1
|
Mao Z, Gao Z, Long R, Guo H, Chen L, Huan S, Yin G. Mitotic catastrophe heterogeneity: implications for prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1409448. [PMID: 39015573 PMCID: PMC11250588 DOI: 10.3389/fimmu.2024.1409448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background and aims The mitotic catastrophe (MC) pathway plays an important role in hepatocellular carcinoma (HCC) progression and tumor microenvironment (TME) regulation. However, the mechanisms linking MC heterogeneity to immune evasion and treatment response remain unclear. Methods Based on 94 previously published highly correlated genes for MC, HCC patients' data from the Cancer Genome Atlas (TCGA) and changes in immune signatures and prognostic stratification were studied. Time and spatial-specific differences for MCGs were assessed by single-cell RNA sequencing and spatial transcriptome (ST) analysis. Multiple external databases (GEO, ICGC) were employed to construct an MC-related riskscore model. Results Identification of two MC-related subtypes in HCC patients from TCGA, with clear differences in immune signatures and prognostic risk stratification. Spatial mapping further associates low MC tumor regions with significant immune escape-related signaling. Nomogram combining MC riskscore and traditional indicators was validated great effect for early prediction of HCC patient outcomes. Conclusion MC heterogeneity enables immune escape and therapy resistance in HCC. The MC gene signature serves as a reliable prognostic indicator for liver cancer. By revealing clear immune and spatial heterogeneity of HCC, our integrated approach provides contextual therapeutic strategies for optimal clinical decision-making.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyu Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Sheng Huan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, China
| |
Collapse
|
2
|
Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep 2022; 12:1959. [PMID: 35121783 PMCID: PMC8816945 DOI: 10.1038/s41598-022-05793-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the usage of nanoparticles in various fields such as drug delivery, attracts the attention of many researchers in the treatment of cancers. Graphene oxide (GO) is one of the novel drug delivery systems which is used broadly owing to its unique features. In this survey, doxorubicin (DOX) was accompanied by natural medicine, curcumin (CUR), to diminish its side effects and enhance its efficiency. Cytotoxicity assay in human gastric cancer (AGS), prostate cancer (PC3), and ovarian cancer (A2780), was evaluated. Also, the uptake of DOX and CUR into cells, was assessed using a fluorescence microscope. Moreover, real-time PCR was applied for the evaluation of the expression of RB1 and CDK2 genes, which were involved in the cell cycle. In both separate and simultaneous forms, DOX and CUR were loaded with high efficiency and the release behavior of both drugs was pH-sensitive. The higher release rate was attained at pH 5.5 and 42 °C for DOX (80.23%) and CUR (13.06), respectively. The intensity of fluorescence in the free form of the drugs, was higher than the loaded form. In the same concentration, the free form of CUR and DOX were more toxic than the loaded form in all cell lines. Also, free drugs showed more impact on the expression of RB1 and CDK2 genes. Co-delivery of CUR and DOX into the mentioned cell lines, was more effective than the free form of CUR and DOX due to its lower toxicity to normal cells.
Collapse
Affiliation(s)
- Fatemeh Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Herbal Medicine Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Fateme Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Department of Advanced Medical Sciences and Technologies, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Wang Z, Li H, Dong M, Zhu P, Cai Y. The anticancer effects and mechanisms of fucoxanthin combined with other drugs. J Cancer Res Clin Oncol 2019; 145:293-301. [PMID: 30627824 DOI: 10.1007/s00432-019-02841-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Fucoxanthin (Fx) is a characteristic carotenoid present in brown seaweed that has been shown to have various benefits, including anticancer effects. In vitro studies demonstrated these various effects, including the suppression of cell viability, the promotion of apoptosis, and antiangiogenic, antiproliferative, and antimetastatic activity. Interestingly, combinations of Fx with other drugs have better effects than either Fx or other drugs alone. Although the antiproliferative and cancer prevention activities of the combination of Fx and other drugs are still unclear, several effects have been discovered, including the induction of apoptosis, cell cycle arrest at G1/G0, enhanced gap junctional intercellular communication, and the induction of autophagy via various mechanisms, such as decreasing P-gp, activating the CYP3A4 promoter, increasing reactive oxygen species and cellular uptake and suppressing the PI3K/Akt/NFκB pathway. In this review, we address the anticancer effects and mechanisms of the combination of Fx and other drugs in different types of cancer. METHODS The relevant literature from PubMed and Web of Science databases is reviewed in this article. RESULTS Fx combined with other drugs could enhance the effect of both Fx and the other drug or reduce the dose without reducing the effect, which may create more effective and less harmful therapeutic strategies. CONCLUSION Fx combined with other drugs has significant anticancer effects by various mechanisms and could be a potential therapeutic strategy for different types of cancer.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Li
- Medical Examination Center, Zibo Sixth Hospital, Zibo Prevention and Treatment Hospital for Occupation Diseases, Zibo, China
| | - Minghao Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Zhu
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473, QiaoKou District, Wuhan, 430030, China.
