1
|
Peng Y, Huang X, Huang T, Du F, Cui X, Tang Z. Combining protein and RNA quantification to evaluate promoter activity by using dual-color fluorescent reporting systems. Biosci Rep 2021; 41:BSR20211525. [PMID: 34467968 PMCID: PMC8433482 DOI: 10.1042/bsr20211525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Herein, Broccoli/mCherry and an EGFP/mCherry dual-color fluorescent reporting systems have been established to quantify the promoter activity at transcription and translation levels in eukaryotic cells. Based on those systems, four commonly used promoters (CMV and SV40 of Pol II and U6, H1 of Pol III) were accurately evaluated at both the transcriptional and translational levels by combining accurate protein and RNA quantification. Furthermore, we verified that Pol III promoters can induce proteins expression, and Pol II promoter can be applied to express RNA molecules with defined length by combining a self-cleaving ribozyme and an artificial poly(A) tail. The dual-color fluorescence reporting systems described here could play a significant role in evaluating other gene expression regulators for gene therapy.
Collapse
Affiliation(s)
- Yan Peng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Tianfang Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Lytic Infection with Murine Gammaherpesvirus 68 Activates Host and Viral RNA Polymerase III Promoters and Enhances Noncoding RNA Expression. J Virol 2021; 95:e0007921. [PMID: 33910955 PMCID: PMC8223928 DOI: 10.1128/jvi.00079-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase III (pol III) transcribes multiple noncoding RNAs (ncRNAs) that are essential for cellular function. Pol III-dependent transcription is also engaged during certain viral infections, including those of the gammaherpesviruses (γHVs), where pol III-dependent viral ncRNAs promote pathogenesis. Additionally, several host ncRNAs are upregulated during γHV infection and play integral roles in pathogenesis by facilitating viral establishment and gene expression. Here, we sought to investigate how pol III promoters and transcripts are regulated during gammaherpesvirus infection using the murine gammaherpesvirus 68 (γHV68) system. To compare the transcription of host and viral pol III-dependent ncRNAs, we analyzed a series of pol III promoters for host and viral ncRNAs using a luciferase reporter optimized to measure pol III activity. We measured promoter activity from the reporter gene at the translation level via luciferase activity and at the transcription level via reverse transcription-quantitative PCR (RT-qPCR). We further measured endogenous ncRNA expression at single-cell resolution by flow cytometry. These studies demonstrated that lytic infection with γHV68 increased the transcription from multiple host and viral pol III promoters and further identified the ability of accessory sequences to influence both baseline and inducible promoter activity after infection. RNA flow cytometry revealed the induction of endogenous pol III-derived ncRNAs that tightly correlated with viral gene expression. These studies highlight how lytic gammaherpesvirus infection alters the transcriptional landscape of host cells to increase pol III-derived RNAs, a process that may further modify cellular function and enhance viral gene expression and pathogenesis. IMPORTANCE Gammaherpesviruses are a prime example of how viruses can alter the host transcriptional landscape to establish infection. Despite major insights into how these viruses modify RNA polymerase II-dependent generation of messenger RNAs, how these viruses influence the activity of host RNA polymerase III remains much less clear. Small noncoding RNAs produced by RNA polymerase III are increasingly recognized to play critical regulatory roles in cell biology and virus infection. Studies of RNA polymerase III-dependent transcription are complicated by multiple promoter types and diverse RNAs with variable stability and processing requirements. Here, we characterized a reporter system to directly study RNA polymerase III-dependent responses during gammaherpesvirus infection and utilized single-cell flow cytometry-based methods to reveal that gammaherpesvirus lytic replication broadly induces pol III activity to enhance host and viral noncoding RNA expression within the infected cell.
