1
|
Hu L, Zhang K, Zhang H, Dong X, Ding L, Qi Y, Tang M. Enhanced Endothelialization Using Resveratrol-Loaded Polylactic Acid-Coated Left Atrial Appendage Occluders in a Canine Model. ACS APPLIED BIO MATERIALS 2025; 8:199-207. [PMID: 39779462 PMCID: PMC11752505 DOI: 10.1021/acsabm.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Left atrial appendage occlusion (LAAO) is a well-established alternative to anticoagulation therapy for patients with atrial fibrillation who have a high bleeding risk. After occluder implantation, anticoagulation therapy is still required for at least 45 days until complete LAAO is achieved by neoendocardial coverage of the device. We applied a polylactic acid-resveratrol coating to the LAAO membrane to enhance endothelialization with the goal of shortening the anticoagulation therapy duration. Eighteen dogs were randomly divided into the experimental group (coated occluders) or the control group (noncoated occluders). The dogs were sacrificed in cohorts at days 14, 28, and 90 for anatomical and pathological examination to evaluate endothelialization and thrombus formation. Transesophageal echocardiography (TEE) was performed before sacrifice to evaluate device-related adverse events. According to the anatomical and pathological examinations, all except one LAAO cover exhibited larger or thicker tissue or neoendocardial coverage in the experimental group compared with the control group at the same sacrifice time points. All connection hubs were densely covered by endothelial cells at 90 days and completely covered at 28 days in the experimental group, while all connection hubs were thinly covered at 90 days and two connection hubs were exposed at 28 days in the control group. Pathological examination revealed no thrombus formation in the experimental group, while a small amount of thrombus was observed in one dog at 90 days and in two dogs at 28 days in the control group. Finally, TEE showed no peri-device leakage (PDL) in the experimental group, whereas a small amount of PDL was detected in one dog (3.2 mm) at 28 days and in one dog (3.7 mm) at 14 days in the control group. The resveratrol-loaded polylactic acid-covered LAAO device enhanced endothelialization and reduced thrombus formation and PDL. This effect could possibly reduce the anticoagulation therapy duration.
Collapse
Affiliation(s)
| | | | - Hongda Zhang
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Xiaonan Dong
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Lei Ding
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Yingjie Qi
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Min Tang
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
2
|
Peng Q, Guo R, Zhou Y, Teng R, Cao Y, Mu S. Comparison of Gelatin/Polylysine- and Silk Fibroin/SDF-1α-Coated Mesenchymal Stem Cell-Seeded Intracranial Stents. Macromol Biosci 2022; 23:e2200402. [PMID: 36541928 DOI: 10.1002/mabi.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Endothelialization of the aneurysmal neck is essential for aneurysm healing after endovascular treatment. Mesenchymal stem cell (MSC)-seeded stents can promote aneurysm repair. The biological effects of coated and uncoated nitinol intracranial stents seeded with MSCs on vascular cells and macrophage proliferation and inflammation are investigated. Two stent coatings that exert pro-aggregation effects on MSCs via different mechanisms are examined: gelatin/polylysine (G/PLL), which enhances cell adhesion, and silk fibroin/SDF-1α (SF/SDF-1α), which enhances chemotaxis. The aim is to explore the feasibility of MSC-seeded coated stents in the treatment of intracranial aneurysms. The G/PLL coating provides the highest cytocompatibility and blood compatibility substrate for MSCs and vascular cells and promotes cell adhesion and proliferation. Moreover, it enhances MSC secretion and regulation of vascular cell and macrophage proliferation and chemotaxis. Although the SF/SDF-1α coating promotes MSC secretion and vascular cell chemotaxis, it induces a greater degree of macrophage proliferation, chemotaxis, and secretion of pro-inflammatory factors. MSC-seeded stents coated with G/PLL may benefit stent surface endothelialization and reduce the inflammatory response after endovascular treatment of intracranial aneurysm. These effects may improve aneurysm healing and increase the cure rate.
Collapse
Affiliation(s)
- Qichen Peng
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruimin Guo
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Yangyang Zhou
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruidi Teng
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Yulin Cao
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Shiqing Mu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
3
|
Liu X, Wang J, Xu X, Zhu H, Man K, Zhang J. SDF-1 Functionalized Hydrogel Microcarriers for Skin Flap Repair. ACS Biomater Sci Eng 2022; 8:3576-3588. [PMID: 35899941 DOI: 10.1021/acsbiomaterials.2c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Critically sized skin flaps used to treat skin defects often suffer from necrosis due to insufficient blood supply. Hence there is an urgent need to improve the survival rate of skin flaps by promoting local angiogenesis. The delivery of growth factor loaded microcarriers have shown promise in enhancing defect repair, however, their rapid clearance from the defect site limits their regenerative potential. Thus, it is critical to develop microcarriers which can promote the sustained release of bioactive factors to effectively stimulate tissue repair. This study aimed to develop a stromal cell-derived factor 1 (SDF-1) loaded microcarrier coated with Matrigel (MC@SDF-1@Mat) to promote skin flap repair. SEM imaging showed that the surface of the microcarrier was coated by a porous Matrigel film. The drug release experiment showed that the Matrigel-coated microcarriers enhanced the sustained release of the model drug methylene blue when compared to uncoated group. MC@SDF-1@Mat significantly promoted the proliferation, migration, and angiogenesis of HUVECs via CCK-8, wound healing assay, and tube formation assay, respectively. Moreover, the murine random skin flap model was further established and treated. It was found that the flap necrosis area in the MC@SDF-1@Mat treated group was significantly reduced. H&E and Masson staining showed the histological structure and collagen organization exhibited a normal phenotype in the MC@SDF-1@Mat treated group. Additionally, CD31 immunohistochemical analysis showed that the MC@SDF-1@Mat treated group exhibited the greatest degree of neovascularization. In conclusion, our SDF-1 functionalized gelatin-based hydrogel microcarrier has potential clinical applications in promoting skin flap repair and drug delivery.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Jinsi Wang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Xiaoqin Xu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Hong Zhu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| |
Collapse
|
4
|
Jeong H, Choi D, Oh Y, Heo J, Hong J. A Nanocoating Co-Localizing Nitric Oxide and Growth Factor onto Individual Endothelial Cells Reveals Synergistic Effects on Angiogenesis. Adv Healthc Mater 2022; 11:e2102095. [PMID: 34826360 DOI: 10.1002/adhm.202102095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Indexed: 01/19/2023]
Abstract
The delivery of nitric oxide (NO)-an intrinsic cellular signaling molecule-is promising for disease treatment, in particular to vascular diseases, due to its endothelial-derived inherent nature. The limited diffusion distance of labile NO prompts researchers to develop various carriers and targeting methods for specific sites. In contrast to the apoptotic effect of NO, such as anticancer, delivering low NO concentration at the desired targeting area is still intricate in a physiological environment. In this study, the layer-by-layer assembled nanocoating is leveraged to develop a direct NO delivery platform to individual endothelial cells (ECs). NO can be localized to individual ECs via S-nitrosothiol-bound polyacrylic acid which is a polymer directly providing an endothelial-like constant level of NO. To increase angiogenic activation along with NO, VEGF is additionally applied to specific receptors on the cell surface. Notably, the survival and proliferation of ECs are significantly increased by a synergistic effect of NO and VEGF co-localized via nanocoating. Furthermore, the nanocoating remarkably promoted cell migration and tubule formation-prerequisites of angiogenesis. The proposed unique technology based on nanocoating demonstrates great potential for conferring desired angiogenic functions to individual ECs through efficient NO delivery.