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473, QiaoKou District, Wuhan, 430030, China.
| |
Collapse
|
4
|
Starc N, Li M, Algeri M, Conforti A, Tomao L, Pitisci A, Emma F, Montini G, Messa P, Locatelli F, Bernardo ME, Vivarelli M. Phenotypic and functional characterization of mesenchymal stromal cells isolated from pediatric patients with severe idiopathic nephrotic syndrome. Cytotherapy 2017; 20:322-334. [PMID: 29291917 DOI: 10.1016/j.jcyt.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Idiopathic nephrotic syndrome (INS) is one of the most common renal diseases in the pediatric population; considering the role of the immune system in its pathogenesis, corticosteroids are used as first-line immunosuppressive treatment. Due to its chronic nature and tendency to relapse, a significant proportion of children experience co-morbidity due to prolonged exposure to corticosteroids and concomitant immunosuppression with second-line, steroid-sparing agents. Mesenchymal stromal cells (MSCs) are multipotent cells that represent a key component of the bone marrow (BM) microenvironment; given their unique immunoregulatory properties, their clinical use may be exploited as an alternative therapeutic approach in INS treatment. METHODS In view of the possibility of exploiting their immunoregulatory properties, we performed a phenotypical and functional characterization of MSCs isolated from BM of five INS patients (INS-MSCs; median age, 13 years; range, 11-16 years) in comparison with MSCs isolated from eight healthy donors (HD-MSCs). MSCs were expanded ex vivo and then analyzed for their properties. RESULTS Morphology, proliferative capacity, immunophenotype and differentiation potential did not differ between INS-MSCs and HD-MSCs. In an allogeneic setting, INS-MSCs were able to prevent both T- and B-cell proliferation and plasma-cell differentiation. In an in-vitro model of experimental damage to podocytes, co-culture with INS-MSCs appeared to be protective. DISCUSSION Our results demonstrate that INS-MSCs maintain the main biological and functional properties typical of HD-MSCs; these data suggest that MSCs may be used in autologous cellular therapy approaches for INS treatment.
Collapse
Affiliation(s)
- Nadia Starc
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Mattia Algeri
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonella Conforti
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Luigi Tomao
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Pitisci
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda IRCCS Ospedale Maggiore Policlinico di Milano, Università degli studi di Milano, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico di Milano, Università degli studi di Milano, Milan, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Paediatrics, University of Pavia, Pavia, Italy
| | - Maria Ester Bernardo
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marina Vivarelli
- Department of Pediatric Subspecialties, Division of Nephrology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
5
|
Khazaei S, Esa NM, Ramachandran V, Hamid RA, Pandurangan AK, Etemad A, Ismail P. In vitro Antiproliferative and Apoptosis Inducing Effect of Allium atroviolaceum Bulb Extract on Breast, Cervical, and Liver Cancer Cells. Front Pharmacol 2017; 8:5. [PMID: 28197098 PMCID: PMC5281556 DOI: 10.3389/fphar.2017.00005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/04/2017] [Indexed: 01/18/2023] Open
Abstract
Natural products are considered potent sources for novel drug discovery and development. The multiple therapeutic effects of natural compounds in traditional medicine motivate us to evaluate the cytotoxic activity of bulb of Allium atroviolaceum in MCF7 and MDA-MB-231, HeLa and HepG2 cell lines. The bulb methanol extract of A. atroviolaceum was found to be an active cell proliferation inhibitor at the time and dose dependent manner. Determination of DNA content by flow cytometry demonstrated S and G2/M phase arrest of MCF-7 cell, correlated to Cdk1 downregulation, S phase arrest in MDA-MB-231 which is p53 and Cdk1-dependent, sub-G0 cell cycle arrest in HeLa aligned with Cdk1 downregulation, G0/G1, S, G2/M phase arrest in HepG2 which is p53-dependent. Apoptosis as the mechanism of cell death was confirmed by morphology study, caspases activity assay, as well as apoptosis related gene expression, Bcl-2. Caspase-8, -9, and -3 activity with downregulation of Bcl-2 illustrated occurrence of both intrinsic and extrinsic pathways in MCF7, while caspase-3 and -8 activity revealed extrinsic pathway of apoptosis, although Bcl-2 downregulated. In HeLa cells, the activity of caspase-9 and -3 and downregulation of Bcl-2 shows intrinsic pathway or mitochondrial pathway, whereas HepG2 shows caspase independent apoptosis. Further, the combination of the extract with tamoxifen against MCF7 and MDA-MB-231 and combination with doxorubicin against HeLa and HeG2 demonstrated synergistic effect in most concentrations, suggests that the bulb of A. atroviolaceum may be useful for the treatment of cancer lonely or in combination with other drugs.