Collapse
|
3
|
Netrin-G1 Regulates Microglial Accumulation along Axons and Supports the Survival of Layer V Neurons in the Postnatal Mouse Brain. Cell Rep 2021; 31:107580. [PMID: 32348754 DOI: 10.1016/j.celrep.2020.107580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system, accumulate along subcerebral projection axons and support neuronal survival during the early postnatal period. It remains unknown how microglia follow an axon-specific distribution pattern to maintain neural circuits. Here, we investigated the mechanisms of microglial accumulation along subcerebral projection axons that were necessary for microglial accumulation in the internal capsule. Screening of molecules involved in this accumulation of microglia to axons of layer V cortical neurons identified netrin-G1, a member of the netrin family of axon guidance molecules with a glycosyl-phosphatidylinositol anchor. Deletion or knockdown of the netrin-G1 gene Ntng1 reduced microglial accumulation and caused loss of cortical neurons. Netrin-G1 ligand-Ngl1 knockout-mice-derived microglia showed reduced accumulation along the axons compared with wild-type microglia. Thus, microglia accumulate around the subcerebral projection axons via NGL1-netrin-G1 signaling and support neuronal survival. Our observations unveil bidirectional neurotrophic interactions between neurons and microglia.
Collapse
|
4
|
Fueller J, Herbst K, Meurer M, Gubicza K, Kurtulmus B, Knopf JD, Kirrmaier D, Buchmuller BC, Pereira G, Lemberg MK, Knop M. CRISPR-Cas12a-assisted PCR tagging of mammalian genes. J Cell Biol 2020; 219:e201910210. [PMID: 32406907 PMCID: PMC7265327 DOI: 10.1083/jcb.201910210] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/10/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Here we describe a time-efficient strategy for endogenous C-terminal gene tagging in mammalian tissue culture cells. An online platform is used to design two long gene-specific oligonucleotides for PCR with generic template cassettes to create linear dsDNA donors, termed PCR cassettes. PCR cassettes encode the tag (e.g., GFP), a Cas12a CRISPR RNA for cleavage of the target locus, and short homology arms for directed integration via homologous recombination. The integrated tag is coupled to a generic terminator shielding the tagged gene from the co-inserted auxiliary sequences. Co-transfection of PCR cassettes with a Cas12a-encoding plasmid leads to robust endogenous expression of tagged genes, with tagging efficiency of up to 20% without selection, and up to 60% when selection markers are used. We used target-enrichment sequencing to investigate all potential sources of artifacts. Our work outlines a quick strategy particularly suitable for exploratory studies using endogenous expression of fluorescent protein-tagged genes.
Collapse
Affiliation(s)
- Julia Fueller
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Konrad Herbst
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Krisztina Gubicza
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Bahtiyar Kurtulmus
- Center for Organismal Studies, University of Heidelberg and DKFZ, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia D. Knopf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, DKFZ-ZMBH Alliance and DKFZ, Heidelberg, Germany
| | - Benjamin C. Buchmuller
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Gislene Pereira
- Center for Organismal Studies, University of Heidelberg and DKFZ, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marius K. Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, DKFZ-ZMBH Alliance and DKFZ, Heidelberg, Germany
| |
Collapse
|
5
|
Gao Z, Herrera-Carrillo E, Berkhout B. RNA Polymerase II Activity of Type 3 Pol III Promoters. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:135-145. [PMID: 30195753 PMCID: PMC6023835 DOI: 10.1016/j.omtn.2018.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
In eukaryotes, three RNA polymerases (Pol I, II, and III) are responsible for the transcription of distinct subsets of genes. Gene-external type 3 Pol III promoters use defined transcription start and termination sites, and they are, therefore, widely used for small RNA expression, including short hairpin RNAs in RNAi applications and guide RNAs in CRISPR-Cas systems. We report that all three commonly used human Pol III promoters (7SK, U6, and H1) mediate luciferase reporter gene expression, which indicates Pol II activity, but to a different extent (H1 ≫ U6 > 7SK). We demonstrate that these promoters can recruit Pol II for transcribing extended messenger transcripts. Intriguingly, selective inhibition of Pol II stimulates the Pol III activity and vice versa, suggesting that two polymerase complexes compete for promoter usage. Pol II initiates transcription at the regular Pol III start site on the 7SK and U6 promoters, but Pol II transcription on the most active H1 promoter starts 8 nt upstream of the Pol III start site. This study provides functional evidence for the close relationship of Pol II and Pol III transcription. These mechanistic insights are important for optimal use of Pol III promoters, and they offer additional flexibility for biotechnology applications of these genetic elements.