Collapse
Affiliation(s)
- Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Yoogyeong Oh
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
5
|
Liu S, Zhi J, Chen Y, Song Z, Wang L, Tang C, Li S, Lai X, Xu N, Liu T. Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112666. [DOI: 10.1016/j.msec.2022.112666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
6
|
Hwang PT, Sherwood JA, Millican RC, Bobba PS, Lynd TO, Garner JN, Brott BC, Hou D, Jun HW. Endothelium-Mimicking Nanomatrix Coating to Enhance Endothelialization after Left Atrial Appendage Closure Device Implantation. ACS APPLIED BIO MATERIALS 2021; 4:4917-4924. [DOI: 10.1021/acsabm.1c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick T.J. Hwang
- Endomimetics, LLC, Birmingham, Alabama 35242, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | | | | | - Pratheek S. Bobba
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Tyler O. Lynd
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | | | - Brigitta C. Brott
- Endomimetics, LLC, Birmingham, Alabama 35242, United States
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Dongming Hou
- Boston Scientific, Marlborough, Massachusetts 01752, United States
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, Alabama 35242, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
7
|
Steele AN, Paulsen MJ, Wang H, Stapleton LM, Lucian HJ, Eskandari A, Hironaka CE, Farry JM, Baker SW, Thakore AD, Jaatinen KJ, Tada Y, Hollander MJ, Williams KM, Seymour AJ, Totherow KP, Yu AC, Cochran JR, Appel EA, Woo YJ. Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine 2020; 127:154974. [DOI: 10.1016/j.cyto.2019.154974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
8
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
9
|
Bromage DI, Taferner S, He Z, Ziff OJ, Yellon DM, Davidson SM. Stromal cell-derived factor-1α signals via the endothelium to protect the heart against ischaemia-reperfusion injury. J Mol Cell Cardiol 2019; 128:187-197. [PMID: 30738798 PMCID: PMC6408335 DOI: 10.1016/j.yjmcc.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
AIMS The chemokine stromal derived factor-1α (SDF-1α) is known to protect the heart acutely from ischaemia-reperfusion injury via its cognate receptor, CXCR4. However, the timing and cellular location of this effect, remains controversial. METHODS AND RESULTS Wild type male and female mice were subjected to 40 min LAD territory ischaemia in vivo and injected with either saline (control) or SDF-1α prior to 2 h reperfusion. Infarct size as a proportion of area at risk was assessed histologically using Evans blue and triphenyltetrazolium chloride. Our results confirm the cardioprotective effect of exogenous SDF-1α in mouse ischaemia-reperfusion injury and, for the first time, show protection when SDF-1α is delivered just prior to reperfusion, which has important therapeutic implications. The role of cell type was examined using the same in vivo ischaemia-reperfusion protocol in cardiomyocyte- and endothelial-specific CXCR4-null mice, and by Western blot analysis of endothelial cells treated in vitro. These experiments demonstrated that the acute infarct-sparing effect is mediated by endothelial cells, possibly via the signalling kinases Erk1/2 and PI3K/Akt. Unexpectedly, cardiomyocyte-specific deletion of CXCR4 was found to be cardioprotective per se. RNAseq analysis indicated altered expression of the mitochondrial protein co-enzyme Q10b in these mice. CONCLUSIONS Administration of SDF-1α is cardioprotective when administered prior to reperfusion and may, therefore, have clinical utility. SDF-1α-CXCR4-mediated cardioprotection from ischaemia-reperfusion injury is contingent on the cellular location of CXCR4 activation. Specifically, cardioprotection is mediated by endothelial signalling, while cardiomyocyte-specific deletion of CXCR4 has an infarct-sparing effect per se.
