1
|
Micic N, Holmelund Rønager A, Sørensen M, Bjarnholt N. Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230365. [PMID: 39343017 PMCID: PMC11449216 DOI: 10.1098/rstb.2023.0365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Plant glutathione transferases (GSTs) constitute a large and diverse family of enzymes that are involved in plant stress response, metabolism and defence, yet their physiological functions remain largely elusive. Consistent with the traditional view on GSTs across organisms as detoxification enzymes, in vitro most plant GSTs catalyse glutathionylation, conjugation of the tripeptide glutathione (GSH; γ-Glu-Cys-Gly) onto reactive molecules. However, when it comes to elucidating GST functions, it remains a key challenge that the endogenous plant glutathione conjugates (GS-conjugates) that would result from such glutathionylation reactions are rarely reported. Furthermore, GSTs often display high substrate promiscuity, and their proposed substrates are prone to spontaneous chemical reactions with GSH; hence, single-gene knockouts rarely provide clear chemotypes or phenotypes. In a few cases, GS-conjugates are demonstrated to be biosynthetic intermediates that are rapidly further metabolized towards a pathway end product, explaining their low abundance and rare detection. In this review, we summarize the current knowledge of plant GST functions and how and possibly why evolution has resulted in a broad and extensive expansion of the plant GST family. Finally, we demonstrate that endogenous GS-conjugates are more prevalent in plants than assumed and suggest they are overlooked as clues towards the identification of plant GST functions. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Nikola Micic
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Asta Holmelund Rønager
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Mette Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
- Novo Nordisk Pharmatech A/S , Køge 4600, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| |
Collapse
|
2
|
Romaus-Sanjurjo D, Castañón-Apilánez M, López-Arias E, Custodia A, Martin-Martín C, Ouro A, López-Cancio E, Sobrino T. Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia. Antioxidants (Basel) 2024; 13:138. [PMID: 38397735 PMCID: PMC10885962 DOI: 10.3390/antiox13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke is an important cause of mortality and disability worldwide. Given that current treatments do not allow a remarkably better outcome in patients after stroke, it is mandatory to seek new approaches to preventing stroke and/or complementing the current treatments or ameliorating the ischemic insult. Multiple preclinical and clinical studies highlighted the potential beneficial roles of exercise and a Mediterranean diet following a stroke. Here, we investigated the effects of a pre-stroke Mediterranean-like diet supplemented with hydroxytyrosol and with/without physical exercise on male rats undergoing transient middle cerebral artery occlusion (tMCAO). We also assessed a potential synergistic effect with physical exercise. Our findings indicated that the diet reduced infarct and edema volumes, modulated acute immune response by altering cytokine and chemokine levels, decreased oxidative stress, and improved acute functional recovery post-ischemic injury. Interestingly, while physical exercise alone improved certain outcomes compared to control animals, it did not enhance, and in some aspects even impaired, the positive effects of the Mediterranean-like diet in the short term. Overall, these data provide the first preclinical evidence that a preemptive enriched Mediterranean diet modulates cytokines/chemokines levels downwards which eventually has an important role during the acute phase following ischemic damage, likely mediating neuroprotection.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Castañón-Apilánez
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Esteban López-Arias
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Martin-Martín
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena López-Cancio
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
4
|
Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease. Mediators Inflamm 2022; 2022:5665778. [PMID: 35915741 PMCID: PMC9338876 DOI: 10.1155/2022/5665778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disorder stemming from unrestrained immune activation and subsequent destruction of colon tissue. Genetic susceptibility, microbiota remodeling, and environmental cues are involved in IBD pathogenesis. Up to now, there are limited treatment options for IBD, so better therapies for IBD are eagerly needed. The therapeutic effects of naturally occurring compounds have been extensively investigated, among which quercetin becomes an attractive candidate owing to its unique biochemical properties. To facilitate the clinical translation of quercetin, we aimed to get a comprehensive understanding of the cellular and molecular mechanisms underlying the anti-IBD role of quercetin. We summarized that quercetin exerts the anti-IBD effect through consolidating the intestinal mucosal barrier, enhancing the diversity of colonic microbiota, restoring local immune homeostasis, and restraining the oxidative stress response. We also delineated the effect of quercetin on gut microbiome and discussed the potential side effects of quercetin administration. Besides, quercetin could serve as a prodrug, and the bioavailability of quercetin is improved through chemical modifications or the utilization of effective drug delivery systems. Altogether, these lines of evidence hint the feasibility of quercetin as a candidate compound for IBD treatment.
Collapse
|
5
|
Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin. Int J Mol Sci 2022; 23:ijms23147781. [PMID: 35887126 PMCID: PMC9323120 DOI: 10.3390/ijms23147781] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42− uptake, thiobarbituric acid reactive substances (TBARS) levels—a marker of lipid peroxidation—total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42− uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.
Collapse
|
6
|
Murakami A. Novel mechanisms underlying bioactivities of polyphenols via hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11010133. [PMID: 35052636 PMCID: PMC8772813 DOI: 10.3390/antiox11010133] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids display a broad range of health-promoting bioactivities. Among these, their capacity to act as antioxidants has remained most prominent. The canonical reactive oxygen species (ROS)-scavenging mode of the antioxidant action of flavonoids relies on the high susceptibility of their phenolic moieties to undergo oxidation. As a consequence, upon reaction with ROS, the antioxidant capacity of flavonoids is severely compromised. Other phenol-compromising reactions, such as those involved in the biotransformation of flavonoids, can also markedly affect their antioxidant properties. In recent years, however, increasing evidence has indicated that, at least for some flavonoids, the oxidation of such residues can in fact markedly enhance their original antioxidant properties. In such apparent paradoxical cases, the antioxidant activity arises from the pro-oxidant and/or electrophilic character of some of their oxidation-derived metabolites and is exerted by activating the Nrf2–Keap1 pathway, which upregulates the cell’s endogenous antioxidant capacity, and/or, by preventing the activation of the pro-oxidant and pro-inflammatory NF-κB pathway. This review focuses on the effects that the oxidative and/or non-oxidative modification of the phenolic groups of flavonoids may have on the ability of the resulting metabolites to promote direct and/or indirect antioxidant actions. Considering the case of a metabolite resulting from the oxidation of quercetin, we offer a comprehensive description of the evidence that increasingly supports the concept that, in the case of certain flavonoids, the oxidation of phenolics emerges as a mechanism that markedly amplifies their original antioxidant properties. An overlooked topic of great phytomedicine potential is thus unraveled.
Collapse
Affiliation(s)
- Hernan Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
| | - Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, Santiago 7501015, Chile
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| |
Collapse
|
8
|
Chittasupho C, Manthaisong A, Okonogi S, Tadtong S, Samee W. Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int J Mol Sci 2021; 23:ijms23010142. [PMID: 35008566 PMCID: PMC8745450 DOI: 10.3390/ijms23010142] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
Wound healing impairment due to a postponed, incomplete, or uncoordinated healing process has been a challenging clinical problem. Much research has focused on wound care, particularly on discovery of new therapeutic approaches for acute and chronic wounds. This study aims to evaluate the effect of the combination of quercetin and curcuminoids at three different ratios on the antimicrobial, antioxidant, cell migration and wound healing properties. The antioxidant activities of quercetin, curcuminoids and the mixtures were tested by DPPH and ABTS free radical scavenging assays. The disc diffusion method was performed to determine the antibacterial activities of quercetin, curcuminoids and the mixtures against S. aureus and P. aeruginosa. The cytotoxicity and cell migratory enhancing effects of quercetin, curcuminoids and the mixtures against human dermal fibroblasts were investigated by MTT assay, scratch assay and Transwell migration assay, respectively. The results showed the synergism of the quercetin and curcuminoid combination to inhibit the growth of S. aureus and P. aeruginosa, with the inhibition zone ranging from 7.06 ± 0.25 to 8.78 ± 0.38 mm, respectively. The DPPH free radical scavenging assay demonstrated that the combination of quercetin and curcuminoids yielded lower IC50 values (15.38–23.70 µg/mL) than curcuminoids alone (25.75 µg/mL). Quercetin and a 3:1 quercetin/curcuminoid mixture at non-toxic concentrations showed the ability to stimulate the migration of fibroblasts across the matrix, whereas only quercetin alone accelerated the wound closure of fibroblasts. In conclusion, the mixture of quercetin and curcuminoids at a 3:1 ratio was the best formulations for use in wound healing due to the antimicrobial, antioxidant and cell-migration-enhancing activities.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amornrat Manthaisong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahon Nayok 26120, Thailand;
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahon Nayok 26120, Thailand
- Correspondence: (S.T.); (W.S.); Tel.: +66-3739-5094 (S.T. & W.S.); Fax: +66-3739-5096 (S.T. & W.S.)
