1
|
Naia L, Ly P, Mota SI, Lopes C, Maranga C, Coelho P, Gershoni-Emek N, Ankarcrona M, Geva M, Hayden MR, Rego AC. The Sigma-1 Receptor Mediates Pridopidine Rescue of Mitochondrial Function in Huntington Disease Models. Neurotherapeutics 2021; 18:1017-1038. [PMID: 33797036 PMCID: PMC8423985 DOI: 10.1007/s13311-021-01022-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 12/23/2022] Open
Abstract
Pridopidine is a selective Sigma-1 receptor (S1R) agonist in clinical development for Huntington disease (HD) and amyotrophic lateral sclerosis. S1R is a chaperone protein localized in mitochondria-associated endoplasmic reticulum (ER) membranes, a signaling platform that regulates Ca2+ signaling, reactive oxygen species (ROS) and mitochondrial fission. Here, we investigate the protective effects of pridopidine on various mitochondrial functions in human and mouse HD models. Pridopidine effects on mitochondrial dynamics were assessed in primary neurons from YAC128 HD mice expressing the mutant human HTT gene. We observe that pridopidine prevents the disruption of mitochondria-ER contact sites and improves the co-localization of inositol 1,4,5-trisphosphate receptor (IP3R) and its chaperone S1R with mitochondria in YAC128 neurons, leading to increased mitochondrial activity, elongation, and motility. Increased mitochondrial respiration is also observed in YAC128 neurons and in pridopidine-treated HD human neural stem cells (hNSCs). ROS levels were assessed after oxidative insult or S1R knockdown in pridopidine-treated YAC128 neurons, HD hNSCs, and human HD lymphoblasts. All HD models show increased ROS levels and deficient antioxidant response, which are efficiently rescued with pridopidine. Importantly, pridopidine treatment before H2O2-induced mitochondrial dysfunction and S1R presence are required for HD cytoprotection. YAC128 mice treated at early/pre-symptomatic age with pridopidine show significant improvement in motor coordination, indicating a delay in symptom onset. Additionally, in vivo pridopidine treatment reduces mitochondrial ROS levels by normalizing mitochondrial complex activity. In conclusion, S1R-mediated enhancement of mitochondrial function contributes to the neuroprotective effects of pridopidine, providing insight into its mechanism of action and therapeutic potential.
Collapse
Affiliation(s)
- Luana Naia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Philip Ly
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carina Maranga
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patrícia Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Maria Ankarcrona
- Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael R Hayden
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Prilenia Therapeutics LTD, Herzliya, Israel
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Avci D, Malchus NS, Heidasch R, Lorenz H, Richter K, Neßling M, Lemberg MK. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J Biol Chem 2018; 294:2786-2800. [PMID: 30578301 DOI: 10.1074/jbc.ra118.005642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.
Collapse
Affiliation(s)
- Dönem Avci
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Nicole S Malchus
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Ronny Heidasch
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Holger Lorenz
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Karsten Richter
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Michelle Neßling
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| |
Collapse
|
3
|
Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hällbrink M, Jørgensen AS, Ekwall K, Zain R, Wengel J, Lundin KE, Smith CIE. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Res 2017; 45:5153-5169. [PMID: 28334749 PMCID: PMC5435994 DOI: 10.1093/nar/gkx111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease. In addition, it has been suggested that the muHTT transcript contributes to the toxicity. Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT knock-down of both mRNA and protein was successfully achieved. Diminished phosphorylation of HTT gene-associated RNA-polymerase II is demonstrated, suggestive of reduced transcription downstream the ON-targeted repeat. Different backbone chemistries were found to have a strong impact on the ON efficiency. We also successfully use different delivery vehicles as well as naked uptake of the ONs, demonstrating versatility and possibly providing insights for in vivo applications.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azareeta, 21 521 Alexandria, Egypt
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Lee Siggens
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, SE-141 86, Huddinge, Stockholm, Sweden
| | - Mattias Hällbrink
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anna S Jørgensen
- Department of Physics and Chemistry, Nucleic Acid Centre University of Southern Denmark, DK-5230 Odense, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, SE-141 86, Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jesper Wengel
- Department of Physics and Chemistry, Nucleic Acid Centre University of Southern Denmark, DK-5230 Odense, Denmark
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Kalathur RKR, Pedro Pinto J, Sahoo B, Chaurasia G, Futschik ME. HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington's Disease. Sci Rep 2017; 7:5216. [PMID: 28701700 PMCID: PMC5507972 DOI: 10.1038/s41598-017-05224-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.