Collapse
Affiliation(s)
- Daniel I Bromage
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Stasa Taferner
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Oliver J Ziff
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
10
|
Steele AN, Stapleton LM, Farry JM, Lucian HJ, Paulsen MJ, Eskandari A, Hironaka CE, Thakore AD, Wang H, Yu AC, Chan D, Appel EA, Woo YJ. A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering. Adv Healthc Mater 2019; 8:e1801147. [PMID: 30714355 DOI: 10.1002/adhm.201801147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Hydrogels have emerged as a diverse class of biomaterials offering a broad range of biomedical applications. Specifically, injectable hydrogels are advantageous for minimally invasive delivery of various therapeutics and have great potential to treat a number of diseases. However, most current injectable hydrogels are limited by difficult and time-consuming fabrication techniques and are unable to be delivered through long, narrow catheters, preventing extensive clinical translation. Here, the development of an easily-scaled, catheter-injectable hydrogel utilizing a polymer-nanoparticle crosslinking mechanism is reported, which exhibits notable shear-thinning and self-healing behavior. Gelation of the hydrogel occurs immediately upon mixing the biochemically modified hyaluronic acid polymer with biodegradable nanoparticles and can be easily injected through a high-gauge syringe due to the dynamic nature of the strong, yet reversible crosslinks. Furthermore, the ability to deliver this novel hydrogel through a long, narrow, physiologically-relevant catheter affixed with a 28-G needle is highlighted, with hydrogel mechanics unchanged after delivery. Due to the composition of the gel, it is demonstrated that therapeutics can be differentially released with distinct elution profiles, allowing precise control over drug delivery. Finally, the cell-signaling and biocompatibility properties of this innovative hydrogel are demonstrated, revealing its wide range of therapeutic applications.
Collapse
Affiliation(s)
- Amanda N. Steele
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Lyndsay M. Stapleton
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Justin M. Farry
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Camille E. Hironaka
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Akshara D. Thakore
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Anthony C. Yu
- Department of Materials Science & Engineering; Stanford University; Stanford CA 94305 USA
| | - Doreen Chan
- Department of Materials Science & Engineering; Stanford University; Stanford CA 94305 USA
| | - Eric A. Appel
- Department of Materials Science & Engineering; Stanford University; Stanford CA 94305 USA
| | - Yiping Joseph Woo
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
11
|
Pleiotrophin: Analysis of the endothelialisation potential. Adv Med Sci 2019; 64:144-151. [PMID: 30660899 DOI: 10.1016/j.advms.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Endothelialisation of vascular substitutes, in fact, remains one of the most unsolved problems in cardiovascular diseases treatment. Stromal Derived Factor 1 (SDF-1) has been largely investigated as an endothelialisation promoter and Pleiotrophin is a promising alternative. Although it has been known to exert beneficial effects on different cell types, its potential as an inducer of proliferation and migration of endothelial cells was not investigated. Therefore, this work is aimed to compare the effects of Pleiotrophin on proliferation and migration of endothelial cells with respect to SDF-1. MATERIALS/METHODS Endothelial cell line EA.hy926 was treated with Pleiotrophin (50 ng/ml) or SDF-1 (50 ng/ml). Cell viability was evaluated by MTT assay and migration assays were performed in Transwell chambers. Wound healing potential was evaluated by scratch wound assay. CXCR4, RPTP β/ζ, PCNA and Rac1 expression was detected by Western Blot. RESULTS Interestingly, Pleiotrophin significantly increased the viability of the treated endothelial cells with respects to SDF-1. The migratory ability of the endothelial cells was also improved in the presence of Pleiotrophin with reference to the SDF-1 treatment. Moreover, Western Blot analysis showed how the treatment with Pleiotrophin can induce an increase in the expression of RPTP β/ζ, PCNA and Rac1 compared to SDF-1. CONCLUSION Due to the significant effects exerted on viability, migration and repair ability of endothelial cells compared to SDF-1, Pleiotrophin can be considered as an interesting molecule to promote re-endothelialisation.
Collapse
|
12
|
Shao Y, Li X, Wood JW, Ma JX. Mitochondrial dysfunctions, endothelial progenitor cells and diabetic retinopathy. J Diabetes Complications 2018; 32:966-973. [PMID: 30068485 DOI: 10.1016/j.jdiacomp.2018.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
AIM Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population. Endothelial progenitor cells (EPC) play a vital role in vascular damage repair. This article will review recent progress regarding mitochondrial and EPC dysfunction associated with DR. RESULTS EPCs represent a limited population of adult stem cells possessing vasculogenic potential postnatally; their number and function are changed in DR. Among all the function changes, mitochondrial dysfunction plays an important role in the dysregulation of EPCs, as mitochondria regulate energy balance, and cell fate determination. CONCLUSIONS Although the mechanism for the role of mitochondria dysregulation in EPC function remains elusive, mitochondria of EPCs represent a promising target for the treatment of the vasculopathy presented within DR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China; Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - John W Wood
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA.
| |
Collapse
|
13
|
Pro-angiogenic impact of SDF-1α gene-activated collagen-based scaffolds in stem cell driven angiogenesis. Int J Pharm 2018; 544:372-379. [PMID: 29555441 DOI: 10.1016/j.ijpharm.2018.03.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
Ensuring an adequate angiogenic response during wound healing is a prevailing clinical challenge in biomaterials science. To address this, we aimed to develop a pro-angiogenic gene-activated scaffold (GAS) that could activate MSCs to produce paracrine factors and influence angiogenesis and wound repair. A non-viral polyethyleneimine (PEI) nanoparticles carrying a gene encoding for stromal derived factor-1 alpha (SDF-1α) was combined with a collagen-chondroitin sulfate scaffold to produce the GAS. The ability of this platform to enhance the angiogenic potential of mesenchymal stem cells (MSCs) was then assessed. We found that the MSCs on GAS exhibited early over-expression of SDF-1α mRNA with the activation of angiogenic markers VEGF and CXCR4. Exposing endothelial cells to conditioned media collected from GAS supported MSCs promoted a 20% increase in viability and 33% increase in tubule formation (p < 0.05). Furthermore, the conditioned media promoted a 50% increase in endothelial cell migration and wound closure (p < 0.005). Gene expression analysis of the endothelial cells revealed that the functional response was associated with up-regulation of angiogenic genes; VEGF, CXCR4, eNOS and SDF-1α. Overall, this study shows collagen-based scaffolds combined with SDF-1α gene therapy can provide enhanced pro-angiogenic response, suggesting a promising approach to overcome poor vasculature during wound healing.
