1
|
Greiner J, Mohamed E, Fletcher DM, Schuler PJ, Schrezenmeier H, Götz M, Guinn BA. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3443. [PMID: 39456538 PMCID: PMC11505958 DOI: 10.3390/cancers16203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the blood and bone marrow that is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Nucleophosmin 1 (NPM1) gene mutations are the most common genetic abnormality in AML, detectable in blast cells from about one-third of adults with AML. AML NPM1mut is recognized as a separate entity in the World Health Organization classification of AML. Clinical and survival data suggest that patients with this form of AML often have a more favorable prognosis, which may be due to the immunogenicity created by the mutations in the NPM1 protein. Consequently, AML with NPM1mut can be considered an immunogenic subtype of AML. However, the underlying mechanisms of this immunogenicity and associated favorable survival outcomes need to be further investigated. Immune checkpoint molecules, such as the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, play important roles in leukemogenesis through their maintenance of an immunosuppressive tumor microenvironment. Preclinical trials have shown that the use of PD-1/PD-L1 checkpoint inhibitors in solid tumors and lymphoma work best in novel therapy combinations. Patients with AML NPM1mut may be better suited to immunogenic strategies that are based on the inhibition of the PD-1 immune checkpoint pathway than patients without this mutation, suggesting the genetic landscape of patients may also inform best practice for the use of PD-1 inhibitors.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89075 Ulm, Germany;
- Department of Oto-Rhino-Laryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89073 Ulm, Germany;
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| |
Collapse
|
2
|
Liu Y, He M, Ke X, Chen Y, Zhu J, Tan Z, Chen J. Centrosome amplification-related signature correlated with immune microenvironment and treatment response predicts prognosis and improves diagnosis of hepatocellular carcinoma by integrating machine learning and single-cell analyses. Hepatol Int 2024; 18:108-130. [PMID: 37154991 DOI: 10.1007/s12072-023-10538-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Centrosome amplification is a well-recognized oncogenic driver of tumor initiation and progression across a variety of malignancies and has been linked with tumor aggressiveness, metastasis, and adverse prognosis. Nevertheless, the significance of centrosome amplification in HCC is not well understood. METHODS The TCGA dataset was downloaded for centrosome amplification-related signature construction using the LASSO-penalized Cox regression algorithm, while the ICGC dataset was obtained for signature validation. Single-cell RNA sequencing from GSE149614 was analyzed to profile gene expression and the liver tumor niche. RESULTS A total of 134 centrosome amplification-related prognostic genes in HCC were detected and 6 key prognostic genes (SSX2IP, SPAG4, SAC3D1, NPM1, CSNK1D, and CEP55) among them were screened out to construct a signature with both high sensitivity and specificity in diagnosis and prognosis of HCC patients. The signature, as an independent factor, was associated with frequent recurrences, high mortality rates, advanced clinicopathologic features, and high vascular invasions. Moreover, the signature was intimately associated with cell cycle-related pathways and TP53 mutation profile, suggesting its underlying role in accelerating cell cycle progression and leading to liver cancer development. Meanwhile, the signature was also closely correlated with immunosuppressive cell infiltration and immune checkpoint expression, making it a vital immunosuppressive factor in the tumor microenvironment. Upon single-cell RNA sequencing, SSX2IP and SAC3D1 were found to be specially expressed in liver cancer stem-like cells, where they promoted cell cycle progression and hypoxia. CONCLUSIONS This study provided a direct molecular link of centrosome amplification with clinical characteristics, tumor microenvironment, and clinical drug-response, highlighting the critical role of centrosome amplification in liver cancer development and therapy resistance, thereby providing valuable insights into prognostic prediction and therapeutic response of HCC.
Collapse
Affiliation(s)
- Yanli Liu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Min He
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Xinrong Ke
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Yuting Chen
- State Key Laboratory of Respiratory Disease, The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jie Zhu
- State Key Laboratory of Respiratory Disease, The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Ziqing Tan
- State Key Laboratory of Respiratory Disease, The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jingqi Chen
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
3
|
Zhou Y, Dogiparthi VR, Ray S, Schaefer MA, Harris HL, Rowley MJ, Hewitt KJ. Defining a cohort of anemia-activated cis elements reveals a mechanism promoting erythroid precursor function. Blood Adv 2023; 7:6325-6338. [PMID: 36809789 PMCID: PMC10587717 DOI: 10.1182/bloodadvances.2022009163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Acute anemia elicits broad transcriptional changes in erythroid progenitors and precursors. We previously discovered a cis-regulatory transcriptional enhancer at the sterile alpha motif domain-14 enhancer locus (S14E), defined by a CANNTG-spacer-AGATAA composite motif and occupied by GATA1 and TAL1 transcription factors, is required for survival in severe anemia. However, S14E is only 1 of dozens of anemia-activated genes containing similar motifs. In a mouse model of acute anemia, we identified populations of expanding erythroid precursors, which increased expression of genes that contain S14E-like cis elements. We reveal that several S14E-like cis elements provide important transcriptional control of newly identified anemia-inducing genes, including the Ssx-2 interacting protein (Ssx2ip). Ssx2ip expression was determined to play an important role in erythroid progenitor/precursor cell activities, cell cycle regulation, and cell proliferation. Over a weeklong course of acute anemia recovery, we observed that erythroid gene activation mediated by S14E-like cis elements occurs during a phase coincident with low hematocrit and high progenitor activities, with distinct transcriptional programs activated at earlier and later time points. Our results define a genome-wide mechanism in which S14E-like enhancers control transcriptional responses during erythroid regeneration. These findings provide a framework to understand anemia-specific transcriptional mechanisms, ineffective erythropoiesis, anemia recovery, and phenotypic variability within human populations.
Collapse
Affiliation(s)
- Yichao Zhou
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | | | - Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Meg A. Schaefer
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Hannah L. Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - M. Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Kyle J. Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
4
|
Identification of the Antigens Recognised by Colorectal Cancer Patients Using Sera from Patients Who Exhibit a Crohn's-like Lymphoid Reaction. Biomolecules 2022; 12:biom12081058. [PMID: 36008952 PMCID: PMC9406176 DOI: 10.3390/biom12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
A Crohn’s-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.
Collapse
|
5
|
Greiner J, Goetz M, Schuler PJ, Bulach C, Hofmann S, Schrezenmeier H, Dӧhner H, Schneider V, Guinn BA. Enhanced stimulation of antigen-specific immune responses against nucleophosmin 1 mutated acute myeloid leukaemia by an anti-programmed death 1 antibody. Br J Haematol 2022; 198:866-874. [PMID: 35799423 DOI: 10.1111/bjh.18326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
Nucleophosmin1 (NPM1) is one of the most commonly mutated genes in AML and is often associated with a favourable prognosis. Immune responses play an increasing role in AML treatment decisions; however, the role of immune checkpoint inhibition is still not clear. To address this, we investigated specific immune responses against NPM1, and three other leukaemia-associated antigens (LAA), PRAME, Wilms' tumour 1 and RHAMM in AML patients. We investigated T cell responses against leukaemic progenitor/stem cells (LPC/LSC) using colony-forming immunoassays and flow cytometry. We examined whether immune checkpoint inhibition with the anti-programmed death 1 antibody increases the immune response against stem cell-like cells, comparing cells from NPM1 mutated and NPM1 wild-type AML patients. We found that the anti-PD-1 antibody, nivolumab, increases LAA stimulated cytotoxic T lymphocytes and the cytotoxic effect against LPC/LSC. The effect was strongest against NPM1mut cells when the immunogenic epitope was derived from the mutated region of NPM1 and these effects were enhanced through the addition of anti-PD-1. The data suggest that patients with NPM1 mutated AML could be treated with the immune checkpoint inhibitor anti-PD-1 and that this treatment combined with NPM1-mutation specific directed immunotherapy could be even more effective for this unique group of patients.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine, Diakonie Hospital Stuttgart, Stuttgart, Germany.,Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Marlies Goetz
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, Ulm, Germany
| | - Christiane Bulach
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Susanne Hofmann
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg-Hessen and Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Harmut Dӧhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Vanessa Schneider
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
6
|
Fu X, He Y, Song J, Wang L, Guo P, Cao J. MiRNA-181b-5p Modulates Cell Proliferation, Cell Cycle and Apoptosis by Targeting SSX2IP in Acute Lymphoblastic Leukemia. Turk J Haematol 2022; 39:160-169. [PMID: 35658330 PMCID: PMC9421343 DOI: 10.4274/tjh.galenos.2022.2022.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Accumulating evidence indicates that miRNAs can negatively influence the expression of their downstream genes, thereby affecting the development of human cancers. The pathogenesis of acute lymphoblastic leukemia (ALL) is complex and more biomarkers and functional molecules need to be found. We attempted to reveal the specific mechanisms and functions of miRNA-181b-5p in ALL and investigated the effects of the miRNA-181b-5p/SSX2IP axis on ALL. Materials and Methods: Bioinformatics analyses were initially performed to screen out differentially expressed miRNAs in ALL and determine the research subject. qRT-PCR and western blotting were applied to evaluate the expression levels of target genes. Cell function experiments and mouse experiments were conducted to analyze the roles of the target genes in ALL. Results: miRNA-181b-5p was highly and differentially expressed in ALL and may target SSX2IP. The upregulation of miRNA-181b-5p and downregulation of SSX2IP were observed in ALL cells. miRNA-181b-5p could control multiple pathological processes of ALL, including cell proliferation, the cell cycle, and apoptosis, and miRNA-181b-5p could also facilitate tumor growth in vivo. Conclusion: miRNA-181b-5p promoted the malignant progression of ALL by downregulating SSX2IP. The miRNA-181b-5p/SSX2IP axis may be a promising target for intervention against the malignant behaviors of ALL.