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahon Nayok 26120, Thailand;
- Correspondence: (S.T.); (W.S.); Tel.: +66-3739-5094 (S.T. & W.S.); Fax: +66-3739-5096 (S.T. & W.S.)
| |
Collapse
|
9
|
Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
|
10
|
Abstract
Quercetin is a flavonoid present in a wide variety of plant resources. Over the years, extensive efforts have been devoted to examining the potential biological effects of quercetin and to manipulating the chemical and physical properties of the flavonoid. However, limited studies have reviewed the opportunities and challenges of using quercetin in the development of functional foods. To address this necessity, in this review; we foremost present an overview of the chemical properties and stability of quercetin in food products followed by a detailed discussion of various strategies that enhance its oral bioavailability. We further highlight the areas to be practically considered during development of quercetin-based functional foods. By revisiting the current status of applied research on quercetin, it is anticipated that useful insights enabling research on quercetin can be potentially translated into practical applications in food product development.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
11
|
Zhang JL, Liu M, Cui W, Yang L, Zhang CN. Quercetin affects shoaling and anxiety behaviors in zebrafish: Involvement of neuroinflammation and neuron apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 105:359-368. [PMID: 32693159 DOI: 10.1016/j.fsi.2020.06.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 μg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 μg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 μg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.
Collapse
Affiliation(s)
- Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Min Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
12
|
Veiko AG, Sekowski S, Lapshina EA, Wilczewska AZ, Markiewicz KH, Zamaraeva M, Zhao HC, Zavodnik IB. Flavonoids modulate liposomal membrane structure, regulate mitochondrial membrane permeability and prevent erythrocyte oxidative damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183442. [PMID: 32814117 DOI: 10.1016/j.bbamem.2020.183442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
In the present work, we investigated the interaction of flavonoids (quercetin, naringenin and catechin) with cellular and artificial membranes. The flavonoids considerably inhibited membrane lipid peroxidation in rat erythrocytes treated with tert-butyl hydroperoxide (700 μM), and the IC50 values for prevention of this process were equal to 9.7 ± 0.8 μM, 8.8 ± 0.7 μM, and 37.8 ± 4.4 μM in the case of quercetin, catechin and naringenin, respectively, and slightly decreased glutathione oxidation. In isolated rat liver mitochondria, quercetin, catechin and naringenin (10-50 μM) dose-dependently increased the sensitivity to Ca2+ ions - induced mitochondrial permeability transition. Using the probes TMA-DPH and DPH we showed that quercetin rather than catechin and naringenin strongly decreased the microfluidity of the 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomal membrane bilayer at different depths. On the contrary, using the probe Laurdan we observed that naringenin transfer the bilayer to a more ordered state, whereas quercetin dose-dependently decreased the order of lipid molecule packing and increased hydration in the region of polar head groups. The incorporation of the flavonoids, quercetin and naringenin and not catechin, into the liposomes induced an increase in the zeta potential of the membrane and enlarged the area of the bilayer as well as lowered the temperature and the enthalpy of the membrane phase transition. The effects of the flavonoids were connected with modification of membrane fluidity, packing, stability, electrokinetic properties, size and permeability, prevention of oxidative stress, which depended on the nature of the flavonoid molecule and the nature of the membrane.
Collapse
Affiliation(s)
- Artem G Veiko
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030 Grodno, Belarus
| | - Szymon Sekowski
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030 Grodno, Belarus
| | - Agnieszka Z Wilczewska
- Faculty of Chemistry, University of Białystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Białystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Maria Zamaraeva
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, 100084 Beijing, PR China
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030 Grodno, Belarus.
| |
Collapse
|
13
|
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol 2020; 11:1451. [PMID: 32636851 PMCID: PMC7318306 DOI: 10.3389/fimmu.2020.01451] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning of the immune system. It plays a role in stress response and has shown promising results when administered to the critically ill. Quercetin is a well-known flavonoid whose antiviral properties have been investigated in numerous studies. There is evidence that vitamin C and quercetin co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. We present the current evidence for the use of vitamin C and quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma.
Collapse
Affiliation(s)
- Ruben Manuel Luciano Colunga Biancatelli
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- Policlinico Umberto I, La Sapienza University of Rome, Rome, Italy
| | - Max Berrill
- Department of Respiratory Medicine, St. Peter's Hospital, Surrey, United Kingdom
| | - John D. Catravas
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| | - Paul E. Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
14
|
A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 2020; 248:117463. [DOI: 10.1016/j.lfs.2020.117463] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
|
15
|
Heřmánková E, Zatloukalová M, Biler M, Sokolová R, Bancířová M, Tzakos AG, Křen V, Kuzma M, Trouillas P, Vacek J. Redox properties of individual quercetin moieties. Free Radic Biol Med 2019; 143:240-251. [PMID: 31381971 DOI: 10.1016/j.freeradbiomed.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
Quercetin is one of the most prominent and widely studied flavonoids. Its oxidation has been previously investigated only indirectly by comparative analyses of structurally analogous compounds, e.g. dihydroquercetin (taxifolin). To provide direct evidence about the mechanism of quercetin oxidation, we employed selective alkylation procedures for the step-by-step blocking of individual redox active sites, i.e. the catechol, resorcinol and enol C-3 hydroxyls, as represented by newly prepared quercetin derivatives 1-3. Based on the structure-activity relationship (SAR), electrochemical, and computational (density functional theory) studies, we can clearly confirm that quercetin is oxidized in the following steps: the catechol moiety is oxidized first, forming the benzofuranone derivative via intramolecular rearrangement mechanism; therefore the quercetin C-3 hydroxy group cannot be involved in further oxidation reactions or other biochemical processes. The benzofuranone is oxidized subsequently, followed by oxidation of the resorcinol motif to complete the electrochemical cascade of reactions. Derivatization of individual quercetin hydroxyls has a significant effect on its redox behavior, and, importantly, on its antiradical and stability properties, as shown in DPPH/ABTS radical scavenging assays and UV-Vis spectrophotometry, respectively. The SAR data reported here are instrumental for future studies on the oxidation of biologically or technologically important flavonoids and other polyphenols or polyhydroxy substituted aromatics. This is the first complete and direct study mapping redox properties of individual moieties in quercetin structure.
Collapse
Affiliation(s)
- Eva Heřmánková
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Michal Biler
- INSERM U1248, Univ. Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague 8, Czech Republic
| | - Martina Bancířová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Patrick Trouillas
- INSERM U1248, Univ. Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France; RCPTM, Palacký University, 17. listopadu 1192/12, Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
16
|
Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli A, Bardania H, Zarpou S, Bagheri A. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019; 120:12141-12155. [PMID: 30957271 DOI: 10.1002/jcb.28663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA)-dependent pathways are one of the newest gene regulation mechanisms in various diseases, particularly in cancers. miRNAs are endogenous noncoding RNAs with about 18 to 25 nucleotide length, which can regulate the expression of at least 60% of human total genome posttranscriptionally. Quercetin is the most abundant flavonoid in a variety of fruits, flowers, and medical herbs, known as a strong free radical scavenger that could show antioxidant, anti-inflammatory, and antitumor activities. Recent studies also reported its strong impact on various miRNA expressions in different abnormalities. In this review, we aimed to summarize the studies focused on the effects of quercetin on different miRNA expressions to more clear the main possible mechanisms of quercetin influences and introduce it as a beneficial agent for regulation of miRNAs in various biological directions.
