1
|
Costello SM, Cheney AM, Waldum A, Tripet B, Cotrina-Vidal M, Kaufmann H, Norcliffe-Kaufmann L, Lefcort F, Copié V. A Comprehensive NMR Analysis of Serum and Fecal Metabolites in Familial Dysautonomia Patients Reveals Significant Metabolic Perturbations. Metabolites 2023; 13:metabo13030433. [PMID: 36984872 PMCID: PMC10057143 DOI: 10.3390/metabo13030433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Central metabolism has a profound impact on the clinical phenotypes and penetrance of neurological diseases such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, Amyotrophic Lateral Sclerosis (ALS) and Autism Spectrum Disorder (ASD). In contrast to the multifactorial origin of these neurological diseases, neurodevelopmental impairment and neurodegeneration in Familial Dysautonomia (FD) results from a single point mutation in the ELP1 gene. FD patients represent a well-defined population who can help us better understand the cellular networks underlying neurodegeneration, and how disease traits are affected by metabolic dysfunction, which in turn may contribute to dysregulation of the gut–brain axis of FD. Here, 1H NMR spectroscopy was employed to characterize the serum and fecal metabolomes of FD patients, and to assess similarities and differences in the polar metabolite profiles between FD patients and healthy relative controls. Findings from this work revealed noteworthy metabolic alterations reflected in energy (ATP) production, mitochondrial function, amino acid and nucleotide catabolism, neurosignaling molecules, and gut-microbial metabolism. These results provide further evidence for a close interconnection between metabolism, neurodegeneration, and gut microbiome dysbiosis in FD, and create an opportunity to explore whether metabolic interventions targeting the gut–brain–metabolism axis of FD could be used to redress or slow down the progressive neurodegeneration observed in FD patients.
Collapse
Affiliation(s)
- Stephanann M. Costello
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexandra M. Cheney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Annie Waldum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Maria Cotrina-Vidal
- Department of Neurology, New York University School of Medicine, New York, NY 10017, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY 10017, USA
| | | | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-7244
| |
Collapse
|
2
|
Anderson SL, Fasih-Ahmad F, Evans AJ, Rubin BY. Carnosol, a diterpene present in rosemary, increases ELP1 levels in familial Dysautonomia (FD) patient-derived cells and healthy adults: a possible therapy for FD. Hum Mol Genet 2022; 31:3521-3538. [PMID: 35708500 DOI: 10.1093/hmg/ddac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research on Familial Dysautonomia (FD) has focused on the development of therapeutics that facilitate the production of the correctly spliced, exon 20-containing, transcript in cells and individuals bearing the splice-altering, FD-causing, mutation in the ELP1 gene. We report here the ability of carnosol, a diterpene present in plant species of the Lamiaceae family, including rosemary, to enhance the cellular presence of the correctly spliced ELP1 transcript in FD patient-derived fibroblasts by upregulating transcription of the ELP1 gene and correcting the aberrant splicing of the ELP1 transcript. Carnosol treatment also elevates the level of the RBM24 and RBM38 proteins., two multifunctional RNA binding proteins. Transfection-mediated expression of either of these RBMs facilitates the inclusion of exon 20 sequence into the transcript generated from a minigene bearing ELP1 genomic sequence containing the FD-causing mutation. Suppression of the carnosol-mediated induction of either of these RBMs, using targeting siRNAs, limited the carnosol-mediated inclusion of the ELP1 exon 20 sequence. Carnosol treatment of FD patient PBMCs facilitates the inclusion of exon 20 into the ELP1 transcript. Increased levels of the ELP1 and RBM38 transcripts and the alternative splicing of the SIRT2 transcript, a sentinel for exon 20 inclusion in the FD-derived ELP1 transcript, are observed in RNA isolated from whole blood of healthy adults following the ingestion of carnosol-containing rosemary extract. These findings and the excellent safety profile of rosemary together justify an expedited clinical study of the impact of carnosol on the FD patient population.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Faaria Fasih-Ahmad
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Anthony J Evans
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Berish Y Rubin
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
3
|
Yannai S, Zonszain J, Donyo M, Ast G. Combinatorial treatment increases IKAP levels in human cells generated from Familial Dysautonomia patients. PLoS One 2019; 14:e0211602. [PMID: 30889183 PMCID: PMC6424424 DOI: 10.1371/journal.pone.0211602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from a point mutation at the 5' splice site of intron 20 in the IKBKAP gene. This mutation decreases production of the IKAP protein, and treatments that increase the level of the full-length IKBKAP transcript are likely to be of therapeutic value. We previously found that phosphatidylserine (PS), an FDA-approved food supplement, elevates IKAP levels in cells generated from FD patients. Here we demonstrate that combined treatment of cells generated from FD patients with PS and kinetin or PS and the histone deacetylase inhibitor trichostatin A (TSA) resulted in an additive elevation of IKAP compared to each drug alone. This indicates that the compounds influence different pathways. We also found that pridopidine enhances production of IKAP in cells generated from FD patients. Pridopidine has an additive effect on IKAP levels when used in combination with kinetin or TSA, but not with PS; suggesting that PS and pridopidine influence IKBKAP levels through the same mechanism. Indeed, we demonstrate that the effect of PS and pridopidine is through sigma-1 receptor-mediated activation of the BDNF signaling pathway. A combination treatment with any of these drugs with different mechanisms has potential to benefit FD patients.