Collapse
|
14
|
Van Hove AH, Benoit DSW. Depot-Based Delivery Systems for Pro-Angiogenic Peptides: A Review. Front Bioeng Biotechnol 2015; 3:102. [PMID: 26236708 PMCID: PMC4504170 DOI: 10.3389/fbioe.2015.00102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Insufficient vascularization currently limits the size and complexity for all tissue engineering approaches. Additionally, increasing or re-initiating blood flow is the first step toward restoration of ischemic tissue homeostasis. However, no FDA-approved pro-angiogenic treatments exist, despite the many pre-clinical approaches that have been developed. The relatively small size of peptides gives advantages over protein-based treatments, specifically with respect to synthesis and stability. While many pro-angiogenic peptides have been identified and shown promising results in vitro and in vivo, the majority of biomaterials developed for pro-angiogenic drug delivery focus on protein delivery. This narrow focus limits pro-angiogenic therapeutics as peptides, similar to proteins, suffer from poor pharmacokinetics in vivo, necessitating the development of controlled release systems. This review discusses pro-angiogenic peptides and the biomaterials delivery systems that have been developed, or that could easily be adapted for peptide delivery, with a particular focus on depot-based delivery systems.
Collapse
Affiliation(s)
- Amy H. Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Nazari-Jahantigh M, Egea V, Schober A, Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis. J Mol Cell Cardiol 2014; 89:35-41. [PMID: 25450610 DOI: 10.1016/j.yjmcc.2014.10.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
During the past decade, the crucial role of microRNAs (miRs) controlling tissue homeostasis and disease in the cardiovascular system has become widely recognized. By controlling the expression levels of their targets, several miRs have been shown to modulate the function of endothelial cells, vascular smooth muscle cells, and macrophages, thereby regulating the development and progression of atherosclerosis. For instance, miR-155 can exacerbate early stages of atherosclerosis by increasing the inflammatory activation and disturbing efficient lipid handling in macrophages. Conversely, miRs can exert atheroprotective roles, as has been established for the complementary miR-126 strand pair, which forms a dual system sustaining the endothelial proliferative reserve and promoting endothelial regeneration to counteract atherogenic effects of disturbed flow and hyperlipidemia. Under some conditions, miRs are released from cells and are transported by microvesicles, ribonucleoprotein complexes, and lipoproteins, being remarkably stable in circulation. Conferred by such delivery modules, miRs can regulate target mRNAs in recipient cells, representing a new tool for cell-cell communication in the context of atherosclerotic disease. Here, we will discuss novel aspects of miR-mediated regulatory mechanisms, namely the regulation by competing RNA targets, miRNA tandems, or complementary miR strand pairs, as well as their potential diagnostic and therapeutic value in atherosclerosis. This article is part of a Special Issue entitled 'Non-coding RNAs'.
Collapse
Affiliation(s)
| | - Virginia Egea
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
16
|
Guo S, Xiao D, Liu H, Zheng X, Liu L, Liu S. Interfering with CXCR4 expression inhibits proliferation, adhesion and migration of breast cancer MDA-MB-231 cells. Oncol Lett 2014; 8:1557-1562. [PMID: 25202367 PMCID: PMC4156168 DOI: 10.3892/ol.2014.2323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/12/2014] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect and mechanism of the CXC chemokine receptor 4 (CXCR4) in the proliferation and migration of breast cancer, a short-hairpin RNA (shRNA) eukaryotic expression vector targeting CXCR4 was constructed, and the impact of such on the proliferation, adhesion and migration of human breast cancer MDA-MB-231 cells was observed. The fragments of CXCR4-shRNA were synthesized and cloned into a pGCsi-U6-Neo-green fluorescent protein vector. The recombinant plasmids were transfected into 293T cells and the most efficacious interfering vector was selected. MDA-MB-231 cells were transfected by liposome assay. The effects of silencing CXCR4 expression by shRNA on the growth, adhesion and migration of MDA-MB-231 cells were determined by Cell Counting Kit-8, cell-matrix adhesion and wound-healing assays. The shRNA eukaryotic expression vectors targeting CXCR4 (CXCR4-shRNA) were successfully constructed and transfected into 293T cells. Quantitative polymerase chain reaction and western blot analysis revealed that the maximum inhibitory rate of CXCR4 expression was 81.3%. CXCR4-shRNA transfection significantly inhibited the proliferation of MDA-MB-231 cells (P<0.05), as well as the adhesion between MDA-MB-231 cells and the extracellular matrix (P<0.05). Furthermore, wound-healing assays demonstrated that the migration distance of MDA-MB-231 cells in the CXCR4-shRNA transfection group was significantly smaller than that in the control plasmid and blank control groups (P<0.01). The CXCR4-shRNA interfering vector specifically inhibited CXCR4 expression, as well as the proliferation, adhesion and migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Shanyu Guo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Dan Xiao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Huihui Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiao Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Lei Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Shougui Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
17
|
Addington CP, Pauken CM, Caplan MR, Stabenfeldt SE. The role of SDF-1α-ECM crosstalk in determining neural stem cell fate. Biomaterials 2014; 35:3263-72. [PMID: 24438907 DOI: 10.1016/j.biomaterials.2013.12.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/28/2013] [Indexed: 02/04/2023]
Abstract