Collapse
Affiliation(s)
- Ravi Kiran Reddy Kalathur
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - José Pedro Pinto
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | | | - Gautam Chaurasia
- Institute for Theoretical Biology, Charité, Humboldt-University, Berlin, Germany
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal. .,School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom.
| |
Collapse
|
5
|
Ramaswamy S, Shannon KM, Kordower JH. Huntington's Disease: Pathological Mechanisms and Therapeutic Strategies. Cell Transplant 2017; 16:301-12. [PMID: 17503740 DOI: 10.3727/000000007783464687] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that occurs in patients with a mutation in the huntingtin or IT15 gene. Patients are plagued by early cognitive signs, motor deficits, and psychiatric disturbances. Symptoms are attributed to cell death in the striatum and disruption of cortical–striatal circuitry. Mechanisms of cell death are unclear, but processes involving mitochondrial abnormalities, excitotoxicity, and abnormal protein degradation have been implicated. Many factors likely contribute to neuron death and dysfunction, and this has made it difficult to systematically address the pathology in HD. Pharmaceutical therapies are commonly used in patients to treat disease symptoms. These have limited benefit and do not address the inexorable disease progression. Several neuroprotective therapies are being evaluated in animal models of HD as well as in clinical trials. Similarly, cell replacement strategies such as fetal transplantation have been used in the clinic with minimal success, making future cell replacement strategies such as stem cell therapy uncertain. This review describes the disease pathology in HD and addresses many of the past and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Shilpa Ramaswamy
- Department of Neuroscience, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
6
|
Nath S, Munsie LN, Truant R. A huntingtin-mediated fast stress response halting endosomal trafficking is defective in Huntington's disease. Hum Mol Genet 2014; 24:450-62. [PMID: 25205111 DOI: 10.1093/hmg/ddu460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular stress is a normal part of the aging process and is especially relevant in neurodegenerative disease. Canonical stress responses, such as the heat shock response, activate following exposure to stress and restore proteostasis through the action of isomerases and chaperones within the cytosol. Through live-cell imaging, we demonstrate involvement of the Huntington's disease (HD) protein, huntingtin, in a rapid cell stress response that lies temporally upstream of canonical stress responses. This response is characterized by the formation of distinct cytosolic puncta and reversible localization of huntingtin to early endosomes. The formation of these puncta, which we have termed huntingtin stress bodies (HSBs), is associated with arrest of early-to-recycling and early-to-late endosomal trafficking. The critical domains for this response have been mapped to two regions of huntingtin flanking the polyglutamine tract, and we observe polyglutamine-expanded huntingtin-expressing cells to be defective in their ability to recover from this stress response. We propose that HSB formation rapidly diverts high ATP use from vesicular trafficking during stress, thus mobilizing canonical stress responses without relying on increased energy metabolism, and that restoration from this response is defective in HD.
Collapse
Affiliation(s)
- Siddharth Nath
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5 and
| | - Lise N Munsie
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5 and
| |
Collapse
|
7
|
Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. Drug Discov Today 2014; 19:963-71. [PMID: 24632005 DOI: 10.1016/j.drudis.2014.02.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/27/2014] [Indexed: 12/25/2022]
Abstract
Autophagy is the cellular process by which proteins, macromolecules, and organelles are targeted to and degraded by the lysosome. Given that neurodegenerative diseases involve the production of misfolded proteins that cannot be degraded by the protein quality-control systems of the cell, the autophagy pathway is now the focus of intense scrutiny, because autophagy is primarily responsible for maintaining normal cellular proteostasis in the central nervous system (CNS). Huntington's disease (HD) is an inherited CAG-polyglutamine repeat disorder, resulting from the production and accumulation of misfolded huntingtin (Htt) protein. HD shares key features with common neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD) and, thus, belongs to a large class of disorders known as neurodegenerative proteinopathies. Multiple independent lines of research have documented alterations in autophagy function in HD, and numerous studies have demonstrated a potential role for autophagy modulation as a therapeutic intervention. In this review, we consider the evidence for autophagy dysfunction in HD, and delineate different targets and mechanistic pathways that might account for the autophagy abnormalities detected in HD. We assess the utility of autophagy modulation as a treatment modality in HD, and suggest guidelines and caveats for future therapy development directed at the autophagy pathway in HD and related disorders.