Collapse
Affiliation(s)
- Sivan Yannai
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- * E-mail:
| |
Collapse
|
4
|
Rubin BY, Anderson SL. IKBKAP/ELP1 gene mutations: mechanisms of familial dysautonomia and gene-targeting therapies. APPLICATION OF CLINICAL GENETICS 2017; 10:95-103. [PMID: 29290691 PMCID: PMC5735983 DOI: 10.2147/tacg.s129638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The successful completion of the Human Genome Project led to the discovery of the molecular basis of thousands of genetic disorders. The identification of the mutations that cause familial dysautonomia (FD), an autosomal recessive disorder that impacts sensory and autonomic neurons, was aided by the release of the human DNA sequence. The identification and characterization of the genetic cause of FD have changed the natural history of this disease. Genetic testing programs, which were established shortly after the disease-causing mutations were identified, have almost completely eliminated the birth of children with this disorder. Characterization of the principal disease-causing mutation has led to the development of therapeutic modalities that ameliorate its effect, while the development of mouse models that recapitulate the impact of the mutation has allowed for the in-depth characterization of its impact on neuronal development and survival. The intense research focus on this disorder, while clearly benefiting the FD patient population, also serves as a model for the positive impact focused research efforts can have on the future of other genetic diseases. Here, we present the research advances and scientific breakthroughs that have changed and will continue to change the natural history of this centuries-old genetic disease.
Collapse
Affiliation(s)
- Berish Y Rubin
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Sylvia L Anderson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
5
|
Dietrich P, Dragatsis I. Familial Dysautonomia: Mechanisms and Models. Genet Mol Biol 2016; 39:497-514. [PMID: 27561110 PMCID: PMC5127153 DOI: 10.1590/1678-4685-gmb-2015-0335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/16/2016] [Indexed: 11/22/2022] Open
Abstract
Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Memphis, TN, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Memphis, TN, USA
| |
Collapse
|
6
|
Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: History, genotype, phenotype and translational research. Prog Neurobiol 2016; 152:131-148. [PMID: 27317387 DOI: 10.1016/j.pneurobio.2016.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 01/30/2023]
Abstract
Familial dysautonomia (FD) is a rare neurological disorder caused by a splice mutation in the IKBKAP gene. The mutation arose in the 1500s within the small Jewish founder population in Eastern Europe and became prevalent during the period of rapid population expansion within the Pale of Settlement. The carrier rate is 1:32 in Jews descending from this region. The mutation results in a tissue-specific deficiency in IKAP, a protein involved in the development and survival of neurons. Patients homozygous for the mutations are born with multiple lesions affecting mostly sensory (afferent) fibers, which leads to widespread organ dysfunction and increased mortality. Neurodegenerative features of the disease include progressive optic atrophy and worsening gait ataxia. Here we review the progress made in the last decade to better understand the genotype and phenotype. We also discuss the challenges of conducting controlled clinical trials in this rare medically fragile population. Meanwhile, the search for better treatments as well as a neuroprotective agent is ongoing.
Collapse
Affiliation(s)
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital Research Institute and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Donyo M, Hollander D, Abramovitch Z, Naftelberg S, Ast G. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway. Hum Mol Genet 2016; 25:1307-17. [PMID: 26769675 DOI: 10.1093/hmg/ddw011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.