Collapse
|
7
|
Molecular Mechanisms and Therapies of Myeloid Leukaemia. Int J Mol Sci 2022; 23:ijms23116251. [PMID: 35682932 PMCID: PMC9181128 DOI: 10.3390/ijms23116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukaemia (AML) is defined as a malignant disorder of the bone marrow (BM) that is characterised by the clonal expansion and differentiation arrest of myeloid progenitor cells [...].
Collapse
|
8
|
Identification of Genes Whose Expression Overlaps Age Boundaries and Correlates with Risk Groups in Paediatric and Adult Acute Myeloid Leukaemia. Cancers (Basel) 2020; 12:cancers12102769. [PMID: 32992503 PMCID: PMC7650662 DOI: 10.3390/cancers12102769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary To better understand whether acute myeloid leukaemia differs between children and adults, we have analysed the expression of genes in samples from both patient groups. Using previously published data, we compared gene expression between patient risk subgroups. We examined patients who had a poor chance of survival, based on clinical assessments, and those with a good chance of survival, to see whether there was any difference in the genes expressed in their leukaemic cells. Then we compared the genes on these lists between adults and children with acute myeloid leukaemia. We believe that patients with good or poor survival chances express genes that provide insights into how leukaemic cells behave. We hope that this work will provide new information about the mechanisms that underlie acute myeloid leukaemia and answer questions on the ways this form of leukaemia is similar in adults and children, which will then tell us whether the same treatments could be used for both age groups of patients. Abstract Few studies have compared gene expression in paediatric and adult acute myeloid leukaemia (AML). In this study, we have analysed mRNA-sequencing data from two publicly accessible databases: (1) National Cancer Institute’s Therapeutically Applicable Research to Generate Effective Treatments (NCI-TARGET), examining paediatric patients, and (2) The Cancer Genome Atlas (TCGA), examining adult patients with AML. With a particular focus on 144 known tumour antigens, we identified STEAP1, SAGE1, MORC4, SLC34A2 and CEACAM3 as significantly different in their expression between standard and low risk paediatric AML patient subgroups, as well as between poor and good, and intermediate and good risk adult AML patient subgroups. We found significant differences in event-free survival (EFS) in paediatric AML patients, when comparing standard and low risk subgroups, and quartile expression levels of BIRC5, MAGEF1, MELTF, STEAP1 and VGLL4. We found significant differences in EFS in adult AML patients when comparing intermediate and good, and poor and good risk adult AML patient subgroups and quartile expression levels of MORC4 and SAGE1, respectively. When examining Kyoto Encyclopedia of Genes and Genomes (KEGG) (2016) pathway data, we found that genes altered in AML were involved in key processes such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO). For the first time we have compared gene expression in paediatric AML patients with that of adult AML patients. This study provides unique insights into the differences and similarities in the gene expression that underlies AML, the genes that are significantly differently expressed between risk subgroups, and provides new insights into the molecular pathways involved in AML pathogenesis.
Collapse
|
9
|
Jordaens S, Cooksey L, Freire Boullosa L, Van Tendeloo V, Smits E, Mills KI, Orchard KH, Guinn BA. New targets for therapy: antigen identification in adults with B-cell acute lymphoblastic leukaemia. Cancer Immunol Immunother 2020; 69:867-877. [PMID: 31970440 PMCID: PMC7183504 DOI: 10.1007/s00262-020-02484-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) in adults is a rare and difficult-to-treat cancer that is characterised by excess lymphoblasts in the bone marrow. Although many patients achieve remission with chemotherapy, relapse rates are high and the associated impact on survival devastating. Most patients receive chemotherapy and for those whose overall fitness supports it, the most effective treatment to date is allogeneic stem cell transplant that can improve overall survival rates in part due to a 'graft-versus-leukaemia' effect. However, due to the rarity of this disease, and the availability of mature B-cell antigens on the cell surface, few new cancer antigens have been identified in adult B-ALL that could act as targets to remove residual disease in first remission or provide alternative targets for escape variants if and when current immunotherapy strategies fail. We have used RT-PCR analysis, literature searches, antibody-specific profiling and gene expression microarray analysis to identify and prioritise antigens as novel targets for the treatment of adult B-ALL.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hardy Building, Room 111, Hull, HU7 6RX, UK
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Leah Cooksey
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hardy Building, Room 111, Hull, HU7 6RX, UK
| | | | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Evelien Smits
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Lisburn Road, Belfast, UK
| | - Kim H Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hardy Building, Room 111, Hull, HU7 6RX, UK.
| |
Collapse
|
10
|
Chang SL, Lee SW, Yang SF, Chien CC, Chan TC, Chen TJ, Yang CC, Li CF, Wei YC. Expression and prognostic utility of SSX2IP in patients with nasopharyngeal carcinoma. APMIS 2020; 128:287-297. [PMID: 31837171 DOI: 10.1111/apm.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/10/2019] [Indexed: 01/20/2023]
Abstract
Cell adhesion affects carcinogenesis, tumor progression, and metastasis. We datamined a published transcriptome (GSE12452) of nasopharyngeal carcinoma (NPC) and identified SSX2IP as a significantly upregulated gene in NPC carcinogenesis among genes associated with cell adhesion (GO:0007155). Consequently, we assessed SSX2IP protein expression and its prognostic significance in 124 patients with NPC using immunohistochemistry and the H-score method. The status of SSX2IP immunoexpression correlated with clinical and pathological characteristics, as well as oncological outcomes. High levels of SSX2IP expression were significantly associated with more advanced primary tumor and TNM stages. Kaplan-Meier and log-rank analyses revealed that high levels of SSX2IP expression, and advanced tumor stage and lymph node metastasis were significantly associated with lower rates of local recurrence-free survival (LRFS), distant metastasis-free survival (DMeFS), and disease-specific (DSS) survival. Multivariate analysis showed that high levels of SSX2IP expression significantly predicted DSS (hazard ratio [HR], 4.290; 95% confidence interval [CI], 2.271-8.102; p < 0.001), DMeFS (HR, 4.159' 95% CI, 2.072-8.345; p < 0.001), and LRFS (HR, 3.007' 95% CI,: 1.418-6.378; p = 0.004). We associated high levels of SSX2IP immunoexpression with aggressive pathological features and worse oncological outcomes, suggesting its potential therapeutic value for patients with NPC.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Taherian-Esfahani Z, Dashti S. Cancer-testis antigens: An update on their roles in cancer immunotherapy. Hum Antibodies 2020; 27:171-183. [PMID: 30909205 DOI: 10.3233/hab-190366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several recent studies have assessed suitability of tumor antigens for immunotherapy. Based on the restricted expression pattern in somatic tissues, cancer-testis antigens (CTAs) are possible candidates for cancer immunotherapy. These antigens are expressed in various tumors including gastrointestinal, breast, skin and hematologic malignancies. OBJECTIVES To find clinical trials utilizing CTAs in cancer patients. METHODS We searched PubMed, google scholar and specific websites that registers clinical trials. RESULTS A number of clinical trials have been designed to evaluate safety and efficacy of CTA-based treatments. The results of some of them have been promising. In the current literature search, we summarized the clinical trials of CTA-based therapies in cancer patients. CONCLUSIONS Based on the availability of different formulations of CTA-based vaccines, future researches should compare efficiency of these modalities.