The consequences of central nervous system injury are far-reaching and debilitating and, while an endogenous repair response to neural injury has been observed in recent years, the mechanisms behind this response remain unclear. Neural progenitor/stem cell (NPSC) migration to the site of injury from the neural stem cell niches (e.g. subventricular zone and hippocampus) has been observed to be vasophilic in nature. While the chemotactic stimuli directing NPSC homing to injury is not well established, it is thought to be due in part to an increasing gradient of chemotactic cytokines, such as stromal cell-derived factor 1α (SDF-1α). Based on these recent findings, we hypothesize that critical crosstalk between SDF-1α and the extracellular matrix (ECM) drives injury-induced NPSC behavior. In this study, we investigated the effect of SDF-1α and ECM substrates (Matrigel, laminin, and vitronectin) on the migration, differentiation, and proliferation of NPSCs in vitro using standard assays. The results demonstrated that SDF-1α and laminin-based ECM (Matrigel and laminin) significantly and synergistically enhanced NPSC migration and acute neuronal differentiation. These effects were significantly attenuated with the addition of AMD3100 (an antagonist against the SDF-1α receptor, CXCR4). SDF-1α alone significantly increased NPSC proliferation regardless of ECM substrate, however no synergy was observed between SDF-1α and the ECM. These results serve to elucidate the relationship between adhesive and soluble signaling factors of interest and their effect on NPSC behavior following neural injury. Furthermore, these results better inform the next generation of biomaterials aimed at stimulating endogenous neural regeneration for neural injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | - Christine M Pauken
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | - Michael R Caplan
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
18
|
Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. BONEKEY REPORTS 2013; 2:300. [PMID: 24422056 DOI: 10.1038/bonekey.2013.34] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/08/2013] [Indexed: 02/06/2023]
Abstract
Cell recruitment, migration and homing to the fracture site are essential for the inflammatory process, neovascularization, chondrogenesis, osteogenesis and ultimately bone remodeling. Mesenchymal stem cells (MSCs) are required to navigate from local sources such as the periosteum and local bone marrow, and may also be recruited from the circulation and distant bone marrow. While the local recruitment process may involve matrix binding and degradation, systemic recruitment may utilize extravasation, a process used by leukocytes to exit the vasculature. CXCL12 (stromal cell-derived factor-1 (SDF-1)), a member of the CXC family of chemokines, is thought to have an important role in cell migration at the fracture site. However, there are many molecules upregulated in the hematoma and callus that have chemotactic potential not only for inflammatory cells but also for endothelial cells and MSCs. Surprisingly, there is little direct data to support their role in cell homing during bone healing. Current therapeutics for bone regeneration utilize local or systemic stem cell transplantation. More recently, a novel strategy that involves mobilization of large numbers of endogenous stem and progenitor cells from bone marrow into the circulation has been shown to have positive effects on bone healing. A more complete understanding of the molecular mechanisms underlying cell recruitment and homing subsequent to fracture will facilitate the fine-tuning of such strategies for bone.
Collapse
Affiliation(s)
- Clare Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis , Davis, CA, USA
| |
Collapse
|
19
|
Yan X, Cai S, Xiong X, Sun W, Dai X, Chen S, Ye Q, Song Z, Jiang Q, Xu Z. Chemokine receptor CXCR7 mediates human endothelial progenitor cells survival, angiogenesis, but not proliferation. J Cell Biochem 2012; 113:1437-46. [PMID: 22173725 DOI: 10.1002/jcb.24015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stromal cell-derived factor 1 (SDF-1) is a critical regulator of endothelial progenitor cells (EPCs) mediated physiological and pathologic angiogenesis. It was considered to act via its unique receptor CXCR4 for a long time. CXCR7 is a second, recently identified receptor for SDF-1, and its role in human EPCs is unclear. In present study, CXCR7 was found to be scarcely expressed on the surface of human EPCs derived from cord blood, but considerable intracellular CXCR7 was detected, which differs from that on EPCs derived from rat bone marrow. CXCR7 failed to support SDF-1 induced human EPCs migration, proliferation, or nitric oxide (NO) production, but mediated human EPCs survival exclusively. Besides that, CXCR7 mediated EPCs tube formation along with CXCR4. Blocking CXCR7 with its antagonist CCX733 impaired SDF-1/CXCR4 induced EPCs adhesion to active HUVECs and trans-endothelial migration. Those results suggested that CXCR7 plays an important role in human cord blood derived EPCs in response to SDF-1.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bir SC, Kolluru GK, Fang K, Kevil CG. Redox balance dynamically regulates vascular growth and remodeling. Semin Cell Dev Biol 2012; 23:745-57. [PMID: 22634069 DOI: 10.1016/j.semcdb.2012.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
Vascular growth and remodeling responses entail several complex biochemical, molecular, and cellular responses centered primarily on endothelial cell activation and function. Recent studies reveal that changes in endothelial cell redox status critically influence numerous cellular events that are important for vascular growth under different conditions. It has been known for some time that oxidative stress actively participates in many aspects of angiogenesis and vascular remodeling. Initial studies in this field were largely exploratory with minimal insight into specific molecular mechanisms and how these responses could be regulated. However, it is now clear that intracellular redox mechanisms involving hypoxia, NADPH oxidases (NOX), xanthine oxidase (XO), nitric oxide and its synthases, and intracellular antioxidant defense pathways collectively orchestrate a redox balance system whereby reactive oxygen and nitrogen species integrate cues controlling vascular growth and remodeling. In this review, we discuss key redox regulation pathways that are centrally important for vascular growth in tissue health and disease. Important unresolved questions and issues are also addressed that requires future investigation.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Hwy.,Shreveport, LA 71130, United States
| | | | | | | |
Collapse
|
21
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
22
|