Collapse
Affiliation(s)
- Constanza J Cortes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
8
|
Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014; 15:233-49. [PMID: 24619348 DOI: 10.1038/nrn3689] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
Collapse
Affiliation(s)
- Claudio Hetz
- 1] Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. [2] Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile. [3] Neurounion Biomedical Foundation, Santiago, Chile. [4] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UMS3444 Biosciences Lyon Gerland, University of Lyon, Lyon 69364, France
| |
Collapse
|
9
|
Martí E, Estivill X. Small non-coding RNAs add complexity to the RNA pathogenic mechanisms in trinucleotide repeat expansion diseases. Front Mol Neurosci 2013; 6:45. [PMID: 24348326 PMCID: PMC3848198 DOI: 10.3389/fnmol.2013.00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/12/2013] [Indexed: 12/02/2022] Open
Abstract
Trinucleotide-repeat expansion diseases (TREDs) are a group of inherited human genetic disorders normally involving late-onset neurological/neurodegenerative affectation. Trinucleotide-repeat expansions occur in coding and non-coding regions of unique genes that typically result in protein and RNA toxic gain of function, respectively. In polyglutamine (polyQ) disorders caused by an expanded CAG repeat in the coding region of specific genes, neuronal dysfunction has been traditionally linked to the long polyQ stretch. However, a number of evidences suggest a detrimental role of the expanded/mutant mRNA, which may contribute to cell function impairment. In this review we describe the mechanisms of RNA-induced toxicity in TREDs with special focus in small-non-coding RNA pathogenic mechanisms and we summarize and comment on translational approaches targeting the expanded trinucleotide-repeat for disease modifying therapies.
Collapse
Affiliation(s)
- Eulàlia Martí
- Genomics and Disease, Bioinformatics and Genomics Programme, Centre for Genomic Regulation Barcelona, Spain ; Universitat Pompeu Fabra Barcelona, Spain
| | - Xavier Estivill
- Genomics and Disease, Bioinformatics and Genomics Programme, Centre for Genomic Regulation Barcelona, Spain ; Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
10
|
Potential for therapeutic manipulation of the UPR in disease. Semin Immunopathol 2013; 35:351-73. [PMID: 23572207 PMCID: PMC3641308 DOI: 10.1007/s00281-013-0370-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022]
Abstract
Increased endoplasmic reticulum (ER) stress and the activated unfolded protein response (UPR) signaling associated with it play key roles in physiological processes as well as under pathological conditions. The UPR normally protects cells and re-establishes cellular homeostasis, but prolonged UPR activation can lead to the development of various pathologies. These features make the UPR signaling pathway an attractive target for the treatment of diseases whose pathogenesis is characterized by chronic activation of this pathway. Here, we focus on the molecular signaling pathways of the UPR and suggest possible ways to target this response for therapeutic purposes.
Collapse
|
11
|
Hu J, Liu J, Yu D, Chu Y, Corey DR. Mechanism of allele-selective inhibition of huntingtin expression by duplex RNAs that target CAG repeats: function through the RNAi pathway. Nucleic Acids Res 2012; 40:11270-80. [PMID: 23042244 PMCID: PMC3526262 DOI: 10.1093/nar/gks907] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease is an incurable neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat within one allele of the huntingtin (HTT) gene. Agents that block expression of mutant HTT and preserve expression of wild-type HTT target the cause of the disease and are an alternative for therapy. We have previously demonstrated that mismatch-containing duplex RNAs complementary to the expanded trinucleotide repeat are potent and allele-selective inhibitors of mutant HTT expression, but the mechanism of allele selectivity was not explored. We now report that anti-CAG duplex RNA preferentially recruits argonaute 2 (AGO2) to mutant rather than wild-type HTT mRNA. Efficient inhibition of mutant HTT protein expression requires less AGO2 than needed for inhibiting wild-type expression. In contrast, inhibiting the expression of mutant HTT protein is highly sensitive to reduced expression of GW182 (TNRC6A) and its two paralogs, a protein family associated with miRNA action. Allele-selective inhibition may involve cooperative binding of multiple protein-RNA complexes to the expanded repeat. These data suggest that allele-selective inhibition proceeds through an RNA interference pathway similar to that used by miRNAs and that discrimination between mutant and wild-type alleles of HTT mRNA is highly sensitive to the pool of AGO2 and GW182 family proteins inside cells.