Collapse
Affiliation(s)
- Somayeh Khazaei
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Norhaizan M Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | | | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Ashok K Pandurangan
- Department of pharmacology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Ali Etemad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| |
Collapse
|
6
|
The experimental model of nephrotic syndrome induced by Doxorubicin in rodents: an update. Inflamm Res 2015; 64:287-301. [DOI: 10.1007/s00011-015-0813-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
7
|
Ahmed HH, Shousha WG, Shalby AB, El-Mezayen HA, Ismaiel NN, Mahmoud NS. Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol 2015; 36:1667-1678. [PMID: 25371072 DOI: 10.1007/s13277-014-2767-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022] Open
Abstract
This study was designed to investigate the role of curcumin against hepatocellular carcinoma (HCC) induced in rats. Forty rats were divided into five groups. Group (1) was negative control. Groups (2), (4), and (5) were orally administrated N-nitrosodiethylamine for HCC induction, then group (2) was left untreated, and group (4) was treated orally with curcumin, while group (5) was intraperitoneally injected with doxorubicin. Group (3) was served as curcumin control group. Serum alpha-fetoprotein, alpha L-fucosidase and vascular endothelial growth factor levels were analyzed. Gamma glutamyl transferase (GGT) and heat shock protein gp96 (HSPgp96) gene expressions were detected by RT-PCR. The immunohistochemical analysis of proliferating cell nuclear antigen (PCNA) and Ki-67 expressions was performed. Apoptosis was detected using DNA fragmentation assay. Also, histological investigation of liver tissue was achieved. Untreated HCC group showed significant elevation in the studied biochemical markers and significant upregulation in GGT and HSPgp96 gene expression as well as marked increase in PCNA and Ki-67 expression. Furthermore, this group revealed no DNA fragmentation. Histological investigation of liver tissue sections in HCC group revealed a typical anaplasia. On the other hand, the curcumin-treated group showed a significant depletion in the studied tumor markers and a significant downregulation in GGT and HSPgp96 gene expression. Also, this group displayed remarkable decrease in PCNA and Ki-67 expression. Moreover, this group revealed an obvious DNA fragmentation. Interestingly, treatment with curcumin showed remarkable improvement in the histological features of liver tissue. This study revealed the promising therapeutic role of curcumin against hepatocellular carcinoma owing to its antiangiogenic, antiproliferative, and apoptotic effects.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, 12411, Dokki, Giza, Egypt,
| | | | | | | | | | | |
Collapse
|
8
|
Calcium-channel blocking and nanoparticles-based drug delivery for treatment of drug-resistant human cancers. Ther Deliv 2014; 5:763-80. [DOI: 10.4155/tde.14.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Cancer cell chemoresistance is one of the major limitations to successful cancer treatment and one of the factors that is responsible for the possible recurrence of the disease. Here, we aimed to combine a calcium-channel blocker, verapamil, with an alternative delivery of the anti-cancer drug, doxorubicin, using nanostructural materials. This approach could reduce the cellular resistance to chemotherapeutics agents. Results: The outcome of this complex approach on cellular viability was investigated by using various assays in both a time- and concentration-dependent manner: WST-1, flow cytometry cell viability assay, fluorescence microscopy, DNA fragmentation, and TUNEL labeling of apoptotic cells. Conclusion: All of these analytical assays confirmed the ability to reduce the chemoresistance of the cancer cells based on the proposed procedure.
