOGY Pancreas obtained from the aborted fetuses of GA 22-29 weeks were subjected to collagenase digestion and were further cultured to determine the viability in vitro. Parameters assessed were expression of markers for endocrine cell lineages and insulin release to glucose challenge. RESULTS Islets were viable in vitro and islets were shown to maintain cues for post-digestion re-aggregation and expansion in culture. The immunofluorescent staining showed islets of varying sizes, homogenous cell clusters aggregating to form heterogenous cell clusters, otherwise not reported for this GA. On stimulation with different concentrations of glucose (2.8 and 28 mM), the fetal islets in the culture exhibited insulin release, and this response confirmed their viability in vitro. CONCLUSION Our findings showed that viable islets could be isolated and cultured in vitro for further in-depth studies to explore their proliferative potential as well as for the identification of pancreatic progenitors, a good strategy to take forward.
Collapse
Affiliation(s)
- Sipra Rout
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Mythraeyee Prasad
- Anatomy, Velammal Medical College Hospital and Research Institute, Madurai, IND
| | | | - Sandya Rani B
- Research, Christian Medical College and Hospital, Vellore, IND
| | - Yesudas Sudhakar
- Biochemistry, Christian Medical College and Hospital, Vellore, IND
| | - Neetu Prince
- Physiology, Christian Medical College and Hospital, Vellore, IND
| |
Collapse
|
2
|
Trosko JE. On the potential origin and characteristics of cancer stem cells. Carcinogenesis 2021; 42:905-912. [PMID: 34014276 DOI: 10.1093/carcin/bgab042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The 'cancer stem cell' hypothesis has pointed to a specific target for new cancer therapies. The hypothesis is based on the observation that only the 'cancer stem cell' among the other heterogeneous cancer cells can sustain the growth of the cancer. The goal is to identify biomarkers of 'cancer stem cells' to distinguish them from the 'cancer non-stem cells' and normal adult tissue-specific stem cells. This analyst posits a hypothesis that, although all cancers originated from a single cell, there exist two types of 'cancer stem cells' either by the 'Stem Cell hypothesis' or from the 'De-differentiation hypothesis'. It is proposed that there exist two different 'cancer stem cells'. Some 'cancer stem cells' (a) lack the expression of connexins or gap junction genes and lack any form of gap junctional intercellular communication (GJIC) or (b) they have the expressed connexin-coded proteins for functional GJIC but are dysfunctional by some expressed oncogene. This is consistent with the Loewenstein hypothesis that a universal characteristic of cancer cells is they do not have growth control, nor terminally differentiate. This review speculates the normal organ-specific adult stem cell, that is 'initiated', is the origin of the 'cancer stem cells' with expressed Oct4A gene and no expressed connexin genes; whereas the other cancer stem cell has no expressed Oct4A genes but expressed connexin gene, whose coded protein is dysfunctional. Hence. both types of 'cancer stem cells' lack GJIC, for two different reasons, the selective therapies have to be different for these different cell types.
Collapse
Affiliation(s)
- James E Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Wei ZT, Yu XW, He JX, Liu Y, Zhang SL. Characteristics of primary side population cervical cancer cells. Oncol Lett 2017; 14:3536-3544. [PMID: 28927110 PMCID: PMC5588017 DOI: 10.3892/ol.2017.6606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/09/2017] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to identify and characterize side population (SP) cells in primary cervical cancer. A primary culture was successfully established, and the SP cells were isolated via fluorescence-activated cell sorting. Subsequently, in vitro analysis of clonogenic capacity by soft agar assay and in vivo analysis of tumorigenicity were performed. The isolated SP cells accounted for ~4.73% of the total primary culture cells. The SP cells had a decreased proliferation rate and an increased distribution in G0/G1 compared with non-SP (NSP) cells. Following isolation, SP cells exhibited increased proliferative and self-renewal potency compared with NSP cells. Furthermore, significant ATP binding cassette subfamily G member 2 (ABCG2) expression was detected in SP cells but not in NSP cells. The tumor formation rate of SP cells was longer, and the tumor size and tumor formation rate of SP cells were increased in non-obese diabetic/severe combined immunodeficiency mice. In conclusion, the present study demonstrated that SP cells can be isolated from primary cervical cancer cell culture, and SP cells are enriched with stem cell-like cells that have a high capacity for colony formation and tumorigenesis.