Collapse
Affiliation(s)
- Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Herrera-Carrillo E, Gao ZL, Harwig A, Heemskerk MT, Berkhout B. The influence of the 5΄-terminal nucleotide on AgoshRNA activity and biogenesis: importance of the polymerase III transcription initiation site. Nucleic Acids Res 2017; 45:4036-4050. [PMID: 27928054 PMCID: PMC5397164 DOI: 10.1093/nar/gkw1203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that shRNAs with a relatively short basepaired stem do not require Dicer processing, but instead are processed by the Argonaute 2 protein (Ago2). We named these molecules AgoshRNAs as both their processing and silencing function are mediated by Ago2. This alternative processing yields only a single RNA guide strand, which can avoid off-target effects induced by the passenger strand of regular shRNAs. It is important to understand this alternative processing route in mechanistic detail such that one can design improved RNA reagents. We verified that AgoshRNAs trigger site-specific cleavage of a complementary mRNA. Second, we document the importance of the identity of the 5΄-terminal nucleotide and its basepairing status for AgoshRNA activity. AgoshRNA activity is significantly reduced or even abrogated with C or U at the 5΄-terminal and is enhanced by introduction of a bottom mismatch and 5΄-terminal nucleotide A or G. The 5΄-terminal RNA nucleotide also represents the +1 position of the transcriptional promoter in the DNA, thus further complicating the analysis. Indeed, we report that +1 modification affects the transcriptional efficiency and accuracy of start site selection, with A or G as optimal nucleotide. These combined results allow us to propose general rules for the design and expression of potent AgoshRNA molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zong-Liang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Matthias T Heemskerk
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
7
|
Gao Z, Harwig A, Berkhout B, Herrera-Carrillo E. Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: The effect on transcriptional activity and start site usage. Transcription 2017; 8:275-287. [PMID: 28598252 PMCID: PMC5703244 DOI: 10.1080/21541264.2017.1322170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Type 3 RNA polymerase III (Pol III) promoters are widely used for the expression of small RNAs such as short hairpin RNA and guide RNA in the popular RNAi and CRISPR-Cas gene regulation systems. Although it is generally believed that type 3 Pol III promoters use a defined transcription start site (+1 position), most man-made promoter constructs contain local sequence alterations of which the impact on transcription efficiency and initiation accuracy is not known. For three human type 3 Pol III promoters (7SK, U6, and H1), we demonstrated that the nucleotides around the +1 position affect both the transcriptional efficiency and start site selection. Human 7SK and U6 promoters with A or G at the +1 position efficiently produced small RNAs with a precise +1 start site. The human H1 promoter with +1A or G also efficiently produced small RNAs but from multiple start sites in the -3/-1 window. These results provide new insights for the design of vectors for accurate expression of designed small RNAs for research and therapeutic purposes.