Collapse
|
9
|
Expression of cyclin A, B1 and D1 after induction of cell cycle arrest in the Jurkat cell line exposed to doxorubicin. Cell Biol Int 2013; 36:1129-35. [PMID: 22950819 DOI: 10.1042/cbi20120274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Jurkat human lymphoblastoid cells were incubated in increasing concentrations of doxorubicin (0.05, 0.1 and 0.15 μM) to induce cell death, and their expression of cyclin A, B1 and D1 was evaluated by flow cytometry (cell cycle progression, Annexin V assay, percentages and levels of each of the cyclins), transmission electron microscopy (ultrastructure) and confocal fluorescence microscopy (expression and intracellular localization of cyclins). After low-dose doxorubicin treatment, Jurkat cells responded mainly by G2/M arrest, which was related to increased cyclin B1, A and D1 levels, a low level of apoptosis and/or mitotic catastrophe. The influence of doxorubicin on levels and/or localization of selected cyclins was confirmed, which may in turn contribute to the G2/M arrest induced by the drug.
Collapse
|
10
|
Stevens JB, Abdallah BY, Liu G, Horne SD, Bremer SW, Ye KJ, Huang JY, Kurkinen M, Ye CJ, Heng HHQ. Heterogeneity of cell death. Cytogenet Genome Res 2013; 139:164-73. [PMID: 23548436 DOI: 10.1159/000348679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell death constitutes a number of heterogeneous processes. Despite the dynamic nature of cell death, studies of cell death have primarily focused on apoptosis, and cell death has often been viewed as static events occurring in linear pathways. In this article we review cell death heterogeneity with specific focus on 4 aspects of cell death: the type of cell death; how it is induced; its mechanism(s); the results of cell death, and the implications of cell death heterogeneity for both basic and clinical research. This specifically reveals that cell death occurs in multiple overlapping forms that simultaneously occur within a population. Network and pathway heterogeneity in cell death is also discussed. Failure to integrate cell death heterogeneity within analyses can lead to inaccurate predictions of the amount of cell death that takes place in a tumor. Similarly, many molecular methods employed in cell death studies homogenize a population removing heterogeneity between individual cells and can be deceiving. Finally, and most importantly, cell death heterogeneity is linked to the formation of new genome systems through induction of aneuploidy and genome chaos (rapid genome reorganization).
Collapse
Affiliation(s)
- J B Stevens
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Mich. 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakayama Y, Yamaguchi N. Role of cyclin B1 levels in DNA damage and DNA damage-induced senescence. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:303-37. [PMID: 23890385 DOI: 10.1016/b978-0-12-407695-2.00007-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cyclin B1-Cdk1 complex is a key regulator of mitotic entry. A large number of proteins are phosphorylated by the cyclin B1-Cdk1 complex prior to mitotic entry. Regulation of the mitotic events is linked to the control of the activity of the cyclin B1-Cdk1 complex to make cells enter mitosis, arrest at G2-phase, or skip mitosis. The roles of cyclin B1 levels in DNA damage are described. The ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis and polyploidization via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is important for inducing polyploidization. The decrease in cyclin B1 levels that is induced by DNA damage leads to polyploidization in DNA damage-induced senescence. A useful method for monitoring the expression level of cyclin B1 throughout cell cycle progression in living cells is also presented.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | |
Collapse
|
12
|
Jemaà M, Galluzzi L, Kepp O, Boilève A, Lissa D, Senovilla L, Harper F, Pierron G, Berardinelli F, Antoccia A, Castedo M, Vitale I, Kroemer G. Preferential killing of p53-deficient cancer cells by reversine. Cell Cycle 2012; 11:2149-58. [PMID: 22592527 DOI: 10.4161/cc.20621] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reversine is a small synthetic molecule that inhibits multiple mitotic kinases, including MPS1 as well as Aurora kinase A and B (AURKA and AURKB). Here, we investigated the effects of reversine on p53-deficient vs p53-proficient cancer cells. We found that low doses (~0.5 µM) of reversine, which selectively inhibit MPS1 and hence impair the spindle assembly checkpoint, kill human TP53 (-/-) colon carcinoma cells less efficiently than their wild-type counterparts. In sharp contrast, high doses (~5 µM) of reversine induced hyperploidization and apoptosis to a much larger extent in TP53 (-/-) than in TP53 (+/+) cells. Such a selective cytotoxicity could not be reproduced by the knockdown of MPS1, AURKA and AURKB, neither alone nor in combination, suggesting that it involves multiple (rather than a few) molecular targets of reversine. Videomicroscopy-based cell fate profiling revealed that, in response to high-dose reversine, TP53 (-/-) (but not TP53 (+/+) ) cells undergo several consecutive rounds of abortive mitosis, resulting in the generation of hyperpolyploid cells that are prone to succumb to apoptosis upon the activation of mitotic catastrophe. In line with this notion, the depletion of anti-apoptotic proteins of the BCL-2 family sensitized TP53 (-/-) cells to the toxic effects of high-dose reversine. Moreover, the knockdown of BAX or APAF-1, as well as the chemical inhibition of caspases, limited the death of TP53 (-/-) cells in response to high-dose reversine. Altogether, these results suggest that p53-deficient cells are particularly sensitive to the simultaneous inhibition of multiple kinases, including MPS1, as it occurs in response to high-dose reversine.