Collapse
Affiliation(s)
- Zhen-Tong Wei
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Wei Yu
- Prenatal Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Xue He
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Liu
- Genetic Engineering Laboratory of The Chinese People's Liberation Army, Military Veterinary Institute, Acadamy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Song-Ling Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
4
|
Zhang WJ, Xu SQ, Cai HQ, Men XL, Wang Z, Lin H, Chen L, Jiang YW, Liu HL, Li CH, Sui WG, Deng HK, Lou JN. Evaluation of islets derived from human fetal pancreatic progenitor cells in diabetes treatment. Stem Cell Res Ther 2014; 4:141. [PMID: 24268157 PMCID: PMC4055010 DOI: 10.1186/scrt352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/04/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction With the shortage of donor organs for islet transplantation, insulin-producing cells have been generated from different types of stem cell. Human fetal pancreatic stem cells have a better self-renewal capacity than adult stem cells and can readily differentiate into pancreatic endocrine cells, making them a potential source for islets in diabetes treatment. In the present study, the functions of pancreatic islets derived from human fetal pancreatic progenitor cells were evaluated in vitro and in vivo. Methods Human pancreatic progenitor cells isolated from the fetal pancreas were expanded and differentiated into islet endocrine cells in culture. Markers for endocrine and exocrine functions as well as those for alpha and beta cells were analyzed by immunofluorescent staining and enzyme-linked immunosorbent assay (ELISA). To evaluate the functions of these islets in vivo, the islet-like structures were transplanted into renal capsules of diabetic nude mice. Immunohistochemical staining for human C-peptide and human mitochondrion antigen was applied to confirm the human origin and the survival of grafted islets. Results Human fetal pancreatic progenitor cells were able to expand in medium containing basic fibroblast growth factor (bFGF) and leukemia inhibitor factor (LIF), and to differentiate into pancreatic endocrine cells with high efficiency upon the actions of glucagon-like peptide-1 and activin-A. The differentiated cells expressed insulin, glucagon, glucose transporter-1 (GLUT1), GLUT2 and voltage-dependent calcium channel (VDCC), and were able to aggregate into islet-like structures containing alpha and beta cells upon suspension. These structures expressed and released a higher level of insulin than adhesion cultured cells, and helped to maintain normoglycemia in diabetic nude mice after transplantation. Conclusions Human fetal pancreatic progenitor cells have good capacity for generating insulin producing cells and provide a promising potential source for diabetes treatment.
Collapse
|
5
|
Banakh I, Gonez LJ, Sutherland RM, Naselli G, Harrison LC. Adult pancreas side population cells expand after β cell injury and are a source of insulin-secreting cells. PLoS One 2012; 7:e48977. [PMID: 23152835 PMCID: PMC3494669 DOI: 10.1371/journal.pone.0048977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022] Open
Abstract
Pancreas stem cells are a potential source of insulin-producing β cells for the therapy of diabetes. In adult tissues the ‘side population’ (SP) of cells that effluxes the DNA binding dye Hoechst 33342 through ATP-binding cassette transporters has stem cell properties. We hypothesised therefore that the SP would expand in response to β cell injury and give rise to functional β cells. SP cells were flow sorted from dissociated pancreas cells of adult mice, analysed for phenotype and cultured with growth promoting and differentiation factors before analysis for hormone expression and glucose-stimulated insulin secretion. SP cell number and colony forming potential (CFP) increased significantly in models of type diabetes, and after partial pancreatectomy, in the absence of hyperglycaemia. SP cells, ∼1% of total pancreas cells at 1 week of age, were enriched >10-fold for CFP compared to non-SP cells. Freshly isolated SP cells contained no insulin protein or RNA but expressed the homeobox transcription factor Pdx1 required for pancreas development and β cell function. Pdx1, along with surface expression of CD326 (Ep-Cam), was a marker of the colony forming and proliferation potential of SP cells. In serum-free medium with defined factors, SP cells proliferated and differentiated into islet hormone-expressing cells that secreted insulin in response to glucose. Insulin expression was maintained when tissue was transplanted within vascularised chambers into diabetic mice. SP cells in the adult pancreas expand in response to β cell injury and are a source of β cell progenitors with potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Ilia Banakh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leonel J. Gonez