Collapse
Affiliation(s)
- Vahid Akbari Kordkheyli
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar Tarsi
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad A Mishan
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Setareh Zarpou
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Elumalai P, Lakshmi S. Role of Quercetin Benefits in Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2018; 12:229-45. [PMID: 27651256 DOI: 10.1007/978-3-319-28383-8_12] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurodegenerative disorders are often life threatening and hired as an economic burden to the health-care system. Nutritional interventions principally involving polyphenols were practiced to arrest or reverse the age-related health disorders. Flavonoids, a class of dietary polyphenols, are rising to superstardom in preventing brain disorders with their potent antioxidant defense mechanism. Quercetin is a ubiquitous flavonoid reported to have all-natural myriad of health benefits. Citrus fruits, apple, onion, parsley, berries, green tea, and red wine comprise the major dietary supplements of quercetin apart from some herbal remedies like Ginkgo biloba. Appositeness of quercetin in reducing risks of neurodegenerative disorders, cancer, cardiovascular diseases, allergic disorders, thrombosis, atherosclerosis, hypertension, and arrhythmia, to name a few, is attributed to its highly pronounced antioxidant and anti-inflammatory properties. Neurodegeneration, characterized by progressive deterioration of the structure and function of neurons, is crucially accompanied by severe cognitive deficits. Aging is the major risk factor for neurodegenerative disorders in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) being coequal high hands. Oxidative stress and mitochondrial dysfunction are the key players in triggering neurodegeneration. The upsurge of neurodegenerative disorders is always appalling since there exists a paucity in effective treatment practices. Past few years' studies have underpinned the mechanisms through which quercetin boons the brain health in many aspects including betterment in cognitive output. Undoubtedly, quercetin will be escalating as an arable field, both in scientific research and in pharmacological and clinical applications.
Collapse
Affiliation(s)
- Preetham Elumalai
- Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala, India.
| | - Sreeja Lakshmi
- Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala, India
| |
Collapse
|
18
|
Al Fazazi S, Casuso RA, Aragón-Vela J, Casals C, Huertas JR. Effects of hydroxytyrosol dose on the redox status of exercised rats: the role of hydroxytyrosol in exercise performance. J Int Soc Sports Nutr 2018; 15:20. [PMID: 29719493 PMCID: PMC5921979 DOI: 10.1186/s12970-018-0221-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Hydroxytyrosol (HT) is a polyphenol found in olive oil that is known for its antioxidant effects. Here, we aimed to describe the effects of a low and high HT dose on the physical running capacity and redox state in both sedentary and exercised rats. Methods Male Wistar rats were allocated into 6 groups: sedentary (SED; n = 10); SED consuming 20 mg/kg/d HT (SED20; n = 7); SED consuming 300 mg/kg/d HT (SED300; n = 7); exercised (EXE; n = 10); EXE consuming 20 mg/kg/d HT (EXE20; n = 10) and EXE consuming 300 mg/kg/d HT (EXE300; n = 10). All the interventions lasted 10 weeks; the maximal running velocity was assessed throughout the study, whereas daily physical work was monitored during each training session. At the end of the study, the rats were sacrificed by bleeding. Hemoglobin (HGB) and hematocrit (HCT) were measured in the terminal blood sample. Moreover, plasma hydroperoxide (HPx) concentrations were quantified as markers of lipid peroxidation. Results In sedentary rats, HT induced an antioxidant effect in a dose-dependent manner without implications on running performance. However, if combined with exercise, the 300 mg/kg/d HT dosage exhibited a pro-oxidant effect in the EXE300 group compared with the EXE and EXE20 groups. The EXE20 rats showed a reduction in daily physical work and a lower maximal velocity than the EXE and EXE300 rats. The higher physical capacity exhibited by the EXE300 group was achieved despite the EXE300 rats expressing lower HGB levels and a lower HCT than the EXE20 rats. Conclusions Our results suggest that a high HT dose induces a systemic pro-oxidant effect and may prevent the loss of performance that was observed with the low HT dose.
Collapse
Affiliation(s)
- Saad Al Fazazi
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Rafael A Casuso
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Jerónimo Aragón-Vela
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Cristina Casals
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Jesús R Huertas
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|
19
|
Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase. Redox Biol 2016; 9:220-228. [PMID: 27572418 PMCID: PMC5011167 DOI: 10.1016/j.redox.2016.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
Endothelial dysfunction due to vascular inflammation and oxidative stress critically contributes to the etiology of atherosclerosis. The intracellular redox environment plays a key role in regulating endothelial cell function and is intimately linked to cellular thiol status, including and foremost glutathione (GSH). In the present study we investigated whether and how the dietary flavonoid, quercetin, affects GSH status of human aortic endothelial cells (HAEC) and their response to oxidative stress. We found that treating cells with buthionine sulfoximine to deplete cellular GSH levels significantly reduced the capacity of quercetin to inhibit lipopolysaccharide (LPS)-induced oxidant production. Furthermore, incubation of HAEC with quercetin caused a transient decrease and then full recovery of cellular GSH concentrations. The initial decline in GSH was not accompanied by a corresponding increase in glutathione disulfide (GSSG). To the contrary, GSSG levels, which were less than 0.5% of GSH levels at baseline (0.26±0.01 vs. 64.7±1.9 nmol/mg protein, respectively), decreased by about 25% during incubation with quercetin. As a result, the GSH: GSSG ratio increased by about 70%, from 253±7 to 372±23. These quercetin-induced changes in GSH and GSSG levels were not affected by treating HAEC with 500 µM ascorbic acid phosphate for 24 h to increase intracellular ascorbate levels. Incubation of HAEC with quercetin also led to the appearance of extracellular quercetin-glutathione conjugates, which was paralleled by upregulation of the multidrug resistance protein 1 (MRP1). Furthermore, quercetin slightly but significantly increased mRNA and protein levels of glutamate-cysteine ligase (GCL) catalytic and modifier subunits. Taken together, our results suggest that quercetin causes loss of GSH in HAEC, not because of oxidation but due to formation and cellular export of quercetin-glutathione conjugates. Induction by quercetin of GCL subsequently restores GSH levels, thereby suppressing LPS-induced oxidant production. Glutathione mediates the antioxidant effects of quercetin in human aortic endothelial cells. Quercetin affects cellular levels of GSH and GSSG, resulting in an increased redox ratio. Quercetin forms conjugates with GSH, which are rapidly excreted from the cells. Quercetin induces glutamate-cysteine ligase and multidrug resistance protein 1 via Nrf2 activation.