Collapse
|
13
|
Imreh G, Norberg HV, Imreh S, Zhivotovsky B. Chromosomal breaks during mitotic catastrophe trigger γH2AX-ATM-p53-mediated apoptosis. J Cell Sci 2012; 124:2951-63. [PMID: 21878502 DOI: 10.1242/jcs.081612] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the cause and outcome of mitotic catastrophe (MC) has been thoroughly investigated, precisely how the ensuing lethality is regulated during or following this process and what signals are involved remain unknown. Moreover, the mechanism of the decision of cell death modalities following MC is still not well characterised. We demonstrate here a crucial role of the γH2AX-ATM-p53 pathway in the regulation of the apoptotic outcome of MC resulting from cells entering mitosis with damaged DNA. In addition to p53 deficiency, the depletion of ATM (ataxia telangiectasia mutated), but not ATR (ataxia telangiectasia and Rad3-related protein), protected against apoptosis and shifted cell death towards necrosis. Activation of this pathway is triggered by the augmented chromosomal damage acquired during anaphase in doxorubicin-treated cells lacking 14-3-3σ (also known as epithelial cell marker protein-1 or stratifin). Moreover, cells that enter mitosis with damaged DNA encounter segregation problems because of their abnormal chromosomes, leading to defects in mitotic exit, and they therefore accumulate in G1 phase. These multi- or micronucleated cells are prevented from cycling again in a p53- and p21-dependent manner, and subsequently die. Because increased chromosomal damage resulting in extensive H2AX phosphorylation appears to be a direct cause of catastrophic mitosis, our results describe a mechanism that involves generation of additional DNA damage during MC to eliminate chromosomally unstable cells.
Collapse
Affiliation(s)
- Gabriela Imreh
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Zhang B, Huang B, Guan H, Zhang SM, Xu QZ, He XP, Liu XD, Wang Y, Shang ZF, Zhou PK. Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde. Toxicol Appl Pharmacol 2011; 252:307-17. [DOI: 10.1016/j.taap.2011.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/13/2011] [Accepted: 03/03/2011] [Indexed: 12/16/2022]
|
15
|
Grzanka D, Marszałek A, Izdebska M, Gackowska L, Andrzej Szczepanski M, Grzanka A. Actin Cytoskeleton Reorganization Correlates with Cofilin Nuclear Expression and Ultrastructural Changes in CHO AA8 Cell Line after Apoptosis and Mitotic Catastrophe Induction by Doxorubicin. Ultrastruct Pathol 2011; 35:130-8. [DOI: 10.3109/01913123.2010.548113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Doxorubicin-induced F-actin reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8 cells. Folia Histochem Cytobiol 2010; 48:377-86. [DOI: 10.2478/v10042-010-0072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence. Cell Biol Int 2010; 34:645-53. [PMID: 20222868 DOI: 10.1042/cbi20090398] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.