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Robyn M. Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Gao M, Yang J, Wei R, Liu G, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T. Ghrelin induces cardiac lineage differentiation of human embryonic stem cells through ERK1/2 pathway. Int J Cardiol 2012; 167:2724-33. [PMID: 22809535 DOI: 10.1016/j.ijcard.2012.06.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/16/2012] [Accepted: 06/24/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R), shows cardioprotective activity and regulates the differentiation of several mesoderm-derived cells, including myocytes, adipocytes and osteoblasts. The effect of ghrelin on cardiogenesis and its underlying mechanism, however, have not been studied in detail. METHODS The effects of ghrelin on cardiomyocyte differentiation were tested both in human embryonic stem cells (hESCs) cultured in embryoid body (EB)-based differentiation protocol, and in hESCs transplanted into rat hearts. The signaling mechanisms of ghrelin were further investigated under the EB-based culture condition. RESULTS The generation of beating EBs and the expression of cardiac-specific markers including cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) were 2 to 3-fold upregulated by ghrelin. Although GHS-R1α protein was expressed in differentiated EBs, the effects of exogenous ghrelin were unchanged by D-[lys(3)]-GHRP-6, a specific GHS-R1α antagonist. Moreover, des-acyl ghrelin, which does not bind to GHS-R1α, displayed similar effects with ghrelin. Importantly, activation of ERK1/2, but not Akt, was induced by ghrelin in the newly-formed EBs, and the ghrelin-induced effects of cardiomyocyte differentiation were abolished by adding specific ERK1/2 inhibitor PD98059, but not specific PI3K inhibitor Wortmannin. In addition, ghrelin promoted the differentiation of grafted hESCs into Sox9- and Flk1-positive mesodermal/cardiac progenitor cells in rat hearts. CONCLUSIONS These results suggest that ghrelin induces cardiomyocyte differentiation from hESCs via the activation of the ERK1/2 signaling pathway. Our study, therefore, indicates that using ghrelin may be an effective strategy to promote the differentiation of hESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Meijuan Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Qiu Q, Hernandez JC, Dean AM, Rao PH, Darlington GJ. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells Dev 2011; 20:2177-88. [PMID: 21361791 DOI: 10.1089/scd.2010.0352] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.
Collapse
Affiliation(s)
- Qiong Qiu
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
AIM Ghrelin is involved in regulating the differentiation of mesoderm-derived precursor cells. The aim of this study was to investigate whether ghrelin modulated the differentiation of human embryonic stem (hES) cells into cardiomyocytes and, if so, whether the effect was mediated by growth hormone secretagogue receptor 1α (GHS-R1α). METHODS Cardiomyocyte differentiation from hES cells was performed according to an embryoid body (EB)-based protocol. The cumulative percentage of beating EBs was calculated. The expression of cardiac-specific markers including cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) was detected using RT-PCR, real-time PCR and Western blot. The dispersed beating EBs were examined using immunofluorescent staining. RESULTS The percentage of beating EBs and the expression of cTnI were significantly increased after ghrelin (0.1 and 1 nmol/L) added into the differentiation medium. From 6 to 18 d of differentiation, the increased expression of cTnI and α-MHC by ghrelin (1 nmol/L) was time-dependent, and in line with the alteration of the percentages of beating EBs. Furthermore, the dispersed beating EBs were double-positively immunostained with antibodies against cTnI and α-actinin. However, blockage of GHS-R1α with its specific antagonist D-[lys(3)]-GHRP-6 (1 μmol/L) did not alter the effects of ghrelin on cardiomyocyte differentiation. CONCLUSION Our data show that ghrelin enhances the generation of cardiomyocytes from hES cells, which is not mediated via GHS-R1α.