Collapse
Affiliation(s)
- Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Fujita Y, Fujiwara K, Zenitani S, Yamashita T. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival. PLoS One 2015; 10:e0139616. [PMID: 26426123 PMCID: PMC4591271 DOI: 10.1371/journal.pone.0139616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Kei Fujiwara
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Shigetake Zenitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
10
|
Huang Y, Zou Q, Wang SP, Tang SM, Zhang GZ, Shen XJ. Construction and detection of expression vectors of microRNA-9a in BmN cells. J Zhejiang Univ Sci B 2011; 12:527-33. [PMID: 21726059 DOI: 10.1631/jzus.b1000296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs molecules, approximately 21-23 nucleotides in length, which regulate gene expression by base-pairing with 3' untranslated regions (UTRs) of target mRNAs. However, the functions of only a few miRNAs in organisms are known. Recently, the expression vector of artificial miRNA has become a promising tool for gene function studies. Here, a method for easy and rapid construction of eukaryotic miRNA expression vector was described. The cytoplasmic actin 3 (A3) promoter and flanked sequences of miRNA-9a (miR-9a) precursor were amplified from genomic DNA of the silkworm (Bombyx mori) and was inserted into pCDNA3.0 vector to construct a recombinant plasmid. The enhanced green fluorescent protein (EGFP) gene was used as reporter gene. The Bombyx mori N (BmN) cells were transfected with recombinant miR-9a expression plasmid and were harvested 48 h post transfection. Total RNAs of BmN cells transfected with recombinant vectors were extracted and the expression of miR-9a was evaluated by reverse transcriptase polymerase chain reaction (RT-PCR) and Northern blot. Tests showed that the recombinant miR-9a vector was successfully constructed and the expression of miR-9a with EGFP was detected.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | | | | | | | | | | |
Collapse
|
11
|
Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-β1 to treat liver fibrosis. Pharm Res 2011; 28:752-61. [PMID: 21347569 DOI: 10.1007/s11095-011-0384-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
PURPOSE The objective was to determine the role of promoters and miRNA backbone in shRNA-based hepatic stellate cell (HSC)-specific transforming growth factor (TGF)-β1 gene silencing. This is expected to avoid the side effect of non-specific TGF-β1 gene silencing. METHODS Two most potent shRNAs targeting 769 and 1033 start sites of rat TGF-β1 mRNA were cloned into pSilencer 1.0 vector for enhanced TGF-β1 gene silencing. We then constructed HSC-specific pri-miRNA mimic and pri-miRNA cluster mimic expression plasmids in which shRNA expression was driven by a glial fibrillary acidic protein (GFAP) promoter to achieve HSC-specific TGF-β1 gene silencing to avoid nonspecific inhibition of TGF-β1 expression in other cells and organs. RESULTS These TGF-β1 pri-miRNA-producing plasmids showed the inhibition of proliferation and induced apoptosis of activated HSC-T6 cells. TGF-β1 pri-miRNA cluster mimic plasmids decreased TGF-β1 and collagen gene expression at both mRNA and protein levels. CONCLUSIONS GFAP promoter driven TGF-β1 pri-miRNA producing plasmids have the potential to be used for site-specific gene therapeutics to treat liver fibrosis.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 South Manassas, Memphis, Tennessee 38103-3308, USA
| | | |
Collapse
|
12
|
Listerman I, Bledau AS, Grishina I, Neugebauer KM. Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet 2008; 3:e212. [PMID: 18039033 PMCID: PMC2082468 DOI: 10.1371/journal.pgen.0030212] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/10/2007] [Indexed: 11/25/2022] Open
Abstract
Recent genomic data indicate that RNA polymerase II (Pol II) function extends beyond conventional transcription of primarily protein-coding genes. Among the five snRNAs required for pre-mRNA splicing, only the U6 snRNA is synthesized by RNA polymerase III (Pol III). Here we address the question of how Pol II coordinates the expression of spliceosome components, including U6. We used chromatin immunoprecipitation (ChIP) and high-resolution mapping by PCR to localize both Pol II and Pol III to snRNA gene regions. We report the surprising finding that Pol II is highly concentrated ∼300 bp upstream of all five active human U6 genes in vivo. The U6 snRNA, an essential component of the spliceosome, is synthesized by Pol III, whereas all other spliceosomal snRNAs are Pol II transcripts. Accordingly, U6 transcripts were terminated in a Pol III-specific manner, and Pol III localized to the transcribed gene regions. However, synthesis of both U6 and U2 snRNAs was α-amanitin-sensitive, indicating a requirement for Pol II activity in the expression of both snRNAs. Moreover, both