Collapse
|
18
|
Ottewell PD, Lefley DV, Cross SS, Evans CA, Coleman RE, Holen I. Sustained inhibition of tumor growth and prolonged survival following sequential administration of doxorubicin and zoledronic acid in a breast cancer model. Int J Cancer 2010; 126:522-32. [DOI: 10.1002/ijc.24756] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Altered expression of proliferation-inducing and proliferation-inhibiting genes might contribute to acquired doxorubicin resistance in breast cancer cells. Cell Biochem Biophys 2009; 55:95-105. [PMID: 19593673 DOI: 10.1007/s12013-009-9058-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 06/24/2009] [Indexed: 01/02/2023]
Abstract
This study was designed to investigate the molecular changes that may develop during exposure of breast cancer cells to anticancer agents and that may lead to acquired resistance. We used two breast cancer cell lines, a parental (MCF7/WT) and a doxorubicin-resistant (MCF7/DOX) one. Cell survival, cell cycle distribution and RT-PCR expression level of genes involved in DNA damage response, MDR1, GST and TOPOIIalpha were measured. MCF7/DOX cells were five-fold more resistant to doxorubicin (DOX) than the MCF7/WT cells. DOX treatment causes arrest of MCF7/DOX cells in G1 and G2 phases of cell cycle whereas MCF7/WT cells were arrested in S-phase. The molecular changes in both cell lines due to DOX treatment could be classified into: (1) the basal level of p53, p21, BRCA1, GST and TOPOIIalpha mRNA was higher in MCF7/DOX than MCF7/WT. During DOX treatment, the expression level of these genes decreased in both cell lines but the rate of down-regulation was faster in MCF7/WT than MCF7/DOX cells. (2) The expression level of MDR1 was the same in both cell lines but 48 and 72 h of drug treatment, MDR1 disappeared in MCF7/WT but still expressed in MCF7/DOX. (3) There was no change in the expression level of BAX, FAS and BRCA2 in both cell lines. Conclusively, after validation in clinical samples, overexpression of genes like BRCA1, p53, p21, GST, MDR1 and TOPOIIalpha could be used as a prognostic biomarker for detection of acquired resistance in breast cancer and as therapeutic targets for the improvement of breast cancer treatment strategies.
Collapse
|
20
|
Gewirtz DA, Hilliker ML, Wilson EN. Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiother Oncol 2009; 92:323-8. [PMID: 19541381 DOI: 10.1016/j.radonc.2009.05.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 12/19/2022]
Abstract
Radiation has long been a useful component of the treatment regimen for solid tumors. However, some malignancies are relatively resistant to radiation treatment while even tumors that may initially respond (to both radiation and chemotherapy) may eventually recover proliferative capacity. A variety of approaches have been utilized in the efforts to enhance radiation sensitivity. Recent studies have identified autophagy as a cell death pathway that may mediate the radiosensitizing effects of selected treatments. Studies in our laboratory support the premise that radiosensitization of breast tumor cells by vitamin D or vitamin D analogs is mediated through autophagy. In addition, promotion of autophagic cell death by a vitamin D analog in irradiated breast tumor cells delays and attenuates the proliferative recovery that may be a preclinical indicator of disease recurrence.
Collapse
Affiliation(s)
- David A Gewirtz
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
21
|
Apoptosis, autophagy, accelerated senescence and reactive oxygen in the response of human breast tumor cells to Adriamycin. Biochem Pharmacol 2009; 77:1139-50. [DOI: 10.1016/j.bcp.2008.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 01/06/2023]
|
22
|
Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, Krofft RD, Logar CM, Marshall CB, Ohse T, Shankland SJ. Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol 2009; 296:F213-29. [DOI: 10.1152/ajprenal.90421.2008] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glomerular diseases remain the leading cause of chronic and end-stage kidney disease. Significant advances in our understanding of human glomerular diseases have been enabled by the development and better characterization of animal models. Diseases of the glomerular epithelial cells (podocytes) account for the majority of proteinuric diseases. Rodents have been extensively used experimentally to better define mechanisms of disease induction and progression, as well as to identify potential targets and therapies. The development of podocyte-specific genetically modified mice has energized the research field to better understand which animal models are appropriate to study acquired podocyte diseases. In this review we discuss inducible experimental models of acquired nondiabetic podocyte diseases in rodents, namely, passive Heymann nephritis, puromycin aminonucleoside nephrosis, adriamycin nephrosis, liopolysaccharide, crescentic glomerulonephritis, and protein overload nephropathy models. Details are given on the model backgrounds, how to induce each model, the interpretations of the data, and the benefits and shortcomings of each. Genetic rodent models of podocyte injury are excluded.
Collapse
|
23
|
Rani R, Li J, Pang Q. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice. Cancer Res 2008; 68:9693-702. [PMID: 19047147 PMCID: PMC2597211 DOI: 10.1158/0008-5472.can-08-1790] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.