Collapse
Affiliation(s)
| | | | | | | | - David R. Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390-9041, USA
| |
Collapse
|
12
|
Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, Lima WF, Crooke ST, Prakash TP, Corey DR. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 2012; 150:895-908. [PMID: 22939619 PMCID: PMC3444165 DOI: 10.1016/j.cell.2012.08.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/31/2012] [Accepted: 08/01/2012] [Indexed: 01/23/2023]
Abstract
Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the efficiency of RNAi. Here, we describe RNAi by single-stranded siRNAs (ss-siRNAs). ss-siRNAs are potent (>100-fold more than unmodified RNA) and allele-selective (>30-fold) inhibitors of mutant HTT expression in cells derived from HD patients. Strategic placement of mismatched bases mimics micro-RNA recognition and optimizes discrimination between mutant and wild-type alleles. ss-siRNAs require Argonaute protein and function through the RNAi pathway. Intraventricular infusion of ss-siRNA produced selective silencing of the mutant HTT allele throughout the brain in a mouse HD model. These data demonstrate that chemically modified ss-siRNAs function through the RNAi pathway and provide allele-selective compounds for clinical development.
Collapse
Affiliation(s)
- Dongbo Yu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas, USA, 75390-9041
| | - Hannah Pendergraff
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas, USA, 75390-9041
| | - Jing Liu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas, USA, 75390-9041
| | - Holly B. Kordasiewicz
- Department of Cellular and Molecular Medicine, Univ. of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0670
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California, USA, 92010
| | - Don W. Cleveland
- Department of Cellular and Molecular Medicine, Univ. of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0670
| | - Eric E. Swayze
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California, USA, 92010
| | - Walt F. Lima
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California, USA, 92010
| | - Stanley T. Crooke
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California, USA, 92010
| | - Thazha P. Prakash
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California, USA, 92010
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas, USA, 75390-9041
| |
Collapse
|
13
|
Abstract
Autophagy is a dynamic cellular pathway involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. The integrity of postmitotic neurons is heavily dependent on high basal autophagy compared to non-neuronal cells as misfolded proteins and damaged organelles cannot be diluted through cell division. Moreover, neurons contain the specialized structures for intercellular communication, such as axons, dendrites and synapses, which require the reciprocal transport of proteins, organelles and autophagosomes over significant distances from the soma. Defects in autophagy affect the intercellular communication and subsequently, contributing to neurodegeneration. The presence of abnormal autophagic activity is frequently observed in selective neuronal populations afflicted in common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. These observations have provoked controversy regarding whether the increase in autophagosomes observed in the degenerating neurons play a protective role or instead contribute to pathogenic neuronal cell death. It is still unknown what factors may determine whether active autophagy is beneficial or pathogenic during neurodegeneration. In this review, we consider both the normal and pathophysiological roles of neuronal autophagy and its potential therapeutic implications for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin H Son
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | |
Collapse
|
14
|
Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM, Glimcher LH, Hetz C. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 2012; 21:2245-62. [PMID: 22337954 DOI: 10.1093/hmg/dds040] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.
Collapse
Affiliation(s)
- Rene L Vidal
- Faculty of Medicine, Neuroscience Biomedical Institute, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramaswamy S, Kordower JH. Gene therapy for Huntington's disease. Neurobiol Dis 2011; 48:243-54. [PMID: 22222669 DOI: 10.1016/j.nbd.2011.12.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease for which there is no cure. Therapies that are efficacious in animal models have to date shown benefit for humans. One potential powerful approach is gene therapy. The ideal method of administration of gene therapy has been hotly debated and viral vectors have provided one method of long-term and wide-spread delivery to the brain. Trophic factors to protect cells from degeneration and RNAi to reduce mutant huntingtin (mHtt) protein expression are 2 main classes of compounds that demonstrate benefit in animal models. This review will examine some commonly used adeno-associated viral (AAV) vectors and discuss some therapies that hold promise for HD.