Pol II and histone tail acetylation marks were lost from U6 promoters upon α-amanitin treatment. The results indicate that Pol II is concentrated at specific genomic regions from which it can regulate Pol III activity by a general mechanism. Consequently, Pol II coordinates expression of all RNA and protein components of the spliceosome. During transcription, RNA polymerases synthesize an RNA copy of a given gene. Human genes are transcribed by either RNA polymerase I, II, or III. Here, we focus on transcription of the U6 gene that encodes a small nuclear RNA (snRNA), a non-coding RNA with unique activities in gene expression. The U6 snRNA is transcribed by RNA polymerase III (Pol III); here we report the surprising finding that RNA polymerase II (Pol II) is important for efficient expression of the U6 snRNA. Interestingly, high concentrations of Pol II have been recently observed on genomic regions that are considered outside of transcribed genes. We localized Pol II to a region upstream of the U6 snRNA gene promoters in living cells. Inhibition of Pol II activity decreased U6 snRNA synthesis and was accompanied by a decrease in Pol II accumulation as well as transcription-activating histone modifications, while Pol III remained bound at U6 genes. Thus, Pol II may promote U6 snRNA transcription by facilitating open chromatin formation. Our results provide insight into the extragenic function of Pol II, which can coordinate the expression of all components of the RNA splicing machinery, including U6 snRNA.
Collapse
Affiliation(s)
- Imke Listerman
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anita S Bledau
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Inna Grishina
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karla M Neugebauer
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Wang TH, Yu SH, Au LC. Facilitated in vivo synthesis of ribonucleic acid and protein via T7 RNA polymerase. Anal Biochem 2007; 375:97-104. [PMID: 18162164 DOI: 10.1016/j.ab.2007.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 11/25/2022]
Abstract
Ribozyme and small interfering RNA (siRNA) now are widely used to suppress target genes bearing homologous sequences. In this study, commonly used cell lines (e.g., HEK, HeLa, H1299) were stably transfected with gene encoding T7 RNA polymerase. The cytoplasm-restricted transcription activity of T7 RNA polymerase confers a continuous and robust transcription from T7 promoter-containing oligonucleotide (ODN) template for siRNA or ribozyme and leads to 70 to 80% inhibition of the tested target genes. ODN template offers the advantages of being more stable and economical than synthetic or in vitro-transcribed siRNA or ribozyme. Compared with the use of siRNA/ribozyme-expressing plasmids, our system does not require procedures with preparations of recombinant plasmids and enrichment of transfected cells and can be applied to synthesize protein in which different levels of translation could be modulated via variations in the presence of polyA tail or internal ribosome entry site (IRES) in the T7-transcribed RNAs. The results of our current study provide a rapid and efficient system for the assay of in vivo synthesis and expression of RNAs and proteins.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China
| | | | | |
Collapse
|
14
|
Rollins J, Veras I, Cabarcas S, Willis I, Schramm L. Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int J Biol Sci 2007; 3:292-302. [PMID: 17505538 PMCID: PMC1865091 DOI: 10.7150/ijbs.3.292] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/24/2007] [Indexed: 11/05/2022] Open
Abstract
RNA polymerase III (RNA pol III) transcribes many of the small structural RNA molecules involved in processing and translation, thereby regulating the growth rate of a cell. Initiation of pol III transcription requires the evolutionarily conserved pol III initiation factor TFIIIB. TFIIIB is the molecular target of regulation by tumor suppressors, including p53, RB and the RB-related pocket proteins. However, our understanding of negative regulation of human TFIIIB-mediated transcription by other proteins is limited. In this study we characterize a RNA pol III luciferase assay and further demonstrate in vivo that a human homolog of yeast Maf1 represses RNA pol III transcription. Additionally, we show that Maf1 repression of RNA pol III transcription occurs via TFIIIB, specifically through the TFIIB family members Brf1 and Brf2.
Collapse
Affiliation(s)
- Janet Rollins
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Ingrid Veras
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Stephanie Cabarcas
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Ian Willis
- 2. Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY, USA
| | - Laura Schramm
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| |
Collapse
|