Collapse
|
9
|
Abstract
Stem cells can supply sufficient islet cells for cell replacement therapy in patients with diabetes. Many types of stem cells, including embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and somatic stem cells, have been shown to be able to differentiate into insulin-producing cells either in vitro or in vivo, which could ameliorate hyperglycemia in diabetic animal models. Furthermore, several small-scale pilot clinical studies have demonstrated the potential efficacy of autologous hematopoietic stem cell transplantation in treating diabetes. Great progress has been made in basic research on the differentiation of insulin-producing cells from human ES cells, in which the ethical debate and immunological rejection are unavoidable. Use of human iPS cells and autologous somatic stem cells can avoid such problems. However, the safety of iPS cells in future clinical application and the amplification, identification and differentiation of somatic stem cells deserve further investigation. This paper aims to present an overview of different types of stem cells, strategies for differentiation into islet cells, and the problems and prospects of stem cell therapy for diabetes.
Collapse
|
10
|
Kenmotsu M, Matsuzaka K, Kokubu E, Azuma T, Inoue T. Analysis of side population cells derived from dental pulp tissue. Int Endod J 2010; 43:1132-42. [PMID: 21029119 PMCID: PMC3033520 DOI: 10.1111/j.1365-2591.2010.01789.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To investigate the characteristics of side population (SP) cells derived from the dental pulp of young and aged rats. METHODOLOGY Maxillary and mandibular incisors were extracted from 5-week-old (young) rats and 60- to 80-week-old (aged) rats. Coronal pulp tissue was removed mechanically, and single-cell suspensions were prepared using collagenase and dispase. Cells were stained with Hoechst 33342 and sorted with an fluorescence-activated cell sorter (FACS). Isolated SP and main population (MP) cells were analysed by real-time reverse transcription polymerase chain reaction, immunohistochemical localization and cell cycle determination. Two-way analysis of variance and the multiple comparison Scheffè test were used for statistical analysis (P<0.05). RESULTS Approximately 0.40% of pulp cells in young rats and 0.11% in aged rats comprised SP cells. SP cells expressed a higher mRNA level of ATP-binding cassette transporter G2 (ABCG2), but lower mRNA levels of nestin, alkaline phosphatase, p16 and p57 than MP cells in both age groups. Immunohistochemical observation revealed ABCG2-positive cells localized in the cell-rich zone and nestin in the odontoblastic layer in both groups. Furthermore, the majority of both young and aged SP and MP cells were in growth arrest of the G(0) /G(1) phase. CONCLUSION The FACS analysis revealed a decrease in the proportion of SP cells with age, whilst p16 mRNA expression indicated an increase in cell senescence. The cell cycles of SP and MP cells from both young and aged dental pulp were generally in the G0/G1 phase.
Collapse
Affiliation(s)
- M Kenmotsu
- Oral Health Science Center HRC7, Tokyo Dental Collage, Chiba, Japan
| | | | | | | | | |
Collapse
|
11
|
Trosko JE, Chang CC. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment. Toxicology 2009; 270:18-34. [PMID: 19948204 DOI: 10.1016/j.tox.2009.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 11/23/2009] [Indexed: 12/15/2022]
Abstract
Given the reality of the inadequacies of current concepts of the mechanisms of chemical toxicities, of the various assays to predict toxicities from current molecular, biochemical, in vitro and animal bioassays, and of the failure to generate efficacious and safe chemicals for medicines, food supplements, industrial, consumer and agricultural chemicals, the recent NAS Report, "Toxicity Testing in the 21st Century: A Vision and a Strategy", has drawn attention to a renewed examination of what needs to be done to improve our current approach for better assessment of potential risk to human health. This "Commentary" provides a major paradigm challenge to the current concepts of how chemicals induce toxicities and how these various mechanisms of toxicities can contribute to the pathogenesis of some human diseases, such as birth defects and cancer. In concordance with the NAS Report to take "... advantage of the on-going revolution in biology and biotechnology", this "Commentary" supports the use of human embryonic and adult stem cells, grown in vitro under simulated "in vivo niche conditions". The human being should be viewed "as greater than the sum of its parts". Homeostatic control of the "emergent properties" of the human hierarchy, needed to maintain human health, requires complex integration of endogenous and exogenous signaling molecules that control cell proliferation, differentiation, apoptosis and senescence of stem, progenitor and differentiated cells. Currently, in vitro toxicity assays (mutagenesis, cytotoxicity, epigenetic modulation), done on 2-dimensional primary rodent or human cells (which are always mixtures of cells), on immortalized or tumorigenic rodent or human cell lines do not represent normal human cells in vivo [which do not grow on plastic and which are in micro-environments representing 3 dimensions and constantly interacting factors]. In addition, with the known genetic, gender, and developmental state of cells in vivo, any in vitro toxicity assay will need to mimic these conditions in vitro. More specifically, while tissues contain a few stem cells, many progenitor/transit cells and terminally differentiated cells, it should be obvious that both embryonic and adult stem cells would be critical "target" cells for toxicity testing. The ultimate potential for in vitro testing of human stem cells will to try to mimic a 3-D in vitro micro-environment on multiple "organ-specific and multiple genotypic/gender "adult stem cells. The role of stem cells in many chronic diseases, such as cancer, birth defects, and possibly adult diseases after pre-natal and early post-natal exposures (Barker hypothesis), demands toxicity studies of stem cells. While alteration of gene expression ("toxico-epigenomics") is a legitimate endpoint of these toxicity studies, alteration of the quantity of stem cells during development must be serious considered. If the future utility of human stem cells proves to be valid, the elimination of less relevant, expensive and time-consuming rodent and 2-D human in vitro assays will be eliminated.