Collapse
Affiliation(s)
- Reena Rani
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
24
|
Lin YC, Wang FF. Mechanisms underlying the pro-survival pathway of p53 in suppressing mitotic death induced by adriamycin. Cell Signal 2007; 20:258-67. [PMID: 18006273 DOI: 10.1016/j.cellsig.2007.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
The p53 tumor suppressor responds to chemotherapeutic stress by triggering apoptosis or eliciting pro-survival pathway through arresting cell cycle progression for DNA damage repair. Here we examined the pro-survival activity of p53 on the adriamycin-induced stress using H1299 cells stably expressing tsp53 V143A, a temperature-sensitive mutant activating only the subset of p53 target genes related to growth arrest and DNA repair, but not apoptosis. At 38 degrees C, cells evaded from adriamycin-induced G2 arrest and died of apoptosis and mitotic catastrophe, which could be inhibited by Cdk inhibitors. Activation of functional tsp53 V143A at 32 degrees C led to suppression of Cdk1/2 activities and Cyclin B1/Cdk1 expression, cells exhibited prolonged G2 arrest, regained reproductive potential and were protected from mitotic catastrophe induced by adriamycin. Inhibition of mitotic catastrophe and Cyclin B1/Cdk1 expression was ablated upon silencing p21 Waf1 expression in tsp53 V143A-H1299 cells or in HCT116 cells. Together we show that p21 Waf1 is a key component of G2 checkpoint necessary and sufficient for protecting tumor cells against adriamycin-induced mitotic catastrophe.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan 11221
| | | |
Collapse
|
25
|
Jahnke U, Higginbottom K, Newland AC, Cotter FE, Allen PD. Cell death in leukemia: passenger protein regulation by topoisomerase inhibitors. Biochem Biophys Res Commun 2007; 361:928-33. [PMID: 17681274 DOI: 10.1016/j.bbrc.2007.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/21/2022]
Abstract
Etoposide is a potent inducer of mitotic catastrophe; a type of cell death resulting from aberrant mitosis. It is important in p53 negative cells where p53 dependent apoptosis and events at the G1 and G2 cell cycle checkpoints are compromised. Passenger proteins regulate many aspects of mitosis and siRNA interference or direct inhibition of Aurora B kinase results in mitotic catastrophe. However, there is little available data of clinical relevance in leukaemia models. Here, in p53 negative K562 myeloid leukemia cells, etoposide-induced mitotic catastrophe is shown to be time and/or concentration dependent. Survivin and Aurora remained bound to chromosomes. Survivin and Aurora were also associated with Cdk1 and were shown to form complexes, which in pull down experiments, included INCENP. There was no evidence of Aurora B kinase suppression. These data suggests etoposide will complement Aurora B kinase inhibitors currently in clinical trials for cancer.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Aurora Kinase B
- Aurora Kinases
- CDC2 Protein Kinase/metabolism
- Cell Death
- Chromosomes, Human/chemistry
- Enzyme Inhibitors/pharmacology
- Etoposide/pharmacology
- G2 Phase
- Histones/metabolism
- Humans
- Inhibitor of Apoptosis Proteins
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Microtubule-Associated Proteins/analysis
- Microtubule-Associated Proteins/metabolism
- Mitosis/drug effects
- Neoplasm Proteins/analysis
- Neoplasm Proteins/metabolism
- Protein Serine-Threonine Kinases/analysis
- Protein Serine-Threonine Kinases/metabolism
- Survivin
- Topoisomerase II Inhibitors
Collapse
Affiliation(s)
- Ulrike Jahnke
- Centre for Haematology, Institute of Cell and Molecular Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary's, University of London, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | |
Collapse
|
26
|
Park SS, Kim MA, Eom YW, Choi KS. Bcl-xL blocks high dose doxorubicin-induced apoptosis but not low dose doxorubicin-induced cell death through mitotic catastrophe. Biochem Biophys Res Commun 2007; 363:1044-9. [PMID: 17923112 DOI: 10.1016/j.bbrc.2007.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/09/2007] [Indexed: 12/01/2022]
Abstract
Bcl-xL is often overexpressed in human hepatocellular carcinoma cells, contributing to resistance to various chemotherapeutic agents. In this study, we investigated the role of Bcl-xL in two modes of cell death induced by different doses of doxorubicin, apoptosis and cell death through mitotic catastrophe. Bcl-xL overexpression in various hepatoma cells effectively blocked apoptosis induced by high dose doxorubicin, inhibiting the loss of mitochondrial membrane potential, release of mitochondrial cytochrome c and caspase activation. Contrastingly, Bcl-xL overexpression did not block low dose doxorubicin-induced mitotic catastrophe and subsequent non-apoptotic cell death, without affecting abnormal cell cycle progression, formation of multiple micronuclei, loss of mitochondrial membrane potential, release of mitochondrial cytochrome c, and the clonogenicity of cells exposed to low dose doxorubicin. These findings indicate that low dose doxorubicin-induced cell death through mitotic catastrophe may provide an alternative therapeutic strategy for Bcl-xL-overexpressing hepatoma cells, which are resistant to pro-apoptotic treatments.