Collapse
Affiliation(s)
- Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
8
|
Wong WY, Ward LC, Fong CW, Yap WN, Brown L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur J Nutr 2015; 56:133-150. [PMID: 26446095 DOI: 10.1007/s00394-015-1064-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE This study tested the hypothesis that γ- and δ-tocotrienols are more effective than α-tocotrienol and α-tocopherol in attenuating the signs of diet-induced metabolic syndrome in rats. METHODS Five groups of rats were fed a corn starch-rich (C) diet containing 68 % carbohydrates as polysaccharides, while the other five groups were fed a diet (H) high in simple carbohydrates (fructose and sucrose in food, 25 % fructose in drinking water, total 68 %) and fats (beef tallow, total 24 %) for 16 weeks. Separate groups from each diet were supplemented with either α-, γ-, δ-tocotrienol or α-tocopherol (85 mg/kg/day) for the final 8 of the 16 weeks. RESULTS H rats developed visceral obesity, hypertension, insulin resistance, cardiovascular remodelling and fatty liver. α-Tocopherol, α-, γ- and δ-tocotrienols reduced collagen deposition and inflammatory cell infiltration in the heart. Only γ- and δ-tocotrienols improved cardiovascular function and normalised systolic blood pressure compared to H rats. Further, δ-tocotrienol improved glucose tolerance, insulin sensitivity, lipid profile and abdominal adiposity. In the liver, these interventions reduced lipid accumulation, inflammatory infiltrates and plasma liver enzyme activities. Tocotrienols were measured in heart, liver and adipose tissue showing that chronic oral dosage delivered tocotrienols to these organs despite low or no detection of tocotrienols in plasma. CONCLUSION In rats, δ-tocotrienol improved inflammation, heart structure and function, and liver structure and function, while γ-tocotrienol produced more modest improvements, with minimal changes with α-tocotrienol and α-tocopherol. The most important mechanism of action is likely to be reduction in organ inflammation.
Collapse
Affiliation(s)
- Weng-Yew Wong
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Laboratory of Cardiovascular Signalling, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Leigh C Ward
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Chee Wai Fong
- Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19 Synapse, Singapore, 138623, Singapore
| | - Wei Ney Yap
- Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19 Synapse, Singapore, 138623, Singapore
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
9
|
Introduzione sugli aspetti genetici delle neuropatie. Neurologia 2015. [DOI: 10.1016/s1634-7072(15)72178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Brooks P, Tagle DA, Groft S. Expanding rare disease drug trials based on shared molecular etiology. Nat Biotechnol 2014; 32:515-8. [PMID: 24911489 PMCID: PMC4548299 DOI: 10.1038/nbt.2924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- P.J. Brooks
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-7518
| | - Danilo A. Tagle
- Office of Special Initiatives, Office of the Director, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-7518
| | - Steve Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-7518
| |
Collapse
|
11
|
Cheishvili D, Laiba E, Rekhtman D, Claman A, Razin A, Maayan C. Dynamic changes in IKBKAP mRNA levels during crisis of familial dysautonomia patients. Auton Neurosci 2014; 180:59-65. [DOI: 10.1016/j.autneu.2013.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/29/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022]
|
12
|
Liu B, Anderson SL, Qiu J, Rubin BY. Cardiac glycosides correct aberrant splicing of IKBKAP-encoded mRNA in familial dysautonomia derived cells by suppressing expression of SRSF3. FEBS J 2013; 280:3632-46. [PMID: 23711097 DOI: 10.1111/febs.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/30/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD) causing mutation in the IKBKAP gene prompted a study of the impact of a panel of pharmaceuticals on the splicing of this transcript, which revealed the ability of the cardiac glycoside digoxin to increase the production of the wild-type, exon-20-containing, IKBKAP-encoded transcript and the full-length IκB-kinase-complex-associated protein in FD-derived cells. Characterization of the cis elements and trans factors involved in the digoxin-mediated effect on splicing reveals that this response is dependent on an SRSF3 binding site(s) located in the intron 5' of the alternatively spliced exon and that digoxin mediates its effect by suppressing the level of the SRSF3 protein. Characterization of the digoxin-mediated effect on the RNA splicing process was facilitated by the identification of several RNA splicing events in which digoxin treatment mediates the enhanced inclusion of exonic sequence. Moreover, we demonstrate the ability of digoxin to impact the splicing process in neuronal cells, a cell type profoundly impacted by FD. This study represents the first demonstration that digoxin possesses splice-altering capabilities that are capable of reversing the impact of the FD-causing mutation. These findings support the clinical evaluation of the impact of digoxin on the FD patient population.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future.