Collapse
|
12
|
Soh JE, Abu N, Sagap I, Mazlan L, Yahaya A, Mustangin M, Khoo TS, Saidin S, Ishak M, Ab Mutalib NS, Jamal R. Validation of immunogenic PASD1 peptides against HLA-A*24:02 colorectal cancer. Immunotherapy 2019; 11:1205-1219. [PMID: 31478431 DOI: 10.2217/imt-2019-0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer is the third commonest malignancy in Asia including Malaysia. The immunogenic cancer-testis antigens, which are expressed in a variety of cancers but with limited expression in normal tissues except the testis, represent an attractive approach to improve treatment options for colorectal cancer. We aimed to validate four PASD1 peptides as the immunotherapeutic targets in colorectal cancer. First, PASD1 mRNA and protein expression were determined via real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. The PASD1 peptides specific to HLA-A*24:02 were investigated using IFN-y-ELISpot assay, followed by the cytolytic and granzyme-B-ELISpot assays to analyze the cytolytic effects of CD8+ T cells. Gene and protein expressions of PASD1 were detected in 20% and 17.3% of colorectal cancer samples, respectively. PASD1(4) peptide was shown to be immunogenic in colorectal cancer samples. CD8+ T cells raised against PASD1(4) peptide were able to lyze HLA-A*24:02+ PASD1+ cells. Our results reveal that PASD1(4) peptide represents a potential target for colorectal cancer.
Collapse
Affiliation(s)
- Joanne Ec Soh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ismail Sagap
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Luqman Mazlan
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azyani Yahaya
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Tze S Khoo
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sazuita Saidin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhiddin Ishak
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul S Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Antigenic Targets for the Immunotherapy of Acute Myeloid Leukaemia. J Clin Med 2019; 8:jcm8020134. [PMID: 30678059 PMCID: PMC6406328 DOI: 10.3390/jcm8020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022] Open
Abstract
One of the most promising approaches to preventing relapse is the stimulation of the body’s own immune system to kill residual cancer cells after conventional therapy has destroyed the bulk of the tumour. In acute myeloid leukaemia (AML), the high frequency with which patients achieve first remission, and the diffuse nature of the disease throughout the periphery, makes immunotherapy particularly appealing following induction and consolidation therapy, using chemotherapy, and where possible stem cell transplantation. Immunotherapy could be used to remove residual disease, including leukaemic stem cells from the farthest recesses of the body, reducing, if not eliminating, the prospect of relapse. The identification of novel antigens that exist at disease presentation and can act as targets for immunotherapy have also proved useful in helping us to gain a better understand of the biology that belies AML. It appears that there is an additional function of leukaemia associated antigens as biomarkers of disease state and survival. Here, we discuss these findings.
Collapse
|
14
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
15
|
Boullosa LF, Savaliya P, Bonney S, Orchard L, Wickenden H, Lee C, Smits E, Banham AH, Mills KI, Orchard K, Guinn BA. Identification of survivin as a promising target for the immunotherapy of adult B-cell acute lymphoblastic leukemia. Oncotarget 2017; 9:3853-3866. [PMID: 29423088 PMCID: PMC5790505 DOI: 10.18632/oncotarget.23380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a rare heterogeneous disease characterized by a block in lymphoid differentiation and a rapid clonal expansion of immature, non-functioning B cells. Adult B-ALL patients have a poor prognosis with less than 50% chance of survival after five years and a high relapse rate after allogeneic haematopoietic stem cell transplantation. Novel treatment approaches are required to improve the outcome for patients and the identification of B-ALL specific antigens are essential for the development of targeted immunotherapeutic treatments. We examined twelve potential target antigens for the immunotherapy of adult B-ALL. RT-PCR indicated that only survivin and WT1 were expressed in B-ALL patient samples (7/11 and 6/11, respectively) but not normal donor control samples (0/8). Real-time quantitative (RQ)-PCR showed that survivin was the only antigen whose transcript exhibited significantly higher expression in the B-ALL samples (n = 10) compared with healthy controls (n = 4)(p = 0.015). Immunolabelling detected SSX2, SSX2IP, survivin and WT1 protein expression in all ten B-ALL samples examined, but survivin was not detectable in healthy volunteer samples. To determine whether these findings were supported by the analyses of a larger cohort of patient samples, we performed metadata analysis on an already published microarray dataset. We found that only survivin was significantly over-expressed in B-ALL patients (n = 215) compared to healthy B-cell controls (n = 12)(p = 0.013). We have shown that survivin is frequently transcribed and translated in adult B-ALL, but not healthy donor samples, suggesting this may be a promising target patient group for survivin-mediated immunotherapy.
Collapse
Affiliation(s)
- Laurie Freire Boullosa
- School of Life Sciences - Biomedical Science Subject Group, University of Hull, Hull, HU7 6RX, UK.,Centre for Oncological Research, University of Antwerp, 2610 Antwerp, Belgium
| | - Payalben Savaliya
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Stephanie Bonney
- Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton SO16 6YD, UK
| | - Laurence Orchard
- Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton SO16 6YD, UK
| | - Hannah Wickenden
- Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton SO16 6YD, UK
| | - Cindy Lee
- Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton SO16 6YD, UK.,Department of Haematology, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Evelien Smits
- Centre for Oncological Research, University of Antwerp, 2610 Antwerp, Belgium
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast BT9 7AE, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Barbara-Ann Guinn
- School of Life Sciences - Biomedical Science Subject Group, University of Hull, Hull, HU7 6RX, UK.,Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.,Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
16
|
Guinn BA, Mohamedali A, Mills KI, Czepulkowski B, Schmitt M, Greiner J. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia. Biomark Insights 2017. [DOI: 10.1177/117727190700200015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.