Collapse
Affiliation(s)
- Shilpa Ramaswamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
16
|
Illi B, Colussi C, Rosati J, Spallotta F, Nanni S, Farsetti A, Capogrossi MC, Gaetano C. NO points to epigenetics in vascular development. Cardiovasc Res 2011; 90:447-56. [PMID: 21345806 DOI: 10.1093/cvr/cvr056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of epigenetic mechanisms important for embryonic vascular development and cardiovascular differentiation is still in its infancy. Although molecular analyses, including massive genome sequencing and/or in vitro/in vivo targeting of specific gene sets, has led to the identification of multiple factors involved in stemness maintenance or in the early processes of embryonic layers specification, very little is known about the epigenetic commitment to cardiovascular lineages. The object of this review will be to outline the state of the art in this field and trace the perspective therapeutic consequences of studies aimed at elucidating fundamental epigenetic networks. Special attention will be paid to the emerging role of nitric oxide in this field.
Collapse
Affiliation(s)
- Barbara Illi
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 2010; 49:10166-78. [PMID: 21028906 PMCID: PMC2991413 DOI: 10.1021/bi101208k] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. Several ASOs incorporating a variety of modifications, including bridged nucleic acids and phosphorothioate internucleotide linkages, exhibited allele-selective silencing in patient-derived fibroblasts. Allele-selective ASOs did not affect the expression of other CAG repeat-containing genes and selectivity was observed in cell lines containing minimal CAG repeat lengths representative of most HD patients. Allele-selective ASOs left HTT mRNA intact and did not support ribonuclease H activity in vitro. We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
Collapse
Affiliation(s)
- Keith T. Gagnon
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA, 75390-9041
| | - Hannah M. Pendergraff
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA, 75390-9041
| | - Glen F. Deleavey
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 2K6
| | - Eric E. Swayze
- Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California, USA, 92008
| | - Pierre Potier
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - John Randolph
- Glen Research Corporation, 22825 Davis Drive, Sterling, Virginia, USA, 20164
| | - Eric B. Roesch
- Glen Research Corporation, 22825 Davis Drive, Sterling, Virginia, USA, 20164
| | - Jyoti Chattopadhyaya
- Department of Bioorganic Chemistry, Uppsala University, Biomedical Center, Box 581, S-751 23 Uppsala, Sweden
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 2K6
| | - C. Frank Bennett
- Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California, USA, 92008
| | | | - Marc Lemaitre
- Glen Research Corporation, 22825 Davis Drive, Sterling, Virginia, USA, 20164
| | - David R. Corey
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA, 75390-9041
| |
Collapse
|
18
|
Hu J, Liu J, Corey DR. Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. CHEMISTRY & BIOLOGY 2010; 17:1183-8. [PMID: 21095568 PMCID: PMC3021381 DOI: 10.1016/j.chembiol.2010.10.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 12/15/2022]
Abstract
Inhibiting expression of huntingtin (HTT) protein is a promising strategy for treating Huntington's disease (HD), but indiscriminant inhibition of both wild-type and mutant alleles may lead to toxicity. An ideal silencing agent would block expression of mutant HTT while leaving expression of wild-type HTT intact. We observe that fully complementary duplex RNAs targeting the expanded CAG repeat within HTT mRNA block expression of both alleles. Switching the RNAi mechanism toward that used by miRNAs by introducing one or more mismatched bases into these duplex RNAs leads to potent (<10 nM) and highly selective (>30-fold relative to wild-type HTT) inhibition of mutant HTT expression in patient-derived cells. Potent, allele selective inhibition of HTT by mismatched RNAs provides a new option for developing HD therapeutics.
Collapse
Affiliation(s)
- Jiaxin Hu
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | | | | |
Collapse
|
19
|
Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, Davidson BL. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol Ther 2009; 17:1053-63. [PMID: 19240687 PMCID: PMC2835182 DOI: 10.1038/mt.2009.17] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 01/16/2009] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by mutant huntingtin (htt) protein, and there are currently no effective treatments. Recently, we and others demonstrated that silencing mutant htt via RNA interference (RNAi) provides therapeutic benefit in HD mice. We have since found that silencing wild-type htt in adult mouse striatum is tolerated for at least 4 months. However, given the role of htt in various cellular processes, it remains unknown whether nonallele-specific silencing of both wild-type and mutant htt is a viable therapeutic strategy for HD. Here, we tested whether cosilencing wild-type and mutant htt provides therapeutic benefit and is tolerable in HD mice. After treatment, HD mice showed significant reductions in wild-type and mutant htt, and demonstrated improved motor coordination and survival. We performed transcriptional profiling to evaluate the effects of reducing wild-type htt in adult mouse striatum. We identified gene expression changes that are concordant with previously described roles for htt in various cellular processes. Also, several abnormally expressed transcripts associated with early-stage HD were differentially expressed in our studies, but intriguingly, those involved in neuronal function changed in opposing directions. Together, these encouraging and surprising findings support further testing of nonallele-specific RNAi therapeutics for HD.