Collapse
|
14
|
Anderson SL, Liu B, Qiu J, Sturm AJ, Schwartz JA, Peters AJ, Sullivan KA, Rubin BY. Nutraceutical-mediated restoration of wild-type levels of IKBKAP-encoded IKAP protein in familial dysautonomia-derived cells. Mol Nutr Food Res 2012; 56:570-9. [PMID: 22495984 DOI: 10.1002/mnfr.201100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SCOPE The reported ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD)-causing mutation in the IKBKAP gene prompted an evaluation of the impact of commonly consumed nutraceuticals on the splicing of this transcript. METHODS AND RESULTS Screening efforts revealed the ability of the isoflavones, genistein, and daidzein, to impact splicing and increase the production of the wild-type, exon-20-containing, transcript, and the full-length IKBKAP-encoded IΚB kinase complex associated protein(IKAP) in FD-derived cells. Genistein was also found to impact splicing in neuronal cells, a cell type profoundly impacted by FD. The simultaneous exposure of FD-derived cells to genistein and epigallocatechin gallate (EGCG) resulted in the almost exclusive production of the exon-20-containing transcript and the production of wild-type amounts of IKAP protein. CONCLUSION This study represents the first demonstration that the isoflavones, genistein and daidzein, possess splice-altering capabilities and that simultaneous treatment with genistein and EGCG reverses the splice-altering impact of the FD-causing mutation. These findings support the clinical evaluation of the therapeutic impact of the combined administration of these two commonly consumed nutraceuticals on this patient population and suggest a broader evaluation of the impact of these nutraceuticals on the in vivo RNA splicing process.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY10458, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dietrich P, Alli S, Shanmugasundaram R, Dragatsis I. IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 2012; 21:5078-90. [PMID: 22922231 DOI: 10.1093/hmg/dds354] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
16
|
Rotthier A, Baets J, Timmerman V, Janssens K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 2012; 8:73-85. [PMID: 22270030 DOI: 10.1038/nrneurol.2011.227] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) are a clinically and genetically heterogeneous group of disorders of the PNS. Progressive degeneration, predominantly of sensory and autonomic neurons, is the main pathological feature in patients with HSAN, and causes prominent sensory loss and ulcerative mutilations in combination with variable autonomic and motor disturbances. Advances in molecular genetics have enabled identification of disease-causing mutations in 12 genes, and studies on the functional effects of these mutations are underway. Although some of the affected proteins--such as nerve growth factor and its receptor--have obvious nerve-specific roles, others are ubiquitously expressed proteins that are involved in sphingolipid metabolism, vesicular transport, transcription regulation and structural integrity. An important challenge in the future will be to understand the common molecular pathways that result in HSANs. Unraveling the mechanisms that underlie sensory and autonomic neurodegeneration could assist in identifying targets for future therapeutic strategies in patients with HSAN. This Review highlights key advances in the understanding of HSANs, including insights into the molecular mechanisms of disease, derived from genetic studies of patients with these disorders.
Collapse
Affiliation(s)
- Annelies Rotthier
- VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | | | | | | |
Collapse
|
17
|
Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS One 2010; 5:e15884. [PMID: 21209961 PMCID: PMC3012102 DOI: 10.1371/journal.pone.0015884] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.
Collapse
|
18
|
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80:1613-31. [PMID: 20696139 PMCID: PMC2956867 DOI: 10.1016/j.bcp.2010.07.043] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Initially discovered in 1938 as a "fertility factor," vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
19
|
Abulhasan Y, Buu N, Frigon C. Perioperative use of dexmedetomidine in an infant with familial dysautonomia. Br J Anaesth 2009; 103:413-5. [PMID: 19592408 DOI: 10.1093/bja/aep178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a case of a 10-month-old girl with familial dysautonomia, who was scheduled for the insertion of a gastrotomy tube via laparoscopy under general anaesthesia. We used a total i.v. anaesthetic technique including dexmedetomidine and titrated the drug to patients' haemodynamic status and BIS value. Vital signs remained virtually unchanged during the entire procedure, and the tracheal tube was removed at the end of the procedure. Postoperative course was uneventful. Careful planning of the anaesthetic management, understanding the physiological consequences, and being able to titrate the medications utilized are key to the decrease of complications encountered in these patients. We report the safe use of dexmedetomidine in an infant with this extremely rare condition.