Collapse
Affiliation(s)
- Barbara-ann Guinn
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Azim Mohamedali
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Ken I. Mills
- Department of Haematology, University Hospital of Wales, Heath Park, Cardiff, CF4 4XN, U.K
| | - Barbara Czepulkowski
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Michael Schmitt
- Third Clinic for Internal Medicine, University of Ulm, Germany
| | - Jochen Greiner
- Third Clinic for Internal Medicine, University of Ulm, Germany
| |
Collapse
|
17
|
Forghanifard MM, Rad A, Farshchian M, Khaleghizadeh M, Gholamin M, Moghbeli M, Abbaszadegan MR. TWIST1 upregulates the MAGEA4 oncogene. Mol Carcinog 2017; 56:877-885. [DOI: 10.1002/mc.22541] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Overexpression of MAGEA4 oncogene has been demonstrated in different malignancies; however, little is known about its exact mechanism for overexpression. TWIST1, as a bHLH transcription factor, activates a cell migration‐invasion program involved in both embryonic and tumor development. Since MAGEA4 overexpression was statistically correlated to TWIST1, we aimed to elucidate the probable regulatory role of TWIST1 on MAGEA4 expression in KYSE30 cells. Methods: Expression pattern of MAGEA4 and TWIST1 was analyzed in 55 ESCC patients using relative comparative real‐time PCR. In silico analysis of the MAGEA4 gene was performed. Methylation status of MAGEA4 promoter was determined by quantitative methylation specific PCR (qMSP). Using a retroviral system, KYSE30 cells were transduced to ectopically express TWIST1, followed by qRT‐PCR, Western blot analysis, chromatin immunoprecipitation (ChIP), and luciferase assays to elucidate the regulatory role of TWIST1 on MAGEA4 gene expression. Results: Concomitant overexpression of MAGEA4 and TWIST1 was detected in ESCC in significant correlation with each other in different clinicopathological indices of poor prognosis (P < 0.05). The TWIST1‐expressing cells showed significantly higher MAGEA4 expression compared to control cells. ChIP and luciferase assays results confirmed indirect binding of TWIST1 to the E‐boxes of MAGEA4 promoter sequence and revealed a novel regulatory role of TWIST1 in MAGEA4 upregulation. Conclusion: Since MAGEA4 is a highly expressed oncogene in a variety of malignancies in significant correlation with tumor cell invasiveness and aggressiveness, our finding may help understand one regulatory mechanism of increased expression in tumor cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Abolfazl Rad
- Cellular and Molecular Research Center Sabzevar University of Medical Sciences Sabzevar Iran
| | - Moein Farshchian
- Molecular Medicine Research Department ACECR‐Khorasan Razavi Branch Mashhad Iran
| | - Maryam Khaleghizadeh
- Division of Human Genetics Immunology Research Center Avicenna Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Mehran Gholamin
- Division of Human Genetics Immunology Research Center Avicenna Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Meysam Moghbeli
- Division of Human Genetics Immunology Research Center Avicenna Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics Immunology Research Center Avicenna Research Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
18
|
Xu ZS, Zhang HX, Zhang YL, Liu TT, Ran Y, Chen LT, Wang YY, Shu HB. PASD1 promotes STAT3 activity and tumor growth by inhibiting TC45-mediated dephosphorylation of STAT3 in the nucleus. J Mol Cell Biol 2016; 8:221-31. [PMID: 26892021 DOI: 10.1093/jmcb/mjw005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) is tightly regulated during various physiological processes, such as cell proliferation, survival, and differentiation, and aberrant STAT3 activation results in tumorigenesis. In this study, we identified the cancer/testis antigen PASD1 as a positive regulator of STAT3 activity. Overexpression of PASD1 activated STAT3 and potentiated IL-6-induced activation of STAT3, whereas knockdown of PASD1 had opposite effects. Endogenous coimmunoprecipitation experiments indicated that PASD1 interacted with STAT3 in the nucleus. Overexpression of PASD1 enhanced both basal and IL-6-induced STAT3 phosphorylation at Y705, whereas knockdown of PASD1 had opposite effects. Mechanistically, PASD1 competed with TC45, a nuclear protein tyrosine phosphatase, to associate with STAT3, thus inhibited TC45-mediated dephosphorylation of STAT3. Consistently, knockdown of PASD1 inhibited expression of many pro-oncogenic genes, leading to suppression of cell proliferation, anchorage-independent growth, cell migration, and tumor growth in nude mice. Our findings demonstrate that PASD1 serves as a critical nuclear positive regulator of STAT3-mediated gene expression and tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Hong-Xia Zhang
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Yu-Long Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Tian-Tian Liu
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Yong Ran
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liu-Ting Chen
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Yan-Yi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong-Bing Shu
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Hofmann S, Mead A, Malinovskis A, Hardwick NR, Guinn BA. Analogue peptides for the immunotherapy of human acute myeloid leukemia. Cancer Immunol Immunother 2015; 64:1357-67. [PMID: 26438084 PMCID: PMC11029593 DOI: 10.1007/s00262-015-1762-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 09/27/2015] [Indexed: 12/14/2022]
Abstract
The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.
Collapse
Affiliation(s)
- Susanne Hofmann
- Third Clinic for Internal Medicine, University of Ulm, Ulm, Germany
| | - Andrew Mead
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Aleksandrs Malinovskis
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Nicola R Hardwick
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Haematological Medicine, Guy's, King's & St. Thomas' School of Medicine, The Rayne Institute, King's College London, 123 Coldharbour Lane, London, UK
| | - Barbara-Ann Guinn
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.
- Department of Haematological Medicine, Guy's, King's & St. Thomas' School of Medicine, The Rayne Institute, King's College London, 123 Coldharbour Lane, London, UK.
- Cancer Sciences Unit, Southampton University Hospitals Trust, University of Southampton, Southampton, UK.
| |
Collapse
|
20
|
Brooks SE, Bonney SA, Lee C, Publicover A, Khan G, Smits EL, Sigurdardottir D, Arno M, Li D, Mills KI, Pulford K, Banham AH, van Tendeloo V, Mufti GJ, Rammensee HG, Elliott TJ, Orchard KH, Guinn BA. Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis. PLoS One 2015; 10:e0140483. [PMID: 26492414 PMCID: PMC4619595 DOI: 10.1371/journal.pone.0140483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023] Open
Abstract
Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6)). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1(126-134) (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1(950-958) epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Nuclear/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Cell Separation
- Epitopes/immunology
- Flow Cytometry
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/immunology
- Major Histocompatibility Complex/immunology
- Peptides/immunology
- Reproducibility of Results
Collapse
Affiliation(s)
- Suzanne E. Brooks
- Cancer Sciences Unit (MP824), Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
| | - Stephanie A. Bonney
- Cancer Sciences Unit (MP824), Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
| | - Cindy Lee
- Cancer Sciences Unit (MP824), Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
- Department of Haematology, Southampton University Hospitals Trust, University of Southampton, Southampton, United Kingdom
| | - Amy Publicover
- Department of Haematology, Southampton University Hospitals Trust, University of Southampton, Southampton, United Kingdom
| | - Ghazala Khan
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, United Kingdom
| | - Evelien L. Smits
- Laboratory of Experimental Haematology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijkstraat 10, B-2650 Antwerp, Belgium
| | - Dagmar Sigurdardottir
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Matthew Arno
- King’s Genomics Centre, School of Biomedical and Health Sciences, King's College London, London, United Kingdom
| | - Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ken I. Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology (CCRCB), Queen’s University Belfast, Belfast, United Kingdom
| | - Karen Pulford
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Viggo van Tendeloo
- Laboratory of Experimental Haematology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijkstraat 10, B-2650 Antwerp, Belgium
| | - Ghulam J. Mufti
- Department of Haematological Medicine, King's College London School of Medicine, London, United Kingdom
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Tim J. Elliott
- Cancer Sciences Unit (MP824), Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
| | - Kim H. Orchard
- Department of Haematology, Southampton University Hospitals Trust, University of Southampton, Southampton, United Kingdom
| | - Barbara-ann Guinn
- Cancer Sciences Unit (MP824), Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, United Kingdom
- Department of Haematological Medicine, King's College London School of Medicine, London, United Kingdom
| |
Collapse
|
21
|
Khan G, Brooks SE, Mills KI, Guinn BA. Infrequent Expression of the Cancer-Testis Antigen, PASD1, in Ovarian Cancer. BIOMARKERS IN CANCER 2015; 7:31-8. [PMID: 26327782 PMCID: PMC4539101 DOI: 10.4137/bic.s28378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I), there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs), such as Per ARNT SIM (PAS) domain containing 1 (PASD1), are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I (n = 164) and stage II (n = 14) disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue.