Collapse
Affiliation(s)
- Ryan L Boudreau
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52240, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Drouet V, Perrin V, Hassig R, Dufour N, Auregan G, Alves S, Bonvento G, Brouillet E, Luthi-Carter R, Hantraye P, Déglon N. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 2009; 65:276-85. [PMID: 19334076 DOI: 10.1002/ana.21569] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin (htt) protein. No cure is available to date to alleviate neurodegeneration. Recent studies have demonstrated that RNA interference represents a promising approach for the treatment of autosomal dominant disorders. But whether an allele-specific silencing of mutant htt or a nonallele-specific silencing should be considered has not been addressed. METHODS We developed small hairpin RNA targeting mutant or wild-type htt transcripts, or both. RESULTS We confirmed the therapeutic potential of sihtt administered with lentiviral vectors in rodent models of HD and showed that initiation of small interfering RNA treatment after the onset of HD symptoms is still efficacious and reduces the HD-like pathology. We then addressed the question of the impact of nonallele-specific silencing and demonstrated that silencing of endogenous htt to 25 to 35% in vivo is altering several pathways associated with known htt functions but is not inducing overt toxicity or increasing striatal vulnerability up to 9 months after treatment. INTERPRETATION These data indicate that the coincident silencing of the wild-type and mutant htt may be considered as a therapeutic tool for HD.
Collapse
Affiliation(s)
- Valérie Drouet
- Commissariat à l'Energie Atomique, Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Denovan-Wright EM, Rodriguez-Lebron E, Lewin AS, Mandel RJ. Unexpected off-targeting effects of anti-huntingtin ribozymes and siRNA in vivo. Neurobiol Dis 2008; 29:446-55. [PMID: 18166484 PMCID: PMC2695881 DOI: 10.1016/j.nbd.2007.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/30/2007] [Accepted: 11/05/2007] [Indexed: 01/09/2023] Open
Abstract
Gene transfer strategies to reduce levels of mutant huntingtin (mHtt) mRNA and protein by targeting human Htt have shown therapeutic promise in vivo. Previously, we have reported that a specific, adeno-associated viral vector (rAAV)-delivered short-hairpin RNA (siHUNT-2) targeting human Htt mRNA unexpectedly decreased levels of striatal-specific transcripts in both wild-type and R6/1 transgenic HD mice. The goal of this study was to determine whether the siHUNT-2-mediated effect was due to adverse effects of RNA interference (RNAi) expression in the brain. To this end, we designed two catalytically active hammerhead ribozymes directed against the same region of human Htt mRNA targeted by siHUNT-2 and delivered them to wild-type and R6/1 transgenic HD mice. After 10 weeks of continuous expression, these ribozymes, like siHUNT-2, negatively impacted the expression of a subset of genes in the striatum. This effect was independent of rAAV transduction and specific to the targeting of a unique sequence in human Htt mRNA. After consideration of the known potential RNAi-specific toxic mechanisms, only cleavage of an unintended RNA target can account for the data reported herein. Thus, long-term rAAV-mediated RNAi in the brain does not, in and of itself, negatively affect striatal gene expression. These findings have important implications in the development of therapeutic RNAi for the treatment of neurological disease.