Collapse
|
21
|
HU JUN, WANG JUNJIE, WANG GANG, YAO ZHONGJUN, DANG XIAOQIAN. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med 2016; 37:690-702. [PMID: 26782731 PMCID: PMC4771108 DOI: 10.3892/ijmm.2016.2458] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/16/2015] [Indexed: 01/25/2023] Open
Abstract
In the present study, a new type of DSPE-PEG2000 polymeric liposome for the brain-targeted delivery of poorly water-soluble anticancer drugs was successfully prepared and characterized. The nanoparticles were formed by the self-assembly of an amphiphilic polymer consisting of hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE‑PEG2000). These nanoliposomes served as a safe delivery platform for the simultaneous delivery of quercetin (QUE) and temozolomide (TMZ) to rat brains. The 2-in-1 PEG2000‑DSPE nanoliposomes containing QUE and TMZ (QUE/TMZ-NLs) were rapidly taken up by the U87 glioma cells in vitro, whereas at the same concentrations, the amounts of the free drugs taken up were minimal. The QUE/TMZ-NLs showed an enhanced potency in the U87 cells and the TMZ-resistant U87 cells (U87/TR cells), possibly due to the high intracellular drug concentration and the subsequent drug release. In vivo biodistribution experiments revealed a significant accumulation of QUE/TMZ-NLs in the brain, with significantly increased plasma concentrations of QUE and TMZ, as well as delayed clearance in our rat model of glioma. The results were not so significant for the QUE-loaded nanoliposomes (QUE-NLs) and free TMZ. The findings of our study establish the DSPE‑PEG2000 polymeric liposome as a novel and effective nanocarrier for enhancing drug delivery to brain tumors.
Collapse
Affiliation(s)
- JUN HU
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - JUNJIE WANG
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - GANG WANG
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - ZHONGJUN YAO
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - XIAOQIAN DANG
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| |
Collapse
|
22
|
Quercetin supplementation does not enhance cerebellar mitochondrial biogenesis and oxidative status in exercised rats. Nutr Res 2015; 35:585-91. [DOI: 10.1016/j.nutres.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 01/29/2023]
|
23
|
Prasad J, Baitharu I, Sharma AK, Dutta R, Prasad D, Singh SB. Quercetin reverses hypobaric hypoxia-induced hippocampal neurodegeneration and improves memory function in the rat. High Alt Med Biol 2014; 14:383-94. [PMID: 24377346 DOI: 10.1089/ham.2013.1014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inadequate oxygen availability at high altitude causes elevated oxidative stress, resulting in hippocampal neurodegeneration and memory impairment. Though oxidative stress is known to be a major cause of neurodegeneration in hypobaric hypoxia, neuroprotective and ameliorative potential of quercetin, a flavonoid with strong antioxidant properties in reversing hypobaric hypoxia-induced memory impairment has not been studied. Four groups of male adult Sprague Dawley rats were exposed to hypobaric hypoxia for 7 days in an animal decompression chamber at an altitude of 7600 meters. Rats were supplemented with quercetin orally by gavage during 7 days of hypoxic exposure. Spatial working memory was assessed by a Morris Water Maze before and after exposure to hypobaric hypoxia. Changes in oxidative stress markers and apoptotic marker caspase 3 expression in hippocampus were assessed. Histological assessment of neurodegeneration was performed by cresyl violet and fluoro Jade B staining. Our results showed that quercetin supplementation during exposure to hypobaric hypoxia decreased reactive oxygen species levels and consequent lipid peroxidation in the hippocampus by elevating antioxidant status and free radical scavenging enzyme system. There was reduction in caspase 3 expression, and decrease in the number of pyknotic and fluoro Jade B-positive neurons in hippocampus after quercetin supplementation during hypoxic exposure. Behavioral studies showed that quercetin reversed the hypobaric hypoxia-induced memory impairment. These findings suggest that quercetin provides neuroprotection to hippocampal neurons during exposure to hypobaric hypoxia through antioxidative and anti-apoptotic mechanisms, and possesses promising therapeutic potential to ameliorate hypoxia-induced memory dysfunction.
Collapse
Affiliation(s)
- Jyotsna Prasad
- 1 Defense Institute of Physiology and Allied Sciences , Defense Research Development Organization, Ministry of Defense, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
24
|
The combination of oral quercetin supplementation and exercise prevents brain mitochondrial biogenesis. GENES AND NUTRITION 2014; 9:420. [PMID: 25091043 DOI: 10.1007/s12263-014-0420-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/24/2014] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to investigate whether the combination of oral quercetin (Q) supplementation and exercise prevents mitochondrial biogenesis. Four groups of Wistar rats were tested: quercetin-sedentary (Q-sedentary); quercetin-exercised (Q-exercised); no-quercetin-sedentary (NQ-sedentary); and no-quercetin-exercised (NQ-exercised). Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups were supplemented with 25 mg/kg of quercetin throughout the experimental period. Sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels and the activity of citrate synthase (CS) were measured in the brain. Redox status was also quantified by measuring the enzymatic activity of catalase (CAT) and superoxide dismutase (SOD) and protein carbonyls content (PCC). Q-Exercised (P < 0.001) and Q-sedentary (P = 0.042) groups increased PCC. In the Q-sedentary, there was an antioxidant enzymatic activity modulation for CAT (P < 0.001) and SOD (P < 0.01) but not in the Q-exercised. Q-sedentary showed a similar response to exercise in the brain by increasing CS activity in the brain (P < 0.01) and by activating the transcription of SIRT1 (P < 0.001) and PGC-1α (P = 0.03). These effects were hampered in the Q-exercised group. Quercetin is a pro-oxidant agent in the brain, but it modulates antioxidant activity in a sedentary condition. Quercetin supplementation during exercise compromises mitochondrial biogenesis induced separately by quercetin and exercise.
Collapse
|
25
|
Russo GL, Russo M, Spagnuolo C. The pleiotropic flavonoid quercetin: from its metabolism to the inhibition of protein kinases in chronic lymphocytic leukemia. Food Funct 2014; 5:2393-2401. [DOI: 10.1039/c4fo00413b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Quercetin inhibits the key protein kinases active in chronic lymphocytic leukemia, ameliorating anticancer therapy.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Istituto Scienze dell'Alimentazione
- Consiglio Nazionale delle Ricerche
- CNR
- Avellino, Italy
| | - Maria Russo
- Istituto Scienze dell'Alimentazione
- Consiglio Nazionale delle Ricerche
- CNR
- Avellino, Italy
| | - Carmela Spagnuolo
- Istituto Scienze dell'Alimentazione
- Consiglio Nazionale delle Ricerche
- CNR
- Avellino, Italy
| |
Collapse
|
26
|
Wang G, Wang J, Luo J, Wang L, Chen X, Zhang L, Jiang S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J Biomed Mater Res A 2013; 101:3076-85. [PMID: 23529952 DOI: 10.1002/jbm.a.34607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 11/06/2022]
Abstract
In this study, PEGylated nanoparticles quercetin drug delivery vehicles were investigated as carriers for anticancer drugs induced programed cell death (PCD). PEG2000-DPSE-coated quercetin nanoparticles were prepared and tumor cell killing efficacy was studied on glioma C6 cells and assayed for cell survival, apoptosis, or necrosis. The levels of ROS production and mitochondrial membrane potential (ΔΨm) were determined. Western blot assayed p53, p-p53, cytochrome C, and caspase proteins expression were also studied. Results indicate that PEG2000-DPSE-QUE-NPS showed dose-dependent cytotoxicity to C6 glioma cells and enhanced ROS accumulation induced upregulation of p53 protein, which was accompanied with an increase in cytochrome c and caspase-3 protein levels. These results support the hypothesis that quercetin nanoparticles-coated PEG2000-DPSE remarkably enhanced anticancer effect of induced programed cell death on C6 glioma cells. Overall, PEG2000-DPSE-coated quercetin nanoparticles showed promising potential as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hospital Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Casuso RA, Martínez-López EJ, Nordsborg NB, Hita-Contreras F, Martínez-Romero R, Cañuelo A, Martínez-Amat A. Oral quercetin supplementation hampers skeletal muscle adaptations in response to exercise training. Scand J Med Sci Sports 2013; 24:920-7. [PMID: 24118142 DOI: 10.1111/sms.12136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
Abstract
We aimed to test exercise-induced adaptations on skeletal muscle when quercetin is supplemented. Four groups of rats were tested: quercetin sedentary, quercetin exercised, placebo sedentary, and placebo exercised. Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups were supplemented with quercetin, via gavage, on alternate days throughout the experimental period. Sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α mRNA levels, mitochondrial DNA (mtDNA) content, and citrate synthase (CS) activity were measured on quadriceps muscle. Redox status was also quantified by measuring muscle antioxidant enzymatic activity and oxidative damage product, such as protein carbonyl content (PCC). Quercetin supplementation increased oxidative damage in both exercised and sedentary rats by inducing higher amounts of PCC (P < 0.001). Quercetin supplementation caused higher catalase (P < 0.001) and superoxide dismutase (P < 0.05) activity in the non-exercised animals, but not when quercetin is supplemented during exercise. Quercetin supplementation increased SIRT1 expression, but when quercetin is supplemented during exercise, this effect is abolished (P < 0.001). The combination of exercise and quercetin supplementation caused lower (P < 0.05) mtDNA content and CS activity when compared with exercise alone. Quercetin supplementation during exercise provides a disadvantage to exercise-induced muscle adaptations.