So EC, Wu KC, Liang CH, Chen JY, Wu SN. Evidence for activation of BKCa channels by a known inhibitor of focal adhesion kinase, PF573228. Life Sci 2011; 89:691-701. [DOI: 10.1016/j.lfs.2011.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/14/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
|
23
|
Sciaccaluga M, Fioretti B, Catacuzzeno L, Pagani F, Bertollini C, Rosito M, Catalano M, D'Alessandro G, Santoro A, Cantore G, Ragozzino D, Castigli E, Franciolini F, Limatola C. CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. Am J Physiol Cell Physiol 2010; 299:C175-84. [DOI: 10.1152/ajpcell.00344.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of ion channels is crucial during cell movement, including glioblastoma cell invasion in the brain parenchyma. In this context, we describe for the first time the contribution of intermediate conductance Ca2+-activated K (IKCa) channel activity in the chemotactic response of human glioblastoma cell lines, primary cultures, and freshly dissociated tissues to CXC chemokine ligand 12 (CXCL12), a chemokine whose expression in glioblastoma has been correlated with its invasive capacity. We show that blockade of the IKCa channel with its specific inhibitor 1-[(2-chlorophenyl) diphenylmethyl]-1 H-pyrazole (TRAM-34) or IKCa channel silencing by short hairpin RNA (shRNA) completely abolished CXCL12-induced cell migration. We further demonstrate that this is not a general mechanism in glioblastoma cell migration since epidermal growth factor (EGF), which also activates IKCa channels in the glioblastoma-derived cell line GL15, stimulate cell chemotaxis even if the IKCa channels have been blocked or silenced. Furthermore, we demonstrate that both CXCL12 and EGF induce Ca2+ mobilization and IKCa channel activation but only CXCL12 induces a long-term upregulation of the IKCa channel activity. Furthermore, the Ca2+-chelating agent BAPTA-AM abolished the CXCL12-induced, but not the EGF-induced, glioblastoma cell chemotaxis. In addition, we demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway is only partially implicated in the modulation of CXCL12-induced glioblastoma cell movement, whereas the phosphoinositol-3 kinase (PI3K) pathway is not involved. In contrast, EGF-induced glioblastoma migration requires both ERK1/2 and PI3K activity. All together these findings suggest that the efficacy of glioblastoma invasiveness might be related to an array of nonoverlapping mechanisms activated by different chemotactic agents.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Bernard Fioretti
- Department of Cellular and Environmental Biology, University of Perugia, Perugia; and
| | - Luigi Catacuzzeno
- Department of Cellular and Environmental Biology, University of Perugia, Perugia; and
| | - Francesca Pagani
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Cristina Bertollini
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Maria Rosito
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Myriam Catalano
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Giuseppina D'Alessandro
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Antonio Santoro
- Department of Neurological Science, Sapienza University of Rome, Rome
| | | | - Davide Ragozzino
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
| | - Emilia Castigli
- Department of Cellular and Environmental Biology, University of Perugia, Perugia; and
| | - Fabio Franciolini
- Department of Cellular and Environmental Biology, University of Perugia, Perugia; and
| | - Cristina Limatola
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, and
- Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| |
Collapse
|
24
|
Oh BJ, Kim DK, Kim BJ, Yoon KS, Park SG, Park KS, Lee MS, Kim KW, Kim JH. Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells. Biochem Biophys Res Commun 2010; 398:627-33. [PMID: 20599766 DOI: 10.1016/j.bbrc.2010.06.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/26/2010] [Indexed: 11/25/2022]
Abstract
CXCR4 expression is important for cell migration and recruitment, suggesting that the expression levels of CXCR4 may be correlated with functional activity of implanted cells for therapeutic neovascularization. Here, we examined differences between umbilical cord blood (CB) donors in the CXCR4 levels of endothelial colony forming cells (ECFCs), which are a subtype of endothelial progenitor cells (EPCs). We investigated the relationships between CXCR4 expression level and SDF-1alpha-induced vascular properties in vitro, and their in vivo contributions to neovascularization. We found that ECFCs isolated from different donors showed differences in CXCR4 expression that were linearly correlated with SDF-1alpha-induced migratory capacity. ECFCs with high CXCR4 expression showed enhanced ERK and Akt activation in response to SDF-1alpha. In addition, SDF-1alpha-induced migration and ERK1/2, Akt, and eNOS activation were reduced by AMD3100, a CXCR4-specific peptide antagonist, or by siRNA-CXCR4. Administration of high-CXCR4-expressing ECFCs resulted in a significant increase in therapeutic potential for blood flow recovery, tissue healing and capillary density compared to low-CXCR4-expressing ECFCs in hindlimb ischemia. Taken together, the functional differences among ECFCs derived from different donors depended on the level of CXCR4 expression, suggesting that CXCR4 expression levels in ECFCs could be a predictive marker for success of ECFC-based angiogenic therapy.
Collapse
Affiliation(s)
- Bae Jun Oh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li M, Ransohoff RM. The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Semin Cancer Biol 2008; 19:111-5. [PMID: 19038344 DOI: 10.1016/j.semcancer.2008.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 01/25/2023]
Abstract
The formation of blood vessels in embryos and tumors are different processes but under the control of common molecular mechanisms. Chemokine CXCL12 involved in both embryonic and tumor angiogenesis. In this review, we summarize recent advances in understanding the roles of CXCL12 in brain tumor angiogenesis/vasculogenesis. CXCL12 and its cognate receptors are abnormally induced in brain tumors, in particular in tumor cells and endothelium. Pathologically enhanced CXCL12 signaling may promote the formation of new vessels through recruiting circulating endothelial progenitor cells or directly enhancing the migration/growth of endothelial cells. Therefore, CXCL12 signaling represents an important mechanism that regulates brain tumor angiogenesis/vasculogenesis and may provide potential targets for anti-angiogenic therapy in malignant gliomas.