Collapse
|
22
|
Majumder P, Raychaudhuri S, Chattopadhyay B, Bhattacharyya NP. Increased caspase-2, calpain activations and decreased mitochondrial complex II activity in cells expressing exogenous huntingtin exon 1 containing CAG repeat in the pathogenic range. Cell Mol Neurobiol 2007; 27:1127-45. [PMID: 17902043 PMCID: PMC11517176 DOI: 10.1007/s10571-007-9220-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/31/2007] [Indexed: 11/28/2022]
Abstract
(1) Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of polymorphic CAG repeats beyond 36 at exon 1 of huntingtin gene (htt). To study cellular effects by expressing N-terminal domain of Huntingtin (Htt) in specific cell lines, we expressed exon 1 of htt that codes for 40 glutamines (40Q) and 16Q in Neuro2A and HeLa cells. (2) Aggregates and various apoptotic markers were detected at various time points after transfection. In addition, we checked the alterations of expressions of few apoptotic genes by RT-PCR. (3) Cells expressing exon 1 of htt coding 40Q at a stretch exhibited nuclear and cytoplasmic aggregates, increased caspase-1, caspase-2, caspase-8, caspase-9/6, and calpain activations, release of cytochrome c and AIF from mitochondria in a time-dependent manner. Truncation of Bid was increased, while the activity of mitochondrial complex II was decreased in such cells. These changes were significantly higher in cells expressing N-terminal Htt with 40Q than that obtained in cells expressing N-terminal Htt with 16Q. Expressions of caspase-1, caspase-2, caspase-3, caspase-7, and caspase-8 were increased while expression of Bcl-2 was decreased in cells expressing mutated Htt-exon 1. (4) Results presented in this communication showed that expression of mutated Htt-exon 1 could mimic the cellular phenotypes observed in Huntington's disease and this cell model can be used for screening the agents that would interfere with the apoptotic pathway and aggregate formation.
Collapse
Affiliation(s)
- Pritha Majumder
- Structural Genomics Section and Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064 India
| | - Swasti Raychaudhuri
- Structural Genomics Section and Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064 India
| | - Biswanath Chattopadhyay
- Structural Genomics Section and Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064 India
- Present Address: Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 USA
| | - Nitai P. Bhattacharyya
- Structural Genomics Section and Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064 India
| |
Collapse
|
23
|
Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007; 16:2600-15. [PMID: 17704510 DOI: 10.1093/hmg/ddm217] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease is caused by an expanded polyglutamine tract in huntingtin protein, leading to accumulation of huntingtin in the nuclei of striatal neurons. The 18 amino-acid amino-terminus of huntingtin is an amphipathic alpha helical membrane-binding domain that can reversibly target to vesicles and the endoplasmic reticulum (ER). The association of huntingtin to the ER is affected by ER stress. A single point mutation in huntingtin 1-18 predicted to disrupt this helical structure displayed striking phenotypes of complete inhibition of polyglutamine-mediated aggregation, increased huntingtin nuclear accumulation and greatly increased mutant huntingtin toxicity in a striatal-derived mouse cell line. Huntingtin vesicular interaction mediated by 1-18 is specific to late endosomes and autophagic vesicles. We propose that huntingtin has a normal biological function as an ER-associated protein that can translocate to the nucleus and back out in response to ER stress or other events. The increased nuclear entry of mutant huntingtin due to loss of ER-targeting results in increased toxicity.
Collapse
Affiliation(s)
- Randy Singh Atwal
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4H24A, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Yang H, Zhong X, Ballar P, Luo S, Shen Y, Rubinsztein DC, Monteiro MJ, Fang S. Ubiquitin ligase Hrd1 enhances the degradation and suppresses the toxicity of polyglutamine-expanded huntingtin. Exp Cell Res 2007; 313:538-50. [PMID: 17141218 DOI: 10.1016/j.yexcr.2006.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/12/2006] [Accepted: 10/30/2006] [Indexed: 11/24/2022]
Abstract
E3 ubiquitin ligases catalyze the conjugation of ubiquitin onto proteins, which acts as a signal for targeting proteins for degradation by the proteasome. Hrd1 is an endoplasmic reticulum (ER) membrane-spanning E3 with its catalytic active RING finger facing the cytosol. We speculated that this topology might allow Hrd1 to ubiquitinate misfolded proteins in the cytosol. We tested this idea by using polyglutamine (polyQ)-containing huntingtin (htt) protein as a model substrate. We found that the protein levels of Hrd1 were increased in cells overexpressing the N-terminal fragment of htt containig an expanded polyQ tract (httN). Forced expression of Hrd1 enhanced the degradation of httN in a RING finger-dependent manner, whereas silencing of endogenous Hrd1 expression by RNA interference stabilized httN. Degradation of httN was found to be p97/VCP-dependent, but independent of Ufd1 and Npl4, all of which are thought to form a complex with Hrd1 during ER-associated degradation. Consistent with its role as an E3 for httN, we demonstrate that Hrd1 interacts with and ubiquitinates httN. Subcellular fractionation and confocal microscopy revealed that Hrd1recruits HttN to the ER and co-localizes with juxtanuclear aggregates of httN in cells. Interaction of Hrd1 with httN was found to be independent of the length of the polyglutamine tract. However, httN with expanded polyglutamine tracts appeared to be a preferred substrate for Hrd1. Functionally, we found that Hrd1 protects cells against the httN-induced cell death. These results suggest that Hrd1 is a novel htt-interacting protein that can target pathogenic httN for degradation and is able to protect cells against httN-induced cell death.