Collapse
Affiliation(s)
- R A Casuso
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Turpaev KT. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. BIOCHEMISTRY (MOSCOW) 2013; 78:111-26. [PMID: 23581983 DOI: 10.1134/s0006297913020016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factor Nrf2 governs the expression of a considerable group of genes involved in cell protection against oxidants, electrophiles, and genotoxic compounds. The activity of Nrf2 is sensitive to xenobiotics and endogenous electrophiles. Nrf2 is negatively regulated by specific suppressor protein Keap1, which is also a receptor of electrophiles and adapter for Cul3 ubiquitin ligase. Electrophiles react with critical thiol groups of Keap1 leading to the loss of its ability to inhibit Nrf2. The Keap1-Nrf2 signaling pathway also down-regulates NF-κB transcriptional activity and attenuates cytokine-mediated induction of proinflammatory genes. Pharmacological activation of the Keap1-Nrf2 pathway can be used for treatment and prevention of many diseases. Widely known natural Keap1-Nrf2 activators include curcumin, quercetin, resveratrol, and sulforaphane. The most effective Keap1-Nrf2 activators are synthetic oleanane triterpenoids.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
29
|
Kurlbaum M, Mülek M, Högger P. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes. PLoS One 2013; 8:e63197. [PMID: 23646194 PMCID: PMC3639945 DOI: 10.1371/journal.pone.0063197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 04/02/2013] [Indexed: 02/05/2023] Open
Abstract
Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.
Collapse
Affiliation(s)
- Max Kurlbaum
- Universität Würzburg, Institut für Pharmazie und Lebensmittelchemie, Würzburg, Germany
| | - Melanie Mülek
- Universität Würzburg, Institut für Pharmazie und Lebensmittelchemie, Würzburg, Germany
| | - Petra Högger
- Universität Würzburg, Institut für Pharmazie und Lebensmittelchemie, Würzburg, Germany
- * E-mail:
| |
Collapse
|
30
|
Pham A, Bortolazzo A, White JB. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells. Biochem Biophys Res Commun 2012; 427:415-20. [DOI: 10.1016/j.bbrc.2012.09.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/30/2023]
|
31
|
Zhang YE, Ma HJ, Feng DD, Lai XF, Chen ZM, Xu MY, Yu QY, Zhang Z. Induction of detoxification enzymes by quercetin in the silkworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1034-1042. [PMID: 22812145 DOI: 10.1603/ec11287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Quercetin is one of the most abundant flavonoids and the defense secondary metabolites in plants. In this study, the effect of quercetin on the growth of the silkworm larvae was investigated. Cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and carboxylesterases (COE) were assayed after exposure to different concentrations of quercetin for 3 d (short-term) and 7 d (long-term), respectively. The results showed that the weight gain of the silkworm larvae significantly decreased after the larvae were treated by different concentrations of quercetin except for the treatment with 0.5% quercetin. Activities of P450, GST, and COE were induced by 0.5 or 1% concentration of quercetin. In the midgut, the induction activity of P450s was reached to the highest level (2.3-fold) by 1% quercetin for 7 d, the highest induction activities of GSTs toward CHP and CDNB were 4.1-fold and 2.6-fold of controls by 1% quercetin after 7 d exposure, respectively. For COEs, the highest activity (2.3-fold) was induced by 0.5% quercetin for 7 d. However, P450s in whole body were higher inducible activities in short-term treatment than those in long-term treatment. The responses of eight cytochrome P450 (CYP) genes belonged to CYP6 and CYP9 families and seven GST genes were detected with real-time polymerase chain reaction. In addition, the genes induced by quercetin significantly were confirmed by qRT-PCR. CYP6AB5, CYP6B29, and GSTe8 were identified as inducible genes, of which the highest induction levels were 10.9-fold (0.5% quercetin for 7 d), 6.2-fold (1% quercetin for 7 d), and 7.1-fold (1% quercetin for 7 d), respectively.
Collapse
Affiliation(s)
- Yue-E Zhang
- The Institute of Agricultural and Life Sciences, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cytotoxic and genotoxic effects of the quercetin/lanthanum complex on human cervical carcinoma cells in vitro. Arh Hig Rada Toksikol 2012; 62:221-7. [PMID: 21971105 DOI: 10.2478/10004-1254-62-2011-2122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quercetin is the main flavonoid in diet with a potential in the treatment of cancer, cardiovascular, and neurodegenerative diseases. Due to its specific planar chemical structure, quercetin readily forms chelates with metal ions. Complexes of bioactive compounds and metal ions such as lanthanum often show strong cytotoxic and antitumour properties. The aim of this study was to compare the genotoxic effects of the quercetin/lanthanum complex on human cervical carcinoma cells with compare it to the effects of free ligands, quercetin, and lanthanum alone. The quercetin/lanthanum complex showed considerable cytotoxicity in the concentration range of (100 to 1000) mmol mL-1 and exposure time of three hours. The complex also induced a dose-dependent pro-oxidative effects and the formation of single-strand and double-strand DNA breaks. Although we obtained promising results on the cell level, future experiments should answer whether the quercetin/lanthanum complex is cancer-specific and stable enough in physiological conditions to make a potential new antitumour drug.
Collapse
|
33
|
Wang G, Wang JJ, Yang GY, Du SM, Zeng N, Li DS, Li RM, Chen JY, Feng JB, Yuan SH, Ye F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine 2012; 7:271-80. [PMID: 22275840 PMCID: PMC3263417 DOI: 10.2147/ijn.s26935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Quercetin has been shown to induce apoptosis in a number of cancer cell lines, but a quercetin-loaded nanoliposomal formulation with enhanced antitumor activity in C6 glioma cells and its effect on cancer cell death has not been well studied. The aim of this study was to examine if quercetin-loaded liposomes (QUE-NL) has enhanced cytotoxic effects and if such effects involve type III programmed cell death in C6 glioma cells. Methods C6 glioma cells were treated with QUE-NL and assayed for cell survival, apoptosis, and necrosis. Levels of reactive oxygen species production and loss of mitochondrial membrane potential (ΔΨm) were also determined by flow cytometry assay to assess the effects of QUE-NL. ATP levels and lactate dehydrogenase activity were measured, and Western blotting was used to assay cytochrome C release and caspase expression. Results QUE-NL induced type III (necrotic) programmed cell death in C6 glioma cells in a dose-dependent and time-dependent manner. High concentrations of QUE-NL induced cell necrosis, which is distinct from apoptosis and autophagy, whereas liposomes administered alone induced neither significant apoptosis nor necrosis in C6 glioma cells. QUE-NL-induced ΔΨm loss and cytochrome C release had no effect on caspase activation, but decreased ATP levels and increased lactate dehydrogenase activity indicated that QUE-NL stimulated necrotic cell death. Conclusion C6 glioma cells treated with QUE-NL showed a cellular pattern associated with necrosis without apoptosis and was independent of caspase activity. Nonapoptotic cell death induced by high concentrations of QUE-NL for controlling caspase-independent type III programmed cell death may provide the basis for novel therapeutic approaches to overcome avoidance of apoptosis by malignant cells.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jacobs H, Moalin M, van Gisbergen MW, Bast A, van der Vijgh WJF, Haenen GRMM. An essential difference in the reactivity of the glutathione adducts of the structurally closely related flavonoids monoHER and quercetin. Free Radic Biol Med 2011; 51:2118-23. [PMID: 21982895 DOI: 10.1016/j.freeradbiomed.2011.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 01/12/2023]
Abstract
During the scavenging of free radicals flavonoids are oxidized to electrophilic quinones. Glutathione (GSH) can trap these quinones, thereby forming GSH-flavonoid adducts. The aim of this study was to compare the stability of the GSH-flavonoid adduct of 7-mono-O-(β-hydroxyethyl)rutoside (monoHER) with that of quercetin. It was found that GSH-quercetin reacts with the thiol N-acetyl-L-cysteine (NAC) to form NAC-quercetin, whereas GSH-monoHER does not react with NAC. In addition, the adduct of the monoHER quinone with the dithiol dithiothreitol (DTT) is relatively stable, whereas the DTT-quercetin adduct is readily converted into quercetin and DTT disulfide. These differences in reactivity of the thiol-flavonoid adducts demonstrate that GSH-monoHER is much more stable than GSH-quercetin. This difference in reactivity was corroborated by molecular quantum chemical calculations. Thus, although both flavonoid quinones are rapidly scavenged by GSH, the advantage of monoHER is that it forms a stable conjugate with GSH, thereby preventing a possible spread of toxicity. These findings demonstrate that even structurally comparable flavonoids behave differently, which will be reflected in the biological effects of these flavonoids.