Collapse
Affiliation(s)
- Ghazala Khan
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, Bedfordshire, UK
| | - Suzanne E Brooks
- Biomedical Imaging Unit, Southampton General Hospital, Southampton, UK
| | - Ken I Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Barbara-Ann Guinn
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, Bedfordshire, UK
| |
Collapse
|
22
|
Immunohistochemical expression of sperm-associated antigen 9 in nonmelanoma skin cancer. Am J Dermatopathol 2015; 37:38-45. [PMID: 25033008 DOI: 10.1097/dad.0000000000000126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sperm-associated antigen 9 (SPAG9) is a scaffold protein for c-Jun-NH2-kinases, which play an important role in cell survival, proliferation, apoptosis, and tumor development. SPAG9 was claimed to be involved in the pathogenesis of carcinoma in different organs. The aim of this work was to investigate its role in the pathogenesis of nonmelanoma skin cancer (NMSC) through its immunohistochemical (IHC) localization in skin biopsies of these tumors. This retrospective and prospective study included 67 cutaneous specimens; 42 of NMSC [20 cases with basal cell carcinoma (BCC) and 22 cases with squamous cell carcinoma (SCC)] and 25 normal sun-exposed skin biopsies from age and gender-matched healthy subjects as a control group. SPAG9 expression was evaluated using standard IHC techniques. SPAG9 was expressed in 90% of BCC cases and in 81.8% of SCC cases. Positive expression in inflammatory cells was detected in 100% and 63.6% of BCC and SCC cases, respectively. Positive stromal expression was detected in 20% of BCC cases and was absent in all SCC cases. A significant negative correlation (r = -0.55, P = 0.008) was noted between SPAG9 H score and SCC histological grade and a significant association between SPAG9 H score and tumor grade was also detected where higher values were present in grade I tumors (P = 0.001). SPAG9 was upregulated in NMSC when compared with normal skin. In conclusion, SPAG9 is expressed in NMSC cases. It should be evaluated in large-scale studies to determine if it plays an active pathogenic role or its expression is an epiphenomenon not related to NMSC pathogenesis. Large-scale studies are warranted to determine its potential utility in guiding treatment decisions and following disease progression in theses cases. Its expression in normal skin needs further investigation.
Collapse
|
23
|
Collin JF, Wells JW, Czepulkowski B, Lyne L, Duriez PJ, Banham AH, Mufti GJ, Guinn BA. A novel zinc finger gene, ZNF465, is inappropriately expressed in acute myeloid leukaemia cells. Genes Chromosomes Cancer 2015; 54:288-302. [PMID: 25706801 DOI: 10.1002/gcc.22242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022] Open
Abstract
To increase our knowledge of leukaemia-associated antigens, especially in acute myeloid leukaemia (AML) M4, we prepared a phage display cDNA library using mRNA from the bone marrow cells of a patient with AML M4 at diagnosis. We immunoscreened 10(6) pfu with autologous sera and identified an antigen which we named GKT-AML8. The cDNA showed more than 99% similarity to a sequence on 2q21.2 and 95% sequence similarity to a sequence on 19q13.3. These genes were named ZNF465 and ZNF466, respectively, following HUGO Gene Nomenclature Committee (HGNC) guidelines. Expressed sequence tag data suggests that both genes are transcriptionally active. ZNF465 and ZNF466 encode a 5' krüppel associated box domain typical of negative regulators of gene transcription. We have confirmed the translational start site in the +1 frame in a near-Kozak sequence that produces a 102 amino acid polypeptide from ZNF465. The high level of sequence similarity between ZNF465 and ZNF466 makes their transcripts almost indistinguishable by real-time polymerase chain reaction (RT-PCR). However, GKT-AML8 showed most sequence similarity to ZNF465 and no transcript matching the 3' ZNF466 sequence could be detected in patient samples or healthy volunteers. ZNF465/466 expression was detectable in 12/13 AML and 10/14 chronic myeloid leukaemia patients' samples but not in normal donor peripheral blood (0/8) or 0/3 bone marrow samples which had been separated into CD34(+) and CD34(-) samples. The altered expression of ZNF465/466 in patients' samples and its absence in healthy donor haematopoietic samples indicate that ZNF465 is overexpressed in early myeloid disease and as such may represent a promising target for immunotherapy.
Collapse
Affiliation(s)
- Joseph F Collin
- Department of Haematological Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
25
|
Li P, Lin Y, Zhang Y, Zhu Z, Huo K. SSX2IP promotes metastasis and chemotherapeutic resistance of hepatocellular carcinoma. J Transl Med 2013; 11:52. [PMID: 23452395 PMCID: PMC3599991 DOI: 10.1186/1479-5876-11-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
Background Synovial sarcoma, X breakpoint 2 interacting protein (SSX2IP), which has been identified as an acute myeloid leukemia associated antigen, is a potential target for leukemia immunotherapy. In rodents, its homologous gene, ADIP, plays an important role in the regulation of cell adhesion and migration, underlying its potential role in promoting metastasis of other cancers. Methods To investigate the correlation between the expression level of SSX2IP and the clinicopathologic factors of hepatocellular carcinoma (HCC), 53 cases were studied by qPCR and statisted. To directly testing SSX2IP’s contribution to HCC in animal models, 45 nude mice were enrolled in peritoneal spreading and liver metastasis models. For the migration and invasion assays, cell culture experiments were performed using QCMTM 24-Well Colorimetric Migration Assay Kit and Cell Invasion Assay Kit (Millipore). Moreover we examined the influence of SSX2IP overexpression on the chemosensitivity of hepatocellular carcinoma cells to two most common chemotherapy drugs (5-Fu and CDDP) using Cell counting kit-8 (CCK-8). The chemotherapeutic drugs sensitivity was evaluated by IC50 parameter. Results Statistical analysis of clinical cases revealed that the SSX2IP high expression group had inclinations towards larger tumor size, more tumor thrombus and shorter survival period, implying a strong correlation between the expression level of SSX2IP and HCC tumorigenesis. Consistently in abdominal cavity metastasis and liver metastasis models of immune-deficient mice, SSX2IP was able to promote the metastasis of hepatoma cells. At the cytological level, SSX2IP stimulates the wound healing, metastasis and invasion of hepatoma cells, and reduces the sensitivity of hepatoma cells to 5-Fu and CDDP. Conclusions Our results showed that SSX2IP promotes the development and metastasis of hepatocellular carcinoma and contributes to the drug resistance of hepatoma cells, suggesting that SSX2IP is expected to become a new diagnostic and prognostic marker and a new target of the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pu Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012; 26:2186-96. [PMID: 22652755 DOI: 10.1038/leu.2012.145] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The graft-versus-leukemia effect of allogeneic hematopoietic stem cell transplantation (HSCT) has shown that the immune system is capable of eradicating acute myeloid leukemia (AML). This knowledge, along with the identification of the target antigens against which antileukemia immune responses are directed, has provided a strong impetus for the development of antigen-targeted immunotherapy of AML. The success of any antigen-specific immunotherapeutic strategy depends critically on the choice of target antigen. Ideal molecules for immune targeting in AML are those that are: (1) leukemia-specific; (2) expressed in most leukemic blasts including leukemic stem cells; (3) important for the leukemic phenotype; (4) immunogenic; and (5) clinically effective. In this review, we provide a comprehensive overview on AML-related tumor antigens and assess their applicability for immunotherapy against the five criteria outlined above. In this way, we aim to facilitate the selection of appropriate target antigens, a task that has become increasingly challenging given the large number of antigens identified and the rapid pace at which new targets are being discovered. The information provided in this review is intended to guide the rational design of future antigen-specific immunotherapy trials, which will hopefully lead to new antileukemia therapies with more selectivity and higher efficacy.