Collapse
Affiliation(s)
- Y Abulhasan
- Department of Anaesthesiology, McGill University Health Center, Montreal Children's Hospital, 2300 Tupper Street, Room C-1118, Montreal, QC H3H 1P3, Canada
| | | | | |
Collapse
|
20
|
Rubin BY, Anderson SL, Kapás L. Can the therapeutic efficacy of tocotrienols in neurodegenerative familial dysautonomia patients be measured clinically? Antioxid Redox Signal 2008; 10:837-41. [PMID: 18177231 DOI: 10.1089/ars.2007.1874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Familial dysautonomia (FD) is an inherited, fatal, neurodegenerative disorder manifested by autonomic/hypertensive crises and cardiac instability. Patients produce little IKAP, the gene product of the affected mutated gene, and have low levels of monoamine oxidase A (MAO A), whose reduced presence appears to result in an increased accumulation of biogenic amines, which is a trigger for hypertensive crises. As ingestion of tocotrienols elevates IKAP and MAO A in FD patients, we examined their impact on the frequency of hypertensive crises and cardiac function. After 3 to 4 months of tocotrienol ingestion, approximately 80% of patients reported a significant (> or = 50%) decrease in the number of crises. In a smaller group of patients, a postexercise increase in heart rate and a decrease in the QT interval were observed in the majority of participants. Based on these findings, we hypothesize that tocotrienol therapy will improve the long-term clinical outlook and survival of individuals with FD.
Collapse
Affiliation(s)
- Berish Y Rubin
- Laboratory for Familial Dysautonomia Research, Fordham University, Bronx, NY 10458, USA.
| | | | | |
Collapse
|
21
|
Weese-Mayer DE, Kenny AS, Bennett HL, Ramirez JM, Leurgans SE. Familial dysautonomia: frequent, prolonged and severe hypoxemia during wakefulness and sleep. Pediatr Pulmonol 2008; 43:251-60. [PMID: 18220270 DOI: 10.1002/ppul.20764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sudden unexplained deaths have been reported in 13% [corrected] of Familial Dysautonomia (FD) subjects. To characterize cardiorespiratory dysregulation in children with FD that might contribute to potential sudden death, respiratory inductance plethysmography (chest/abdomen), ECG, hemoglobin saturation, and pulse waveform (VivoMetrics, Inc.) were recorded in the home during daytime wakefulness and overnight sleep in 25 children with IKBKAP mutation-confirmed FD and 25 age-, and gender-matched controls. Breath-to-breath and beat-to-beat characterization of breathing, hemoglobin saturation, and heart rate was conducted. Children with FD had more frequent, prolonged, and severe episodes of hypoxemia than matched controls, awake and asleep. Though a small percent of the study time revealed bradycardia and apnea, the hypoxemia was the most prevalent pattern in FD and rarely occurred with related bradycardia. Though infrequent with desaturation or bradycardia, apnea was more prevalent in FD subjects than controls, and more apparent during sleep than wakefulness. Children with FD have cardiorespiratory dysregulation during wakefulness and sleep, likely representing alveolar hypoventilation. We hypothesize that the related repeated hypoxemia (and presumed related hypercarbia) may render individuals with FD more vulnerable to sudden death.