Collapse
Affiliation(s)
- Hilde Jacobs
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A. Quercetin and cancer chemoprevention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:591356. [PMID: 21792362 PMCID: PMC3136711 DOI: 10.1093/ecam/neq053] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/09/2010] [Indexed: 02/06/2023]
Abstract
Several molecules present in the diet, including flavonoids, can inhibit the growth of cancer cells with an ability to act as "chemopreventers". Their cancer-preventive effects have been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. The antioxidant activity of chemopreventers has recently received a great interest, essentially because oxidative stress participates in the initiation and progression of different pathological conditions, including cancer. Since antioxidants are capable of preventing oxidative damage, the wide use of natural food-derived antioxidants is receiving greater attention as potential anti-carcinogens. Among flavonoids, quercetin (Qu) is considered an excellent free-radical scavenging antioxidant, even if such an activity strongly depends on the intracellular availability of reduced glutathione. Apart from antioxidant activity, Qu also exerts a direct, pro-apoptotic effect in tumor cells, and can indeed block the growth of several human cancer cell lines at different phases of the cell cycle. Both these effects have been documented in a wide variety of cellular models as well as in animal models. The high toxicity exerted by Qu on cancer cells perfectly matches with the almost total absence of any damages for normal, non-transformed cells. In this review we discuss the molecular mechanisms that are based on the biological effects of Qu, and their relevance for human health.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Biomedical Sciences, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dixon DP, Edwards R. Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing. J Biol Chem 2010; 285:36322-9. [PMID: 20841361 PMCID: PMC2978560 DOI: 10.1074/jbc.m110.164806] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/31/2010] [Indexed: 01/07/2023] Open
Abstract
The glutathione transferases (GSTs) of plants are a superfamily of abundant enzymes whose roles in endogenous metabolism are largely unknown. For example, the lambda class of GSTs (GSTLs) have members that are selectively induced by chemical stress treatments and based on their enzyme chemistry are predicted to have roles in redox homeostasis. However, using conventional approaches these functions have yet to be determined. To address this, recombinant GSTLs from wheat and Arabidopsis were tagged with a Strep tag and after affinity-immobilization, incubated with extracts from Arabidopsis, tobacco, and wheat. Bound ligands were then recovered by solvent extraction and identified by mass spectrometry (MS). With the wheat enzyme TaGSTL1, the ligand profiles obtained with in vitro extracts from tobacco closely matched those observed after the protein had been expressed in planta, demonstrating that these associations were physiologically representative. The stress-inducible TaGSTL1 was found to selectively recognize flavonols (e.g. taxifolin; K(d) = 25 nM), with this binding being dependent upon S-glutathionylation of an active site cysteine. In the case of the wheat extracts, this selectivity in ligand recognitions lead to the detection of flavonols that had not been previously described in this cereal. Subsequent in vitro assays showed that the co-binding of flavonols, such as quercetin, to the thiolated TaGSTL1 represented an intermediate step in the reduction of the respective S-glutathionylated quinone derivatives to yield free flavonols. These results suggest a novel role for GSTLs in maintaining the flavonoid pool under stress conditions.
Collapse
Affiliation(s)
- David P. Dixon
- From the Centre for Bioactive Chemistry, School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Robert Edwards
- From the Centre for Bioactive Chemistry, School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
37
|
Muller M. Polyphenol cytotoxicity induced by the bacterial toxin pyocyanin: role of NQO1. Free Radic Biol Med 2009; 47:84-91. [PMID: 19362588 DOI: 10.1016/j.freeradbiomed.2009.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/01/2009] [Accepted: 04/08/2009] [Indexed: 11/20/2022]
Abstract
Pyocyanin is an important bacterial redox-active toxin produced by the opportunistic human pathogen Pseudomonas aeruginosa. The bacterium is a cause of serious infections of the respiratory tract, particularly for those with cystic fibrosis and for those with burn injuries. Pyocyanin induces oxidative stress and causes cells to become prematurely senescent, which compromises tissue remodeling and wound repair. A diverse range of antioxidants have been found useful in preventing oxidant-induced cellular senescence, including quercetin, a common dietary polyphenol. This study evaluated the effectiveness of three common polyphenols (quercetin, (+)-catechin, and (-)-epicatechin) as potential inhibitors of pyocyanin-induced senescence. Whereas at the lowest concentration the polyphenols maintained cellular replicative capacity, in the presence of pyocyanin they unexpectedly displayed concentration-dependent cytotoxicity with a rank order of quercetin>epicatechin>>catechin. On oxidation, polyphenols with B-ring catechol functionality form toxic alkylating quinones that are normally inactivated by cellular antioxidant defense and redox maintenance systems, including reduction by ascorbate and NAD(P)H:quinone oxidoreductase 1 (NQO1). Pyocyanin inhibited cellular NQO1 activity at low micromolar concentrations, but the presence of exogenous ascorbate eliminated pyocyanin-induced polyphenol cytotoxicity. These data indicate that pyocyanin compromises cellular redox maintenance systems, leaving cells susceptible to the adverse effects of otherwise nontoxic redox-active compounds.
Collapse
Affiliation(s)
- Michael Muller
- Centre for Education and Research on Ageing, University of Sydney, Concord RG Hospital, Sydney, NSW 2139, Australia.
| |
Collapse
|
38
|
Jacobs H, van der Vijgh WJF, Koek GH, Draaisma GJJ, Moalin M, van Strijdonck GPF, Bast A, Haenen GRMM. Characterization of the glutathione conjugate of the semisynthetic flavonoid monoHER. Free Radic Biol Med 2009; 46:1567-73. [PMID: 19272444 DOI: 10.1016/j.freeradbiomed.2009.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/03/2023]
Abstract
Flavonoids protect against oxidative stress by scavenging free radicals. During this protection flavonoids are oxidized. The oxidized flavonoids formed are often reactive. Consequently, protection by flavonoids can result in the formation of toxic products. In this study the oxidation of 7-mono-O-(beta-hydroxyethyl)rutoside (monoHER), which is a constituent of the registered drug Venoruton, was studied in the absence and presence of glutathione (GSH). MonoHER was oxidized by horseradish peroxidase/H(2)O(2). Spectrophotometric and HPLC analysis showed that in the presence of GSH, a monoHER-GSH conjugate was formed, which was identified as 2'-glutathionyl monohydroxyethylrutoside by mass spectrometric analysis and (1)H NMR. Preferential formation of this glutathione adduct in the B ring at C2' was confirmed by molecular quantum chemical calculations. This conjugate was also detected in the bile fluid of a healthy volunteer after iv administration of monoHER, demonstrating its formation in vivo. These results indicate that in the process of offering protection against free radicals, monoHER is converted into an oxidation product that is reactive toward thiols. The formation of this thiol-reactive oxidation product is potentially harmful. Thus, the supposed beneficial effect of monoHER as an antioxidant may be accompanied by the formation of products with an electrophilic, toxic potential.