Collapse
Affiliation(s)
- Hui Yang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL, Sullivan PG, Steffan JS, Sensi SL, Thompson LM. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 2006; 16:61-77. [PMID: 17135277 DOI: 10.1093/hmg/ddl440] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A truncated form of the Huntington's disease (HD) protein that contains the polyglutamine repeat, Httex1p, causes HD-like phenotypes in multiple model organisms. Molecular signatures of pathogenesis appear to involve distinct domains within this polypeptide. We studied the contribution of each domain, singly or in combination, to sub-cellular localization, aggregation and intracellular Ca2+ ([Ca2+]i) dynamics in cells. We demonstrate that sub-cellular localization is most strongly influenced by the first 17 amino acids, with this sequence critically controlling Httex1p mitochondrial localization and also promoting association with the endoplasmic reticulum (ER) and Golgi. This domain also enhances the formation of visible aggregates and together with the expanded polyQ repeat acutely disrupts [Ca2+]i levels in glutamate-challenged PC12 cells. Isolated cortical mitochondria incubated with Httex1p resulted in uncoupling and depolarization of these organelles, further supporting the idea that Httex1p-dependent mitochondrial dysfunction could be instrumental in promoting acute Ca2+ dyshomeostasis. Interestingly, neither mitochondrial nor ER associations seem to be required to promote long-term [Ca2+]i dyshomeostasis.
Collapse
Affiliation(s)
- Erica Rockabrand
- Department of Psychiatry and Human Behavior, University of California, Gillespie 2121, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells is a dynamic network of interconnected membrane tubules that pervades almost the entire cytoplasm. On the basis of the morphological changes induced by the disruption of the cytoskeleton or molecular motor proteins, the commonly accepted model has emerged that microtubules and conventional kinesin (kinesin-1) are essential determinants in establishing and maintaining the structure of the ER by active membrane expansion. Surprisingly, very similar ER phenotypes have now been observed when the cytoskeleton-linking ER membrane protein of 63 kDa (CLIMP-63) is mutated, revealing stable attachment of ER membranes to the microtubular cytoskeleton as a novel requirement for ER maintenance. Additional recent findings suggest that ER maintenance also requires ongoing homotypic membrane fusion, possibly controlled by the p97/p47/VICP135 protein complex. Work on other proteins proposed to regulate ER structure, including huntingtin, the EF-hand Ca(2+)-binding protein p22, the vesicle-associated membrane protein-associated protein B and kinectin isoforms further contribute to the new emerging concept that ER shape is not only determined by motor driven processes but by a variety of different mechanisms.
Collapse
Affiliation(s)
- Cécile Vedrenne
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
27
|
Gusella JF, MacDonald ME. Huntington's disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci 2006; 31:533-40. [PMID: 16829072 DOI: 10.1016/j.tibs.2006.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/05/2006] [Accepted: 06/27/2006] [Indexed: 02/03/2023]
Abstract
Thirteen years ago, the culmination of genetic rather than biochemical strategies resulted in the identification of the root cause of Huntington's disease: an expanded CAG trinucleotide repeat that leads to an elongated polyglutamine tract in the huntingtin protein. Since then, biochemical and cell biological attempts to elucidate pathogenesis have largely focused on N-terminal polyglutamine-containing huntingtin fragments. However, continued application of genetic strategies has suggested that the disease process is, in fact, triggered by the presence of expanded polyglutamine in intact huntingtin. An increased emphasis on the earliest presymptomatic stages of the disease, facilitated by incorporating genetic lessons from human patients into the search for biochemical targets, could provide a route to a rational treatment to prevent or slow the onset of this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|