Collapse
Affiliation(s)
- Debra E Weese-Mayer
- Pediatric Respiratory Medicine, Rush University Medical Center, Chicago, Illinois, USA. [corrected]
| | | | | | | | | |
Collapse
|
22
|
Rubin BY, Anderson SL. The molecular basis of familial dysautonomia: overview, new discoveries and implications for directed therapies. Neuromolecular Med 2007; 10:148-56. [PMID: 17985250 DOI: 10.1007/s12017-007-8019-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 01/05/2023]
Abstract
Familial dysautonomia (FD) is a sensory and autonomic neuropathy that affects the development and survival of sensory, sympathetic, and some parasympathetic neurons. It is autosomally inherited and occurs almost exclusively among individuals of Ashkenazi Jewish descent. The pathological and clinical manifestations of FD have been extensively studied and therapeutic modalities have, until recently, focused primarily on addressing the symptoms experienced by those with this fatal disorder. The primary FD-causing mutation is an intronic nucleotide substitution that alters the splicing of the IKBKAP-derived transcript. Recent efforts have resulted in the development of new therapeutic modalities that facilitate the increased production of the correctly spliced transcript and mitigate the symptoms of those with FD. Furthermore, the recent demonstration of the reduced presence of monoamine oxidase A in cells and tissues of individuals with FD has provided new insight into the cause of hypertensive crises experienced by these patients.
Collapse
Affiliation(s)
- Berish Y Rubin
- Department of Biological Sciences, Laboratory for Familial Dysautonomia Research, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA.
| | | |
Collapse
|
23
|
Abstract
Natural vitamin E includes eight chemically distinct molecules: alpha-, beta-, gamma-, and delta-tocopherols and alpha-, beta-, gamma-, and delta-tocotrienols. More than 95% of all studies on vitamin E are directed toward the specific study of alpha-tocopherol. The other forms of natural vitamin E remain poorly understood. The abundance of alpha-tocopherol in the human body and the comparable efficiency of all vitamin E molecules as antioxidants led biologists to neglect the non-tocopherol vitamin E molecules as topics for basic and clinical research. Recent developments warrant a serious reconsideration of this conventional wisdom. The tocotrienol subfamily of natural vitamin E possesses powerful neuroprotective, anticancer, and cholesterol-lowering properties that are often not exhibited by tocopherols. Current developments in vitamin E research clearly indicate that members of the vitamin E family are not redundant with respect to their biological functions. alpha-Tocotrienol, gamma-tocopherol, and delta-tocotrienol have emerged as vitamin E molecules with functions in health and disease that are clearly distinct from that of alpha-tocopherol. At nanomolar concentration, alpha-tocotrienol, not alpha-tocopherol, prevents neurodegeneration. On a concentration basis, this finding represents the most potent of all biological functions exhibited by any natural vitamin E molecule. Recently, it has been suggested that the safe dose of various tocotrienols for human consumption is 200-1000/day. A rapidly expanding body of evidence supports that members of the vitamin E family are functionally unique. In recognition of this fact, title claims in publications should be limited to the specific form of vitamin E studied. For example, evidence for toxicity of a specific form of tocopherol in excess may not be used to conclude that high-dosage "vitamin E" supplementation may increase all-cause mortality. Such conclusion incorrectly implies that tocotrienols are toxic as well under conditions where tocotrienols were not even considered. The current state of knowledge warrants strategic investment into the lesser known forms of vitamin E. This will enable prudent selection of the appropriate vitamin E molecule for studies addressing a specific health need.
Collapse
Affiliation(s)
- Chandan K Sen
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
24
|
Verhoeven K, Timmerman V, Mauko B, Pieber TR, De Jonghe P, Auer-Grumbach M. Recent advances in hereditary sensory and autonomic neuropathies. Curr Opin Neurol 2006; 19:474-80. [PMID: 16969157 DOI: 10.1097/01.wco.0000245370.82317.f6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the genetic advances of hereditary sensory neuropathies and hereditary sensory and autonomic neuropathies, and provides information on phenotype-genotype correlation and on possible underlying pathomechanisms. RECENT FINDINGS Hereditary sensory neuropathies, also known as hereditary sensory and autonomic neuropathies, are a clinically and genetically heterogeneous group of disorders. These disorders are characterized by prominent sensory loss with acro-mutilating complications and a variable degree of motor and autonomic disturbances. Based on age at onset, clinical features and mode of inheritance, these disorders have originally been subdivided into five types. The identification of eight loci and six disease-causing genes for this group of disorders, however, has shown that this present classification has to be refined. SUMMARY This review will discuss each of the different loci and genes of these disorders, showing glimpses into a possible underlying pathomechanism leading to the degeneration of sensory and autonomic neurons.
Collapse
Affiliation(s)
- Kristien Verhoeven
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|