Collapse
|
27
|
Ghafouri-Fard S, Modarressi MH. Expression of cancer-testis genes in brain tumors: implications for cancer immunotherapy. Immunotherapy 2012; 4:59-75. [PMID: 22150001 DOI: 10.2217/imt.11.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer-testis (CT) genes have a restricted expression in normal tissues except testis and a wide range of tumor types. Testis is an immune-privileged site as a result of a blood barrier and lack of HLA class I expression on the surface of germ cells. Hence, if testis-specific genes are expressed in other tissues, they can be immunogenic. Expression of some CT genes in a high percentage of brain tumors makes them potential targets for immunotherapy. In addition, expression of CT genes in cancer stem cells may provide special targets for treatment of cancer recurrences and metastasis. The presence of antibodies against different CT genes in patients with advanced tumors has raised the possibility of polyvalent antitumor vaccine application.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.
| | | |
Collapse
|
28
|
Smahel M. Antigens in chronic myeloid leukemia: implications for vaccine development. Cancer Immunol Immunother 2011; 60:1655-68. [PMID: 22033582 PMCID: PMC11028763 DOI: 10.1007/s00262-011-1126-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/06/2011] [Indexed: 12/16/2022]
Abstract
Treatment with imatinib mesylate and other tyrosine kinase inhibitors (TKI) revolutionized the therapy of chronic myeloid leukemia (CML). However, it alone does not cure this disease. Moreover, some patients develop resistance or adverse effects to this therapy. As successful treatment of a portion of CML patients by hematopoietic stem cell transplantation (HSCT) suggests the importance of immune mechanisms in the elimination of leukemic cells, including leukemia stem cells, TKI administration or HSCT might be combined with vaccination to cure CML patients. However, antigens implicated in the immune responses have not yet been sufficiently identified. Therefore, in this report, we compiled and characterized a list of 165 antigens associated with CML (CML-Ag165) and analyzed the expression of the corresponding genes in CML phases, subpopulations of leukemic cells, and CML-derived cell lines using available datasets from microarray transcriptional-profiling studies. From the CML-Ag165 list, we selected antigens most suitable for vaccine development and evaluated their appropriate characteristics.
Collapse
Affiliation(s)
- Michal Smahel
- Laboratory of Molecular Oncology, Department of Experimental Virology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague 2, Czech Republic.
| |
Collapse
|
29
|
Fukumoto Y, Kurita S, Takai Y, Ogita H. Role of scaffold protein afadin dilute domain-interacting protein (ADIP) in platelet-derived growth factor-induced cell movement by activating Rac protein through Vav2 protein. J Biol Chem 2011; 286:43537-48. [PMID: 22027834 DOI: 10.1074/jbc.m111.308858] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell movement is an important cellular function not only in physiological but also in pathological conditions. Although numerous studies have been conducted to reveal the mechanism of cell movement, the full picture has yet to be depicted, likely due to the complex features of cell movement. We show here that the scaffold protein afadin dilute domain-interacting protein (ADIP), an afadin-binding protein, is involved in the regulation of cell movement. ADIP localized at the leading edge of moving cells in response to platelet-derived growth factor (PDGF) and was required for the formation of the leading edge and the promotion of cell movement. Impaired cell movement observed in ADIP knockdown cells was not rescued by expression of an ADIP mutant that is incapable of binding to afadin, leading to the notion that the function of ADIP in moving cells depends on its interaction with afadin. Knockdown of ADIP as well as knockdown of afadin inhibited the activation of the small G protein Rac, which is important for the formation of the leading edge and the promotion of cell movement. Furthermore, ADIP interacted with Vav2, a GDP/GTP exchange factor for Rac, in a Src phosphorylation-dependent manner, suggesting that ADIP mediates the activation of Rac through Vav2. These results indicate that ADIP plays an essential role in PDGF-induced cell movement by interacting with afadin and Vav2 and regulating the activation of Rac.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | |
Collapse
|
30
|
The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin Dev Immunol 2010; 2010:150591. [PMID: 20981248 PMCID: PMC2963798 DOI: 10.1155/2010/150591] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/01/2010] [Indexed: 01/01/2023]
Abstract
Cancer-testis antigens (CTAs) represent an expanding class of tumor-associated proteins defined on the basis of their tissue-restricted expression to testis or ovary germline cells and frequent ectopic expression in tumor tissue. The expression of CTA in MHC class I-deficient germline cells makes these proteins particularly attractive as immunotherapeutic targets because they serve as essentially tumor-specific antigens for MHC class I-restricted CD8+ T cells. Moreover, because CTAs are expressed in many types of cancer, any therapeutic developed to target these antigens might have efficacy for multiple cancer types. Of particular interest among CTAs is the synovial sarcoma X chromosome breakpoint (SSX) family of proteins, which includes ten highly homologous family members. Expression of SSX proteins in tumor tissues has been associated with advanced stages of disease and worse patient prognosis. Additionally, both humoral and cell-mediated immune responses to SSX proteins have been demonstrated in patients with tumors of varying histological origin, which indicates that natural immune responses can be spontaneously generated to these antigens in cancer patients. The current review will describe the history and identification of this family of proteins, as well as what is known of their function, expression in normal and malignant tissues, and immunogenicity.
Collapse
|
31
|
Ait-Tahar K, Liggins AP, Collins GP, Campbell A, Barnardo M, Cabes M, Lawrie CH, Moir D, Hatton C, Banham AH, Pulford K. CD4-positive T-helper cell responses to the PASD1 protein in patients with diffuse large B-cell lymphoma. Haematologica 2010; 96:78-86. [PMID: 20851862 DOI: 10.3324/haematol.2010.028241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vaccine development targeting the novel immunogenic Per ARNT Sim Domain containing 1 (PASD1) cancer testis antigen represents an attractive therapeutic approach for the significant number of patients with diffuse large B-cell lymphoma who are refractory to conventional treatment. Since CD4-positive T helper cells have crucial roles in promoting and maintaining immune responses to tumor antigens, the presence of a CD4-positive T-helper immune response to the PASD1 antigen in patients with diffuse large B-cell lymphoma was investigated in the current study. DESIGN AND METHODS Thirty-one patients with diffuse large B-cell lymphoma (25 with de novo, five with transformed and one with T-cell-rich B-cell lymphoma) were studied. Five immunogenic PASD1 peptides predicted to bind to several major histocompatibiliy complex, class II DR beta 1 alleles were identified using web-based algorithms. Peripheral blood mononuclear cells from patients were used to investigate the immunogenicity of these DR beta 1-restricted peptides in vitro using both gamma-interferon release enzyme-linked immunospot and cytolytic assays. RESULTS Two of the five PASD1 peptides, PASD1(6) and PASD1(7), were shown to be immunogenic in 14 out of 32 patients studied in a gamma-interferon release assay. CD4-positive T-helper cell lines from two patients raised against PASD1 peptides were able to lyse cell lines derived from hematologic malignancies expressing endogenous PASD1 protein. CONCLUSIONS This is the first report of a CD4-positive T-helper response to the PASD1 protein in patients with lymphoma. The immunogenic peptides described here represent valuable additional candidates for inclusion in a vaccine to treat patients with PASD1-positive diffuse large B-cell lymphoma whose disease is refractory to conventional therapies.
Collapse
Affiliation(s)
- Kamel Ait-Tahar
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guinn B, Casey G, Möller MG, Kasahara N, O'Sullivan GC, Peng KW, Tangney M. International Society for Cell and Gene Therapy of Cancer 2009 Annual Meeting Held in Cork, Ireland. Hum Gene Ther 2010; 21:9-26. [DOI: 10.1089/hum.2009.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Barbara Guinn
- Cancer Sciences Division (MP824), University of Southampton School of Medicine, Somers Cancer Research Building, Southampton General Hospital, Southampton SO16 6YD, UK
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
| | - Garrett Casey
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| | - Mecker G. Möller
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
- Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136
| | - Noriyuki Kasahara
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Gerald C. O'Sullivan
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
| | - Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Cheuk ATC, Wells JW, Chan L, Westwood NB, Berger SA, Yagita H, Okumura K, Farzaneh F, Mufti GJ, Guinn BA. Anti-tumor immunity in a model of acute myeloid leukemia. Leuk Lymphoma 2009; 50:447-54. [PMID: 19197726 DOI: 10.1080/10428190802653776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Whole-cell vaccines allow the induction of anti-tumor immune responses without the need to define tumor antigens. We wished to directly compare, for the first time, the capacity of B7-1, B7-2 and 4-1BB ligand (4-1BBL) costimulatory molecules to convert murine and human acute myeloid leukemia (AML) cells into whole vaccines. 32Dc-kit is a murine myeloid cell line, which develops an AML-like disease over a protracted period, emulating human AML disease development. 32Dc-kit cells were modified to express elevated levels of B7-1, B7-2 or 4-1BBL, and each led to tumor rejection, although only mice injected with 32Dc-kit/B7-2 cells were able to reject subsequent parental tumor cell challenge. T-cell deficient nude mice were able to reject the 32Dc-kit variants, but they could not reject parental cell challenge; however, we found no evidence of cytotoxic T lymphocyte or natural killer (NK) activity ex vivo suggesting that tumor cell killing was mediated by an immune response that could not be recapitulated using purified NK or T cells as lone effectors. In human allogeneic mixed lymphocyte reactions (MLRs), we found no single costimulatory molecule was more effective, suggesting that the induction of a universal anti-tumor response will require a combination of costimulatory molecules.