Collapse
Affiliation(s)
- Hilde Jacobs
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fu PP, Chiang HM, Xia Q, Chen T, Chen BH, Yin JJ, Wen KC, Lin G, Yu H. Quality assurance and safety of herbal dietary supplements. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2009; 27:91-119. [PMID: 19412857 DOI: 10.1080/10590500902885676] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the U.S. Congress passed the Dietary Supplement Health and Education Act (DSHEA) in 1994, use of herbal products has been growing rapidly worldwide. To ensure consumer health protection, the quality and safety of herbal plants, particularly those used for dietary supplement preparations, must be determined. To date, toxicological data on the identification of genotoxic and tumorigenic ingredients in many raw herbs and their mechanisms of action are lacking. Thus, identification of carcinogenic components in herbal plants is timely and important. In this review, the issues of quality control and safety evaluation of raw herbs and herbal dietary supplements are discussed. Two examples of tumorigenicity and mechanism of tumor induction are discussed: aristolochic acid and riddelliine, both of which have been detected in Chinese herbal plants. It is proposed that an organized effort with international participation on cancer risk assessment should be actively pursued so that the safety of commercial herbal plants and herbal dietary supplements can be ensured.
Collapse
Affiliation(s)
- Peter P Fu
- National Center for Toxicological Research, Jefferson, Arkansas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boots AW, Drent M, Swennen EL, Moonen HJ, Bast A, Haenen GR. Antioxidant status associated with inflammation in sarcoidosis: A potential role for antioxidants. Respir Med 2009; 103:364-72. [DOI: 10.1016/j.rmed.2008.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/15/2008] [Accepted: 10/06/2008] [Indexed: 11/15/2022]
|
41
|
Interaction between antioxidants in assays of total antioxidant capacity. Food Chem Toxicol 2008; 46:2365-8. [DOI: 10.1016/j.fct.2008.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 03/13/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
|
42
|
Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585:325-37. [PMID: 18417116 DOI: 10.1016/j.ejphar.2008.03.008] [Citation(s) in RCA: 1232] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/05/2008] [Accepted: 03/10/2008] [Indexed: 12/21/2022]
Abstract
Quercetin, a member of the flavonoids family, is one of the most prominent dietary antioxidants. It is ubiquitously present in foods including vegetables, fruit, tea and wine as well as countless food supplements and is claimed to exert beneficial health effects. This includes protection against various diseases such as osteoporosis, certain forms of cancer, pulmonary and cardiovascular diseases but also against aging. Especially the ability of quercetin to scavenge highly reactive species such as peroxynitrite and the hydroxyl radical is suggested to be involved in these possible beneficial health effects. Consequently, numerous studies have been performed to gather scientific evidence for these beneficial health claims as well as data regarding the exact mechanism of action and possible toxicological aspects of this flavonoid. The purpose of this review is to evaluate these studies in order to elucidate the possible health-beneficial effects of the antioxidant quercetin. Firstly, the definitions as well as the most important aspects regarding free radicals, antioxidants and oxidative stress will be discussed as background information. Subsequently, the mechanism by which quercetin may operate as an antioxidant (tested in vitro) as well as the potential use of this antioxidant as a nutraceutical (tested both ex vivo and in vivo) will be discussed.
Collapse
|
43
|
Thangasamy T, Sittadjody S, Lanza-Jacoby S, Wachsberger PR, Limesand KH, Burd R. Quercetin Selectively Inhibits Bioreduction and Enhances Apoptosis in Melanoma Cells That Overexpress Tyrosinase. Nutr Cancer 2007; 59:258-68. [DOI: 10.1080/01635580701499545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Bruynzeel AME, Niessen HWM, Bronzwaer JGF, van der Hoeven JJM, Berkhof J, Bast A, van der Vijgh WJF, van Groeningen CJ. The effect of monohydroxyethylrutoside on doxorubicin-induced cardiotoxicity in patients treated for metastatic cancer in a phase II study. Br J Cancer 2007; 97:1084-9. [PMID: 17940501 PMCID: PMC2360436 DOI: 10.1038/sj.bjc.6603994] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the cardioprotective effect of the semisynthetic flavonoid 7-monohydroxyethylrutoside (monoHER) on doxorubicin (DOX)-induced cardiotoxicity in a phase II study in patients with metastatic cancer. Eight patients with metastatic cancer were treated with DOX preceded by a 10 min i.v. infusion of 1500 mg m−2 monoHER. Five patients were examined by endomyocardial biopsy after reaching a cumulative dose of 300 mg m−2. Histopathological changes in the cardiomyocytes (Billingham score) were compared with those described in literature for patients treated with DOX only. The mean biopsy score of the patients was higher (2.7) than the mean score (1.4) of historical data of patients who received similar cumulative doses of DOX. Although there is a considerable variability in few investigated patients, it was indicative that monoHER enhanced DOX-induced cardiotoxicity. However, the antitumour activity of DOX seemed better than expected: three of the four patients with metastatic soft-tissue sarcoma had a partial remission and the fourth patient stable disease. It is likely that the relatively high dose of monoHER is responsible for the lack of cardioprotection and for the high response rate in patients with soft-tissue sarcoma possibly by depleting the glutathione defense system in both heart and tumour.
Collapse
Affiliation(s)
- A M E Bruynzeel
- Department of Medical Oncology, 2 PK BR 010, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kaiserová H, Simůnek T, van der Vijgh WJF, Bast A, Kvasnicková E. Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1065-74. [PMID: 17572073 DOI: 10.1016/j.bbadis.2007.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 11/27/2022]
Abstract
Anthracycline antibiotics (e.g. doxorubicin and daunorubicin) are among the most effective and widely used anticancer drugs. Unfortunately, their clinical use is limited by the dose-dependent cardiotoxicity. Flavonoids represent a potentially attractive class of compounds to mitigate the anthracycline cardiotoxicity due to their iron-chelating, antioxidant and carbonyl reductase-inhibitory effects. The relative contribution of various characteristics of the flavonoids to their cardioprotective activity is, however, not known. A series of ten flavonoids including quercetin, quercitrin, 7-monohydroxyethylrutoside (monoHER) and seven original synthetic compounds were employed to examine the relationships between their inhibitory effects on carbonyl reduction, iron-chelation and antioxidant properties with respect to their protective potential against doxorubicin-induced cardiotoxicity. Cardioprotection was investigated in the neonatal rat ventricular cardiomyocytes whereas the H9c2 cardiomyoblast cells were used for cytotoxicity testing. Iron chelation was examined via the calcein assay and antioxidant effects and site-specific scavenging were quantified by means of inhibition of lipid peroxidation and hydroxyl radical scavenging activity, respectively. Inhibition of carbonyl reductases was assessed in cytosol from human liver. None of the flavonoids tested had better cardioprotective action than the reference cardioprotector, monoHER. However, a newly synthesized quaternary ammonium analog with comparable cardioprotective effects has been identified. No direct correlation between the iron-chelating and/or antioxidant effect and cardioprotective potential has been found. A major role of carbonyl reductase inhibition seems unlikely, as the best two cardioprotectors of the series are only weak reductase inhibitors.