Collapse
Affiliation(s)
- Meizhang Li
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Mail Code NC30, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
26
|
Yu H, Feng Y. The potential of statin and stromal cell-derived factor-1 to promote angiogenesis. Cell Adh Migr 2008. [DOI: 10.4161/cam.2.4.6818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Lai P, Li T, Yang J, Xie C, Zhu X, Xie H, Ding X, Lin S, Tang S. Upregulation of stromal cell–derived factor 1 (SDF-1) expression in microvasculature endothelial cells in retinal ischemia-reperfusion injury. Graefes Arch Clin Exp Ophthalmol 2008; 246:1707-13. [DOI: 10.1007/s00417-008-0907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/18/2008] [Accepted: 07/07/2008] [Indexed: 11/29/2022] Open
|
28
|
Statin and Stromal Cell-Derived Factor-1 Additively Promote Angiogenesis by Enhancement of Progenitor Cells Incorporation into New Vessels. Stem Cells 2008; 26:1376-84. [DOI: 10.1634/stemcells.2007-0785] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Intracellular Na+ modulates large conductance Ca2+-activated K+ currents in human umbilical vein endothelial cells. Pflugers Arch 2008; 457:67-75. [DOI: 10.1007/s00424-008-0490-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/02/2008] [Indexed: 10/22/2022]
|
30
|
Erdogan A, Most AK, Wienecke B, Fehsecke A, Leckband C, Voss R, Grebe MT, Tillmanns H, Schaefer CA, Kuhlmann CRW. Apigenin-induced nitric oxide production involves calcium-activated potassium channels and is responsible for antiangiogenic effects. J Thromb Haemost 2007; 5:1774-81. [PMID: 17488347 DOI: 10.1111/j.1538-7836.2007.02615.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The dietary flavonoid apigenin (Api) has been demonstrated to exert multiple beneficial effects upon the vascular endothelium. The aim of this study was to examine whether Ca(2+)-activated K(+) channels (K(Ca)) are involved in endothelial nitric oxide (NO) production and antiangiogenic effects. METHODS Endothelial NO generation was monitored using a cyclic guanosine monophosphate radioimmunoassay. K(Ca) activity and changes of the intracellular Ca(2+) concentration [Ca(2+)](i) were analyzed using the fluorescent dyes bis-barbituric acid oxonol, potassium-binding benzofuran isophthalate, and fluo-3. The endothelial angiogenic parameters measured were cell proliferation, [(3)H]-thymidine incorporation, and cell migration (scratch assay). Akt phosphorylation was examined using immunohistochemistry. RESULTS Api caused a concentration-dependent increase in cyclic guanosine monophosphate levels, with a maximum effect at a concentration of 1 mum. Api-induced hyperpolarization was blocked by the small and large conductance K(Ca) inhibitors apamin and iberiotoxin, respectively. Furthermore, apamin and iberiotoxin blocked the late, long-lasting plateau phase of the Api-induced biphasic increase of [Ca(2+)](i). Inhibition of Ca(2+) signaling and the K(Ca) blockade both blocked NO production. Prevention of all three (NO, Ca(2+), and K(Ca) signaling) reversed the antiangiogenic effects of Api under both basal and basic fibroblast growth factor-induced culture conditions. Basic fibroblast growth factor-induced Akt phosphorylation was also reduced by Api. CONCLUSIONS Based on our experimental results we propose the following signaling cascade for the effects of Api on endothelial cell signaling. Api activates small and large conductance K(Ca), leading to a hyperpolarization that is followed by a Ca(2+) influx. The increase of [Ca(2+)](i) is responsible for an increased NO production that mediates the antiangiogenic effects of Api via Akt dephosphorylation.
Collapse
Affiliation(s)
- A Erdogan
- Department of Cardiology and Angiology, Justus-Liebig-University of Giessen, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu LY, Hoffman GE, Fei XW, Li Z, Zhang ZH, Mei YA. Delayed rectifier outward K+ current mediates the migration of rat cerebellar granule cells stimulated by melatonin. J Neurochem 2007; 102:333-44. [PMID: 17561939 DOI: 10.1111/j.1471-4159.2007.04669.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin (MT) may work as a neuromodulator through the associated MT receptors in the central nervous system. Previously, our studies have shown that MT increased the I(K) current via a G protein-related pathway. In the present study, patch-clamp whole-cell recording, transwell migration assays and organotypic cerebellar slice cultures were used to examine the effect of MT on granule cell migration. MT increased the I(K) current amplitude and migration of granule cells. Meanwhile, TEA, the I(K) channel blocker, decreased the I(K) current and slowed the migration of granule cells. Furthermore, the effects of MT on the I(K) current and cell migration were not abolished by pre-incubation with P7791, a specific antagonist of MT(3)R, but were eliminated by the application of the MT(2)R antagonists K185 and 4-P-PDOT. I(K) current and cell migration were decreased by the application of dibutyryl cyclic AMP (dbcAMP), which was in contrast to the MT effect on the I(K) current and cell migration. Incubation with dbcAMP essentially blocked the MT-induced increasing effect. Moreover, incubation of isolated cell cultures in the MT-containing medium also decreased the cAMP immunoreactivity in the granule cells. It is concluded, therefore, that I(K) current, downstream of a cAMP transduction pathway, mediates the migration of rat cerebellar granule cells stimulated by MT.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bucladesine/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Cerebellar Cortex/cytology
- Cerebellar Cortex/growth & development
- Cerebellar Cortex/metabolism
- Culture Media, Conditioned/pharmacology
- Cyclic AMP/metabolism
- Melatonin/metabolism
- Melatonin/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Models, Neurological
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Organ Culture Techniques
- Patch-Clamp Techniques
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Lin-Yun Liu
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
32
|
Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med 2007; 204:605-18. [PMID: 17339405 PMCID: PMC1855437 DOI: 10.1084/jem.20061609] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 01/30/2007] [Indexed: 11/04/2022] Open
Abstract
Stromal cell-derived factor 1 (SDF-1) plays a major role in the migration, recruitment, and retention of endothelial progenitor cells to sites of ischemic injury and contributes to neovascularization. We provide direct evidence demonstrating an important role for heme oxygenase 1 (HO-1) in mediating the proangiogenic effects of SDF-1. Nanomolar concentrations of SDF-1 induced HO-1 in endothelial cells through a protein kinase C zeta-dependent and vascular endothelial growth factor-independent mechanism. SDF-1-induced endothelial tube formation and migration was impaired in HO-1-deficient cells. Aortic rings from HO-1(-/-) mice were unable to form capillary sprouts in response to SDF-1, a defect reversed by CO, a byproduct of the HO-1 reaction. Phosphorylation of vasodilator-stimulated phosphoprotein was impaired in HO-1(-/-) cells, an event that was restored by CO. The functional significance of HO-1 in the proangiogenic effects of SDF-1 was confirmed in Matrigel plug, wound healing, and retinal ischemia models in vivo. The absence of HO-1 was associated with impaired wound healing. Intravitreal adoptive transfer of HO-1-deficient endothelial precursors showed defective homing and reendothelialization of the retinal vasculature compared with HO-1 wild-type cells following ischemia. These findings demonstrate a mechanistic role for HO-1 in SDF-1-mediated angiogenesis and provide new avenues for therapeutic approaches in vascular repair.