Collapse
Affiliation(s)
- Adam T C Cheuk
- Department of Haematological Medicine, Allergy & Respiratory Science, MRC/Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ait-Tahar K, Liggins AP, Collins GP, Campbell A, Barnardo M, Lawrie C, Moir D, Hatton C, Banham AH, Pulford K. Cytolytic T-cell response to the PASD1 cancer testis antigen in patients with diffuse large B-cell lymphoma. Br J Haematol 2009; 146:396-407. [DOI: 10.1111/j.1365-2141.2009.07761.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Bettoni F, Filho FC, Grosso DM, Galante PAF, Parmigiani RB, Geraldo MV, Henrique-Silva F, Oba-Shinjo SM, Marie SKN, Soares FA, Brentani HP, Simpson AJG, de Souza SJ, Camargo AA. Identification of FAM46D as a novel cancer/testis antigen using EST data and serological analysis. Genomics 2009; 94:153-60. [PMID: 19540335 DOI: 10.1016/j.ygeno.2009.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/13/2009] [Accepted: 06/11/2009] [Indexed: 11/28/2022]
Abstract
Cancer/testis Antigens (CTAs) are immunogenic proteins with a restricted expression pattern in normal tissues and aberrant expression in different types of tumors being considered promising candidates for immunotherapy. We used the alignment between EST sequences and the human genome sequence to identify novel CT genes. By examining the EST tissue composition of known CT clusters we defined parameters for the selection of 1184 EST clusters corresponding to putative CT genes. The expression pattern of 70 CT gene candidates was evaluated by RT-PCR in 21 normal tissues, 17 tumor cell lines and 160 primary tumors. We were able to identify 4 CT genes expressed in different types of tumors. The presence of antibodies against the protein encoded by 1 of these 4 CT genes (FAM46D) was exclusively detected in plasma samples from cancer patients. Due to its restricted expression pattern and immunogenicity FAM46D represents a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Fabiana Bettoni
- Ludwig Institute for Cancer Research, Hospital Alemão Oswaldo Cruz, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Elevated expression of the leukemia-associated antigen SSX2IP predicts survival in acute myeloid leukemia patients who lack detectable cytogenetic rearrangements. Blood 2009; 113:1203-4. [PMID: 19179477 DOI: 10.1182/blood-2008-09-178848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
|
38
|
Guinn B, Casey G, Collins S, O'Brien T, Alexander MY, Tangney M. Tripartite Meeting in Gene and Cell Therapy, 2008: Irish Society for Gene and Cell Therapy, British Society for Gene Therapy, and International Society for Cell and Gene Therapy of Cancer. Hum Gene Ther 2008; 19:967-78. [DOI: 10.1089/hum.2008.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Barbara Guinn
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, United Kingdom
| | - Garrett Casey
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| | - Sara Collins
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| | - Tim O'Brien
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - M. Yvonne Alexander
- Cardiovascular Group, School of Medicine, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
The specific contribution of hypoxia-inducible factor-2alpha to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Exp Cell Res 2008; 314:2016-27. [PMID: 18420194 DOI: 10.1016/j.yexcr.2008.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 03/02/2008] [Accepted: 03/06/2008] [Indexed: 11/23/2022]
Abstract
Cellular integrity in hypoxia is dependent on molecular adaptations dominated by the heterodimeric transcription factor hypoxia-inducible factor (HIF). The HIF complex contains one of two alternative oxygen-regulated alpha-subunits considered to play distinct roles in the hypoxia response. Although HIF-2alpha may be more important in tumour biology and erythropoiesis, the spectrum of individual target genes is still insufficiently characterized. We therefore performed an Affymetrix gene array on Hep3B cells stimulated with a hypoxia-mimetic and transfected with either HIF-1alpha or HIF-2alpha siRNA. 271 transcripts were found to be induced HIF-dependently, including most previously identified HIF targets and a number of novel genes. Most were influenced by HIF-1alpha knock-down, whereas a smaller number were regulated by HIF-2alpha. Validation of a selection of genes by RNase protection confirmed the hypoxic regulation and HIF-1alpha- or HIF-2alpha-dependency in most cases, with the latter showing a lower amplitude. Many HIF-2alpha targets also responded to HIF-1alpha knock-down. Interestingly, regulation by HIF-2alpha was markedly influenced not only by cell type, but also by cell culture conditions, features that were not shared with HIF-1alpha-regulated genes. Thus, HIF-2alpha effects are modulated by a number of intrinsic and extrinsic factors which may be most relevant in tumour cells.
Collapse
|
40
|
Guinn BA, Bullinger L, Thomas NSB, Mills KI, Greiner J. SSX2IP expression in acute myeloid leukaemia: an association with mitotic spindle failure in t(8;21), and cell cycle in t(15;17) patients. Br J Haematol 2007; 140:250-1. [PMID: 18028484 DOI: 10.1111/j.1365-2141.2007.06892.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Denniss FAK, Breslin A, Ingram W, Hardwick NR, Mufti GJ, Guinn BA. The leukaemia-associated antigen, SSX2IP, is expressed during mitosis on the surface of myeloid leukaemia cells. Br J Haematol 2007; 138:668-9. [PMID: 17686061 DOI: 10.1111/j.1365-2141.2007.06706.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Breslin A, Denniss FAK, Guinn BA. SSX2IP: an emerging role in cancer. Biochem Biophys Res Commun 2007; 363:462-5. [PMID: 17904521 DOI: 10.1016/j.bbrc.2007.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 11/28/2022]
Abstract
We describe the emerging role of Synovial Sarcoma X breakpoint 2 Interacting Protein (SSX2IP) in cancer and its still largely unknown function in human cells. In rodents, SSX2IP has been shown to play a role in adherens junctions and cell adhesion, while in chickens SSX2IP was identified by virtue of its regulation by the light cycle and circadian rhythms. In humans, SSX2IP was identified through its interaction with the cancer-testis gene SSX2. However SSX2IP is expressed in a range of normal and fetal tissues unlike SSX2. SSX2IP containing constructs indicated that SSX2IP could be expressed in the nucleus and cytoplasm of transfected human cells, however, SSX2IP expression has been subsequently shown to peak on the surface of myeloid leukaemia cells during mitosis. Here we discuss the current knowledge of SSX2IP function in several species and the growing evidence that SSX2IP may be a suitable target for leukaemia immunotherapy.
Collapse
Affiliation(s)
- Angela Breslin
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | |
Collapse
|
43
|
Guinn BA, Mohamedali A, Thomas NSB, Mills KI. Immunotherapy of myeloid leukaemia. Cancer Immunol Immunother 2007; 56:943-57. [PMID: 17180671 PMCID: PMC11031097 DOI: 10.1007/s00262-006-0267-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 11/22/2006] [Indexed: 01/16/2023]
Abstract
The treatment of myeloid leukaemia has progressed in recent years with the advent of donor leukocyte infusions (DLI), haemopoietic stem cell transplants (HSCTs) and targeted therapies. However, relapse has a high associated morbidity rate and a method for removing diseased cells in first remission, when a minimal residual disease state is achieved and tumour load is low, has the potential to extend remission times and prevent relapse especially when used in combination with conventional treatments. Acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) are heterogeneous diseases which lack one common molecular target while chronic myeloid leukaemia (CML) patients have experienced prolonged remissions through the use of targeted therapies which remove BCR-ABL(+) cells effectively in early chronic phase. However, escape mutants have arisen and this therapy has little effectivity in the late chronic phase. Here we review the immune therapies which are close to or in clinical trials for the myeloid leukaemias and describe their potential advantages and disadvantages.