Collapse
Affiliation(s)
- Helena Kaiserová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
46
|
Boots AW, Li H, Schins RPF, Duffin R, Heemskerk JWM, Bast A, Haenen GRMM. The quercetin paradox. Toxicol Appl Pharmacol 2007; 222:89-96. [PMID: 17537471 DOI: 10.1016/j.taap.2007.04.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 03/21/2007] [Accepted: 04/17/2007] [Indexed: 12/31/2022]
Abstract
Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H(2)O(2)-induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chan PC, Xia Q, Fu PP. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:211-44. [PMID: 17763047 DOI: 10.1080/10590500701569414] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ginkgo biloba leave extract is among the most widely sold herbal dietary supplements in the United States. Its purported biological effects include: scavenging free radical; lowering oxidative stress; reducing neural damages, reducing platelets aggregation; anti-inflammation; anti-tumor activities; and anti-aging. Clinically, it has been prescribed to treat CNS disorders such as Alzheimer's disease and cognitive deficits. It exerts allergy and changes in bleeding time. While its mutagenicity or carcinogenic activity has not been reported, its components, quercetin, kaempferol and rutin have been shown to be genotoxic. There are no standards or guidelines regulating the constituent components of Ginkgo biloba leave extract nor are exposure limits imposed. Safety evaluation of Ginkgo biloba leave extract is being conducted by the U.S. National Toxicology Program.
Collapse
Affiliation(s)
- Po-Chuen Chan
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
48
|
Coleman MD, Rimmer GSE, Haenen GRMM. Effects of lipoic acid and dihydrolipoic acid on total erythrocytic thiols under conditions of restricted glucose in vitro. Basic Clin Pharmacol Toxicol 2007; 100:139-44. [PMID: 17244264 DOI: 10.1111/j.1742-7843.2006.00025.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of lipoic acid and dihydrolipoic acid were explored on total thiol maintenance in diabetic and non-diabetic human erythrocytes in vitro over 22 hr in a 37 degrees C incubation system with no added glucose. Over 18-22.5 hr after treatment in both non-diabetic and diabetic cells, lipoic acid (1 mM) was associated with greater loss of cellular thiols than dihydrolipoic acid (1 mM), compared to respective control values. At 0.1 mM, in non-diabetic cells, although lipoic acid-treated cells' thiol levels were significantly lower than control, there was no significant difference between dihydrolipoic acid-treated cells and control cells regarding thiol levels. In addition, at 0.1 mM, dihydrolipoic acid-treated diabetic cells showed a reduction in thiol levels compared to control. At 0.01 mM, lipoic acid-treated cells had significantly lower measured thiol levels compared with diabetic cells exposed to dihydrolipoic acid, whereas in non-diabetic cells, dihydrolipoic acid-treated erythrocytic thiol levels were significantly greater than those treated with lipoic acid, although there were no other significant differences between the groups. At 22.5 hr, control values of methaemoglobin rose to 6.4 +/- 1.1% in diabetic cells and 3.6 +/- 2.1% in non-diabetic cells. Lipoic acid (1 mM) showed greater methaemoglobin formation in diabetic rather than non-diabetic cells (13.6 +/- 1.5% versus 11.6 +/- 1.5%), whereas dihydrolipoic acid-treated diabetic and non-diabetic cells were less potent in methaemoglobin generation (8.5 +/- 2.4% and 8.4 +/- 1.4%, respectively). These studies suggest that in certain circumstances such as hypoglycaemia, lipoic acid administration may actually be detrimental to cellular oxidant protection status.
Collapse
Affiliation(s)
- Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | |
Collapse
|
49
|
Bruynzeel AME, Vormer-Bonne S, Bast A, Niessen HWM, van der Vijgh WJF. Long-term effects of 7-monohydroxyethylrutoside (monoHER) on DOX-induced cardiotoxicity in mice. Cancer Chemother Pharmacol 2006; 60:509-14. [PMID: 17177067 DOI: 10.1007/s00280-006-0395-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/28/2006] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) is a potent antitumor agent for different types of cancer, but the cumulative, dose-related cardiotoxicity limits its clinical use. The incidence of abnormal cardiac function after treatment with DOX appears to increase with time. Therefore, late cardiotoxicity is-especially in young surviving patients-a major concern. The aim of this study was to evaluate in mice whether the semisynthetic flavonoid 7-monohydroxyethylrutoside (monoHER) also protected against DOX-induced cardiotoxicity after a long period of follow-up. Four groups of 6 Balb/c mice were treated weekly during 6 weeks with saline, DOX alone (4 mg/kg i.v.), DOX preceded by monoHER (500 mg/kg i.p.), or DOX preceded by monoHER followed by long-term weekly monoHER injections during the observation period of 6 months. Half of the mice treated with DOX only developed DOX-induced heart failure and died within 6 months of observation. Two mice co-treated with monoHER showed weight loss and shortness of breath, whereas one mouse was found dead in its cage known with weight loss. The group receiving DOX plus long-term repeated doses of monoHER started to lose weight. Five out of six mice in this group developed shortness of breath and died before the end of the study with symptoms of cardiac failure induced by DOX. Statistical comparison of the histological heart damage between the different experimental groups was not possible, because the animals died at different time-points in the observation period and DOX-induced cardiotoxicity progressed with time. Nevertheless, it was clear that the initial cardioprotective effect of monoHER was not prolonged during the half-year observation period. It was even suggested that addition of repeated doses of monoHER tended to aggravate DOX-induced cardiotoxicity. It cannot be excluded that the dose and frequency of monoHER administration is crucial in obtaining an optimal antioxidant activity without a pro-oxidant activity of monoHER.
Collapse
Affiliation(s)
- Anna M E Bruynzeel
- Department of Medical Oncology, VU University Medical Center, 1081 HV, CCA-Building, room 1.38, De Boelelaan 1117, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Coleman MD, Williams C, Haenen GRMM. Effects of Lipoic Acid and Dihydrolipoic Acid on 4-Aminophenol-Mediated Erythrocytic Toxicity in vitro. Basic Clin Pharmacol Toxicol 2006; 99:225-9. [PMID: 16930295 DOI: 10.1111/j.1742-7843.2006.pto_499.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of the antioxidant lipoic acid and its reduced form, dihydrolipoic acid (DHLA), were studied on the process of the erythrocytic toxicity of 4-aminophenol in human erythrocytes in vitro. 4-Aminophenol alone caused a stepwise increase in methaemoglobin formation, along with a commensurate decrease in total thiols. At 10 min., in the presence of lipoic acid alone and the thiol depletor 1-chloro-2,4-dinitrobenzene (CDNB) alone, 4-aminophenol-mediated methaemoglobin formation was significantly increased, whilst thiol levels were significantly reduced compared with the 4-aminophenol alone. At 10 min., with DHLA and CDNB alone, 4-aminophenol was associated with significantly increased methaemoglobin formation. However, thiol levels were not significantly different in the presence of DHLA compared with 4-aminophenol alone, although thiol levels were different compared with control (4-aminophenol alone) in the incubations with CDNB alone. At 15 min., only CDNB/4-aminophenol methaemoglobin formation differed from control, whilst thiol levels were significantly lower in the presence of CDNB alone compared with 4-aminophenol alone. Lipoic acid enhanced the toxicity of 4-aminophenol in terms of increased methaemoglobin formation coupled with increased thiol depletion, whilst DHLA showed increased 4-aminophenol-mediated methaemoglobin formation without thiol depletion. Lipoic acid, and to a lesser extent its reduced derivative DHLA, acted as a prooxidant in the presence of 4-aminophenol, enhancing the oxidative stress effects of the amine in human erythrocytes.
Collapse
Affiliation(s)
- Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | |
Collapse
|