Collapse
Affiliation(s)
- Jessy Deshane
- Department of Medicine, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tan Y, Shao H, Eton D, Yang Z, Alonso-Diaz L, Zhang H, Schulick A, Livingstone AS, Yu H. Stromal cell-derived factor-1 enhances pro-angiogenic effect of granulocyte-colony stimulating factor. Cardiovasc Res 2007; 73:823-32. [PMID: 17258698 PMCID: PMC2243257 DOI: 10.1016/j.cardiores.2006.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/23/2006] [Accepted: 12/18/2006] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow mononuclear cells into the peripheral circulation. Stromal cell-derived factor-1 (SDF-1) enhances the homing of progenitor cells mobilized from the bone marrow and augments neovascularization in ischemic tissue. We hypothesize that SDF-1 will boost the pro-angiogenic effect of G-CSF. METHODS AND RESULTS NIH 3T3 cells retrovirally transduced with SDF-1alpha gene (NIH 3T3/SDF-1) were used to deliver SDF-1 in vitro and in vivo. Endothelial progenitor cells (EPCs) co-cultured with NIH 3T3/SDF-1 cells using cell culture inserts migrated faster and were less apoptotic compared to those not exposed to SDF-1. NIH 3T3/SDF-1 (10(6) cells) were injected into the ischemic muscles immediately after resection of the left femoral artery and vein of C57BL/6J mice. G-CSF (25 mug/kg/day) was injected intraperitioneally daily for 3 days after surgery. Blood perfusion was examined using a laser Doppler perfusion imaging system. The perfusion ratio of ischemic/non-ischemic limb increased to 0.57+/-0.03 and 0.50+/-0.06 with the treatment of either SDF-1 or G-CSF only, respectively, 3 weeks after surgery, which was significantly higher than the saline-injected control group (0.41+/-0.01, P<0.05). Combined treatment with both SDF-1 and G-CSF resulted in an even better perfusion ratio of 0.69+/-0.08 (P<0.05 versus the single treatment groups). Mice were sacrificed 21 days after surgery. Immunostaining and Western blot assay of the tissue lysates showed that the injected NIH 3T3/SDF-1 survived and expressed SDF-1. CD34(+) cells were detected with immunostaining, capillary density was assessed with alkaline phosphatase staining, and the apoptosis of muscle cells was viewed using an in situ cell death detection kit. More CD34(+) cells, increased capillary density, and less apoptotic muscle cells were found in both G-CSF and SDF-1 treated group (P<0.05 versus other groups). CONCLUSION Combination of G-CSF-mediated progenitor cell mobilization and SDF-1-mediated homing of EPCs promotes neovascularization in the ischemic limb and increases the recovery of blood perfusion.
Collapse
Affiliation(s)
- Yaohong Tan
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hongwei Shao
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Darwin Eton
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Division of Vascular Surgery, Miami Veterans Administration, Miami, FL, 33136, USA
| | - Zhe Yang
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Luis Alonso-Diaz
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hongkun Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
| | - Andrew Schulick
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Alan S. Livingstone
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hong Yu
- Department of Surgery, Vascular Biology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Division of Vascular Surgery, Miami Veterans Administration, Miami, FL, 33136, USA
| |
Collapse
|
34
|
Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1073-84. [PMID: 17209139 DOI: 10.1152/ajplung.00347.2006] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia disrupts vascular and alveolar growth of the developing lung and contributes to the development of bronchopulmonary dysplasia (BPD). Endothelial progenitor cells (EPC) have been implicated in repair of the vasculature, but their role in lung vascular development is unknown. Since disruption of vascular growth impairs lung structure, we hypothesized that neonatal hyperoxia impairs EPC mobilization and homing to the lung, contributing to abnormalities in lung structure. Neonatal mice (1-day-old) were exposed to 80% O(2) at Denver's altitude (= 65% at sea level) or room air for 10 days. Adult mice were also exposed for comparison. Blood, lung, and bone marrow were harvested after hyperoxia. Hyperoxia decreased pulmonary vascular density by 72% in neonatal but not adult mice. In contrast to the adult, hyperoxia simplified distal lung structure neonatal mice. Moderate hyperoxia reduced EPCs (CD45-/Sca-1+/CD133+/VEGFR-2+) in the blood (55%; P < 0.03), bone marrow (48%; P < 0.01), and lungs (66%; P < 0.01) of neonatal mice. EPCs increased in bone marrow (2.5-fold; P < 0.01) and lungs (2-fold; P < 0.03) of hyperoxia-exposed adult mice. VEGF, nitric oxide (NO), and erythropoietin (Epo) contribute to mobilization and homing of EPCs. Lung VEGF, VEGF receptor-2, endothelial NO synthase, and Epo receptor expression were reduced by hyperoxia in neonatal but not adult mice. We conclude that moderate hyperoxia decreases vessel density, impairs lung structure, and reduces EPCs in the circulation, bone marrow, and lung of neonatal mice but increases EPCs in adults. This developmental difference may contribute to the increased susceptibility of the developing lung to hyperoxia and may contribute to impaired lung vascular and alveolar growth in BPD.
Collapse
Affiliation(s)
- Vivek Balasubramaniam
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|