Collapse
Affiliation(s)
- Seok Soon Park
- Department of Molecular Science & Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Curry CL, Reed LL, Broude E, Golde TE, Miele L, Foreman KE. Notch inhibition in Kaposi's sarcoma tumor cells leads to mitotic catastrophe through nuclear factor-κB signaling. Mol Cancer Ther 2007; 6:1983-92. [PMID: 17604336 DOI: 10.1158/1535-7163.mct-07-0093] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Kaposi's sarcoma (KS) is the most common neoplasm in untreated AIDS patients and accounts for significant morbidity and mortality worldwide. We have recently reported that Notch signaling (which plays an important role in cell proliferation, apoptosis, and oncogenesis) is constitutively activated in KS tumor cells. Blockade of this activity using γ-secretase inhibitors resulted in apoptosis of SLK cells, a KS tumor cell line; however, this apoptosis was preceded by a prolonged G2-M cell cycle arrest. This result led us to hypothesize that the cells were undergoing mitotic catastrophe, an abnormal mitosis that leads to eventual cell death. Here, we show that Notch inhibition in KS tumor cells using γ-secretase inhibitors or Notch-1 small interfering RNA resulted in G2-M cell cycle arrest and mitotic catastrophe characterized by the presence of micronucleated cells and an increased mitotic index. Interestingly, Notch inhibition led to a sustained increase in nuclear cyclin B1, a novel observation suggesting that Notch signaling can modulate expression of this critical cell cycle protein. Further analysis showed the induction of cyclin B1 was due, at least in part, to increased nuclear factor-κB (NF-κB) activity, which was also required for the G2-M growth arrest after Notch inhibition. Taken together, these studies suggest that Notch inhibition can initiate aberrant mitosis by inducing NF-κB activity that inappropriately increases cyclin B1 resulting in cell death via mitotic catastrophe. [Mol Cancer Ther 2007;6(7):1983–92]
Collapse
Affiliation(s)
- Christine L Curry
- Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
28
|
Galons H, Bettayeb K, Meijer L. (R)-Roscovitine (CYC202, Seliciclib). ENZYME INHIBITORS SERIES 2006. [DOI: 10.1201/9781420005400.ch9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Jackson SJT, Venema RC. Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells. J Nutr 2006; 136:1178-84. [PMID: 16614401 DOI: 10.1093/jn/136.5.1178] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Quercetin (QRN), one of the most abundant flavonoids in the human diet, is a known antioxidant and inhibitor of cancer cell cycle progression. Here, we provide the first evidence that QRN inhibits angiogenesis via a mechanism involving both suppression of endothelial nitric oxide synthase (eNOS) and early M-phase cell cycle arrest. Bovine aortic endothelial (BAE) cells were exposed to doses of up to 100 micromol/L QRN and assayed for eNOS activity and phosphorylation status. Phosphorylation of eNOS at Ser 617 (bovine sequence) is thought to occur in response to Akt stimulation and to be required for eNOS activity. Together with basal eNOS activity, eNOS phosphorylation at Ser 617 and Akt Ser 473 phosphorylation were dose dependently and concomitantly suppressed by QRN within 30 min. Furthermore, although the significant (P < 0.05) inhibitory effect of a single 100 micromol/L QRN dose on eNOS activity was overcome within approximately 24 h, chronic QRN exposures (24-48 h) led to early M-phase arrest and disruption of mitotic microtubule polymerization. In vivo, QRN administered i.p. to female Balb/C mice bearing both syngeneic mammary tumors and Matrigel implants suppressed angiogenesis as measured by endothelial cell immunohistochemistry and hemoglobin concentration. Taken together, these findings suggest a dual mechanism by which QRN suppresses endothelial cell proliferation, both acutely via inhibition of eNOS Ser 617 phosphorylation, and chronically via perturbation of mitotic microtubule polymerization. This novel mechanism of QRN in endothelial cells may in part explain its inhibitory action on angiogenesis and further discern a potential role of QRN as a chemopreventive agent.
Collapse
Affiliation(s)
- Steven J T Jackson
- Medical College of Georgia, Vascular Biology Center, CB 3207, Augusta, GA 30912, USA
| | | |
Collapse
|