Collapse
Affiliation(s)
- James Edward Trosko
- Center for Integrative Toxicology, Food Safety and Toxicology Center, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
12
|
Trosko JE. Review Paper: Cancer Stem Cells and Cancer Nonstem Cells: From Adult Stem Cells or from Reprogramming of Differentiated Somatic Cells. Vet Pathol 2009; 46:176-93. [DOI: 10.1354/vp.46-2-176] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two opposing hypotheses of the origin of cancer have existed for many decades. One hypothesis postulates that the adult stem cell is needed to initiate the carcinogenic process, whereas the other claims a somatic differentiated cell can dedifferentiate or be reprogrammed to regain properties associated with cancer cells. Recent reemergence of the cancer stem cell hypothesis and the isolation of presumptive cancer stem cells from many types of cancer have forced a reexamination of these 2 hypotheses of the origin of cancer. In addition, normal embryonic and adult stem cells have now been isolated and partially characterized. Furthermore, the demonstration of embryonic-like stem cells, being isolated from adult-differentiated skin fibroblast cells of mice, monkey, and human beings, provides a newer opportunity to determine which of these 2 hypotheses might explain the cell type for initiating the carcinogenic process. The goal of this review is to integrate these recent findings, concerning the isolation of normal and cancer stem cells, with several of the classical concepts of carcinogenesis (initiation/promotion/progression; mutation/epigenetic; stem cell theory/dedifferentiation hypotheses; oncogenetumor suppressor theory). Although the weight of the evidence in this review seems to support the stem cell hypothesis, only future studies, probably using comparative animal and human oncologic studies, will determine if targeting the cancer stem cell, with individualized medical approaches, will improve cancer prevention and therapy.
Collapse
Affiliation(s)
- J. E. Trosko
- Center for Integrative Toxicology, National Food Safety Toxicology Center, Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, Mi
| |
Collapse
|
13
|
Wang CY, Gou SM, Liu T, Wu HS, Xiong JX, Zhou F, Tao J. Differentiation of CD24- pancreatic ductal cell-derived cells into insulin-secreting cells. Dev Growth Differ 2008; 50:633-643. [PMID: 18657167 DOI: 10.1111/j.1440-169x.2008.01061.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pancreatic progenitor cells represent both a potential source of transplantable islets for the treatment of diabetes and a valuable instrument for the investigation of the tumorigenesis of pancreatic carcinoma. It has been reported that pancreatic ductal cells of adults have the characteristics of pancreatic progenitors, but whether these cells can generate endocrine cells requires verification. Here, the differentiation of daughter cells of CD24(-) pancreatic ductal cells into insulin-secreting cells in vitro is reported. Crude pancreatic ductal cells were first obtained from adult mice by gradient centrifugation, and then the CD24(-) cells were isolated with a fluorescence-activated cell sorter. The isolated cells were cultured in serum-containing medium at clonal density to form epithelial colonies (ECs). The ECs were then stimulated with basic fibroblast growth factor (bFGF). After 72 h, insulin-secreting cells were observed in the ECs. These results indicate that the daughter cells of CD24(-) pancreatic ductal cells can differentiate into insulin-secreting cells in vitro when stimulated with exogenous bFGF. Therefore, CD24(-) pancreatic ductal cells have the potential to be pancreatic progenitor cells.