Collapse
Affiliation(s)
- Barbara-Ann Guinn
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK.
| | | | | | | |
Collapse
|
44
|
Guinn BA, Kasahara N, Farzaneh F, Habib NA, Norris JS, Deisseroth AB. Recent Advances and Current Challenges in Tumor Immunology and Immunotherapy. Mol Ther 2007; 15:1065-71. [PMID: 17375068 DOI: 10.1038/sj.mt.6300138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Despite advances in animal studies, where the cure of the majority of mice with pre-established (albeit early-stage) tumors has become almost standard, human clinical trials have been much less successful. Here we describe some of the most recent advances in the specialist field of tumor immunology and immunotherapy, highlighting salient work to identify key problem areas and potential solutions. We make particular note of recent developments in adoptive therapy; whole-cell, DNA, and peptide vaccines; and antibody therapy. We also describe the revival of interest in regulatory T cells and conclude by detailing the need for clinical trial read-out autonomy and methods to predict which patients will respond to a particular treatment.
Collapse
Affiliation(s)
- Barbara-ann Guinn
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne, Institute, London, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Meklat F, Li Z, Wang Z, Zhang Y, Zhang J, Jewell A, Lim SH. Cancer-testis antigens in haematological malignancies. Br J Haematol 2007; 136:769-76. [PMID: 17223912 DOI: 10.1111/j.1365-2141.2006.06484.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immunotherapy is an attractive therapeutic option for patients with haematological malignancies. Until recently, the progress in the development of tumour vaccines for haematological malignancies had been slow due to the lack of suitable targets. Cancer-testis (CT) antigens are potentially suitable molecules for tumour vaccines of haematological malignancies because of their high immunogenicity in vivo and their relatively restricted normal tissue distribution. This review evaluates the properties and potential functions of CT antigens. We discuss the expression of CT antigens in patient with haematological malignancies and provide evidence in support of their immunogenicity in vivo in these patients. We also address the role of 'epigenetic' regulation of CT antigens in haematological malignancies and how hypomethylating agents could induce the expression of some of these antigens in tumour cells to overcome the problem of heterogeneity of expression of the antigen within individual tumour specimens. Data implicating the interaction of the promoter genes of some of these CT antigens with the MeCP2 protein also suggest the potential role of the histone deacetylase inhibitors in inducing antigen expression in tumour cells. Finally, we discuss the direction of future research in advancing the development of tumour vaccines for haematological malignancies.
Collapse
Affiliation(s)
- Farouk Meklat
- Cancer Research Program, Harrington Regional Medical Center, Amarillo, TX, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Guinn BA, Tobal K, Mills KI. Comparison of the survival implications of tumour-associated versus cancer-testis antigen expression in acute myeloid leukaemia. Br J Haematol 2007; 136:510-2. [PMID: 17278264 DOI: 10.1111/j.1365-2141.2006.06454.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Marleau AM, Lipton JH, Riordan NH, Ichim TE. Therapeutic use of Aldara in chronic myeloid leukemia. J Transl Med 2007; 5:4. [PMID: 17254347 PMCID: PMC1790884 DOI: 10.1186/1479-5876-5-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/25/2007] [Indexed: 11/17/2022] Open
Abstract
The potent clinical responses seen in patients with chronic myeloid leukemia (CML) after administration of donor-specific lymphocytes, as well as the correlation between the presence of antigen specific T cells and prolonged remission in these patients, suggests a role for the immunological control of CML. Here we propose Aldara™, a clinically used formulation of imiquimod, as an agent for augmenting immune responses to CML antigens. Our proposition is based upon 3 tenets: 1) Endogenous dendritic cells (DC) of CML patients, which are known to be derived from the malignant clone, express and present various leukemic antigens; 2) CML-antigen reactive T cell clones exist in the patient but in many situations are ineffectively stimulated to cause significant hematological responses; and 3) Antigen presentation by mature, activated DC, which endogenously express CML-antigens may endow the pre-existing ineffective T cell responses with ability to control CML progression. The practical use of Aldara™ as a localized activator of DC in the context of present day leukemic therapeutics, as well as various properties of this unique immune modulator will be discussed.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Adaptive Immunity/immunology
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Aminoquinolines/pharmacology
- Aminoquinolines/therapeutic use
- Humans
- Imiquimod
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
Collapse
Affiliation(s)
| | - Jeffrey H Lipton
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
48
|
Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells 2006; 25:707-11. [PMID: 17138959 DOI: 10.1634/stemcells.2006-0469] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the multistep process of cancer development, the concept that cancer stem cells are derived from normal stem cells that have gradually accumulated various genetic and epigenetic defects is gaining strong evidence. A number of investigations have identified molecular markers that, under normal conditions, are responsible for stem cell homeostasis but are also expressed in tumor "stem cell-like" subpopulations. In this regard, it was recently reported that a group of tumor-specific antigens known as cancer/testis antigens (CTAs) are expressed in human MSCs. It has long been stated that in normal tissue these antigens are exclusively expressed in germ cell precursors; however, based on these results, we suggest that CTAs are expressed at earlier stages during embryogenesis. The tumor-restricted expression of CTAs has led to several immunotherapeutic trials targeting some of these proteins. The clinical implications that these trials may have on the normal stem cell pools, as well as the immunologic properties of these cells, is to date poorly studied and should be considered.
Collapse
Affiliation(s)
- Fabrício F Costa
- Cancer Biology and Epigenomics, Children's Memorial Research Center, 2300 Children's Plaza, Box 220, Chicago, IL 60614-3394, USA.
| | | | | |
Collapse
|
49
|
Cooper CDO, Liggins AP, Ait-Tahar K, Roncador G, Banham AH, Pulford K. PASD1, a DLBCL-associated cancer testis antigen and candidate for lymphoma immunotherapy. Leukemia 2006; 20:2172-4. [PMID: 17024112 DOI: 10.1038/sj.leu.2404424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Chan L, Hardwick NR, Guinn BA, Darling D, Gäken J, Galea-Lauri J, Ho AY, Mufti GJ, Farzaneh F. An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 2006; 55:1017-24. [PMID: 16450142 PMCID: PMC11030980 DOI: 10.1007/s00262-006-0129-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Cell based therapies for acute myeloid leukaemia (AML) have made significant progress in the last decade benefiting the prognosis and survival of patients with this aggressive form of leukaemia. Due to advances in haematopoietic stem cell transplantation (HSCT) and particularly the advent of reduced intensity conditioning (RIC), the scope of transplantation has now extended to those patients previously ineligible due to age and health restrictions and has been associated with a decrease in transplant related mortality. The apparent graft versus leukaemia (GvL) effect observed following HSCT demonstrates the potential of the immune system to target and eradicate AML cells. Building on previously published pre-clinical studies by ourselves and others, we are now initiating a Phase I clinical study in which lentiviral vectors are used to genetically modify AML cells to express B7.1 (CD80) and IL-2. By combining allogeneic HSCT with immunisation, using the autologous AML cells expressing B7.1 and IL-2, we hope to stimulate immune eradication of residual AML cells in poor prognosis patients that have achieved donor chimerism. In this report we describe the background to cell therapy based approaches for AML, and discuss difficulties associated with the deployment of a chronically stimulated, hence exhausted/depleted immune system to eradicate tumour cells that have already escaped immune surveillance.
Collapse
Affiliation(s)
- Lucas Chan
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Nicola R. Hardwick
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Barbara-ann Guinn
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Dave Darling
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Joop Gäken
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Joanna Galea-Lauri
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Aloysius Y. Ho
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Ghulam J. Mufti
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Farzin Farzaneh
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| |
Collapse
|