Collapse
Affiliation(s)
- Chun-You Wang
- Pancreatic Center, Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan City, Hubei Province, 430022 China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Commentary: “Re-Programming or Selecting Adult Stem Cells?”. ACTA ACUST UNITED AC 2008; 4:81-8. [DOI: 10.1007/s12015-008-9017-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2008] [Indexed: 10/24/2022]
|
15
|
PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. Int J Biochem Cell Biol 2008; 40:789-803. [DOI: 10.1016/j.biocel.2007.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/12/2007] [Accepted: 10/17/2007] [Indexed: 01/29/2023]
|
16
|
Honda MJ, Nakashima F, Satomura K, Shinohara Y, Tsuchiya S, Watanabe N, Ueda M. Side population cells expressing ABCG2 in human adult dental pulp tissue. Int Endod J 2007; 40:949-58. [PMID: 17916067 DOI: 10.1111/j.1365-2591.2007.01301.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To investigate the presence of side population (SP) cells by the Hoechst exclusion method in human adult dental pulp tissue. METHODOLOGY Human adult dental pulp-derived cells were generated from third molar teeth. The cells were stained with Hoechst 33342 and sorted into SP cells or non-SP cells [main population (MP) cells]. Both cell types were compared with cell growth and RT-PCR analyses. RESULTS SP cells that express ABCG2, Nestin, Notch-1 and alpha-smooth muscle actin were found at frequencies ranging from 0.67% to 1.02%. This SP profile disappeared in the presence of verapamil. These SP cells expressed dentine sialophosphoprotein and dentine matrix protein-1 when cultured in osteogenic medium. CONCLUSION Human adult dental pulp tissue contains SP cells that differentiate into odontoblast-like cells.
Collapse
Affiliation(s)
- M J Honda
- Tooth Regeneration, Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In the twenty-first century, diabetic patients are likely to be one of the major beneficiaries from the advancement of regenerative medicine through cellular therapies. Though the existence of a specific self-renewing stem cell within the pancreas is still far from clear, a surprising variety of cells within the pancreas can differentiate towards a beta-cell phenotype: ductular cells, periductular mesenchymal cells and beta-cells themselves can all give rise to new beta-cells. Extra-pancreatic adult somatic stem cells, in particular, those originating from bone marrow may also be capable of differentiating to beta-cells, though equally well the beneficial effects of bone marrow cells may reside in their contribution to the damaged islet vasculature. Forced expression of the beta-cell-specific transcription factor Pdx1 in hepatocytes also holds promise as a therapeutic strategy to increase insulin levels in diabetic individuals. Embryonic stem (ES) cells are clearly another possible source for generating beta-cells, but ES cells are beyond the scope of this review, which focuses on adult stem and progenitor cells capable of producing beta-cells. Despite considerable endeavour, we still have much to learn in the field of pancreatic regeneration prior to any clinically applicable therapy based upon adult stem cells.
Collapse
Affiliation(s)
- Tariq G Fellous
- Centre for Diabetes and Metabolic Medicine, Queen Mary's School of Medicine and Dentistry, Institute of Cell and Molecular Science, 4 Newark Street, Whitechapel, London E1 2AT.
| | | | | | | |
Collapse
|
18
|
Abstract
The primary characteristics of adult stem cells are maintaining prolonged quiescence, ability to self-renew and plasticity to differentiate into multiple cell types. These properties are evolutionarily conserved from fruit fly to humans. Similar to normal tissue repair in organs, the stem cell concept is inherently impregnated in the etiology of cancer. Tumors contain a minor population of tumor-initiating cells, called "cancer stem cells". The cancer stem cells maintain some similarities in self-renewal and differentiation features of normal adult stem cells. Therefore, various methods developed originally for the analysis and characterization of adult stem cells are being extended to evaluate cancer stem cells. Relevant methods that are used generally across normal stem cells as well as cancer stem cells are summarized. Combination of two or more of these methods for validation of cancer stem cells appears to be a promising approach for the precise isolation and analysis of cancer stem cells.
Collapse
|