1
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Wang S, Lee MP, Jones S, Liu J, Waldhaus J. Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data. Genome Res 2021; 31:1885-1899. [PMID: 33837132 DOI: 10.1101/gr.271080.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Auditory hair cells transduce sound to the brain and in mammals these cells reside together with supporting cells in the sensory epithelium of the cochlea, called the organ of Corti. To establish the organ's delicate function during development and differentiation, spatiotemporal gene expression is strictly controlled by chromatin accessibility and cell type-specific transcription factors, jointly representing the regulatory landscape. Bulk-sequencing technology and cellular heterogeneity obscured investigations on the interplay between transcription factors and chromatin accessibility in inner ear development. To study the formation of the regulatory landscape in hair cells, we collected single-cell chromatin accessibility profiles accompanied by single-cell RNA data from genetically labeled murine hair cells and supporting cells after birth. Using an integrative approach, we predicted cell type-specific activating and repressing functions of developmental transcription factors. Furthermore, by integrating gene expression and chromatin accessibility datasets, we reconstructed gene regulatory networks. Then, using a comparative approach, 20 hair cell-specific activators and repressors, including putative downstream target genes, were identified. Clustering of target genes resolved groups of related transcription factors and was utilized to infer their developmental functions. Finally, the heterogeneity in the single-cell data allowed us to spatially reconstruct transcriptional as well as chromatin accessibility trajectories, indicating that gradual changes in the chromatin accessibility landscape were lagging behind the transcriptional identity of hair cells along the organ's longitudinal axis. Overall, this study provides a strategy to spatially reconstruct the formation of a lineage specific regulatory landscape using a single-cell multi-omics approach.
Collapse
Affiliation(s)
- Shuze Wang
- University of Michigan, Kresge Hearing Research Institute
| | - Mary P Lee
- University of Michigan, Kresge Hearing Research Institute
| | - Scott Jones
- University of Michigan, Kresge Hearing Research Institute
| | | | - Joerg Waldhaus
- University of Michigan, Kresge Hearing Research Institute;
| |
Collapse
|
3
|
Wu CC, Klaesson A, Buskas J, Ranefall P, Mirzazadeh R, Söderberg O, Wolf JBW. In situ quantification of individual mRNA transcripts in melanocytes discloses gene regulation of relevance to speciation. J Exp Biol 2019; 222:jeb194431. [PMID: 30718374 PMCID: PMC6650291 DOI: 10.1242/jeb.194431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023]
Abstract
Functional validation of candidate genes involved in adaptation and speciation remains challenging. Here, we exemplify the utility of a method quantifying individual mRNA transcripts in revealing the molecular basis of divergence in feather pigment synthesis during early-stage speciation in crows. Using a padlock probe assay combined with rolling circle amplification, we quantified cell-type-specific gene expression in the histological context of growing feather follicles. Expression of Tyrosinase Related Protein 1 (TYRP1), Solute Carrier Family 45 member 2 (SLC45A2) and Hematopoietic Prostaglandin D Synthase (HPGDS) was melanocyte-limited and significantly reduced in follicles from hooded crow, explaining the substantially lower eumelanin content in grey versus black feathers. The central upstream Melanocyte Inducing Transcription Factor (MITF) only showed differential expression specific to melanocytes - a feature not captured by bulk RNA-seq. Overall, this study provides insight into the molecular basis of an evolutionary young transition in pigment synthesis, and demonstrates the power of histologically explicit, statistically substantiated single-cell gene expression quantification for functional genetic inference in natural populations.
Collapse
Affiliation(s)
- Chi-Chih Wu
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Axel Klaesson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Julia Buskas
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Petter Ranefall
- Science of Life Laboratories and Department of Information Technology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Jochen B W Wolf
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Molecular investigation of the direct anti-tumour effects of nonsteroidal anti-inflammatory drugs in a panel of canine cancer cell lines. Vet J 2017; 221:38-47. [DOI: 10.1016/j.tvjl.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
|
5
|
Wei C, Wang H, Liu G, Zhao F, Kijas JW, Ma Y, Lu J, Zhang L, Cao J, Wu M, Wang G, Liu R, Liu Z, Zhang S, Liu C, Du L. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep 2016; 6:26770. [PMID: 27230812 PMCID: PMC4882523 DOI: 10.1038/srep26770] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Tibetan sheep have lived on the Tibetan Plateau for thousands of years; however, the process and consequences of adaptation to this extreme environment have not been elucidated for important livestock such as sheep. Here, seven sheep breeds, representing both highland and lowland breeds from different areas of China, were genotyped for a genome-wide collection of single-nucleotide polymorphisms (SNPs). The FST and XP-EHH approaches were used to identify regions harbouring local positive selection between these highland and lowland breeds, and 236 genes were identified. We detected selection events spanning genes involved in angiogenesis, energy production and erythropoiesis. In particular, several candidate genes were associated with high-altitude hypoxia, including EPAS1, CRYAA, LONP1, NF1, DPP4, SOD1, PPARG and SOCS2. EPAS1 plays a crucial role in hypoxia adaption; therefore, we investigated the exon sequences of EPAS1 and identified 12 mutations. Analysis of the relationship between blood-related phenotypes and EPAS1 genotypes in additional highland sheep revealed that a homozygous mutation at a relatively conserved site in the EPAS1 3' untranslated region was associated with increased mean corpuscular haemoglobin concentration and mean corpuscular volume. Taken together, our results provide evidence of the genetic diversity of highland sheep and indicate potential high-altitude hypoxia adaptation mechanisms, including the role of EPAS1 in adaptation.
Collapse
Affiliation(s)
- Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China.,National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China.,Institute of apicultural research, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | | | - Youji Ma
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, People's Republic of China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China
| | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Jiaxue Cao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Mingming Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Guangkai Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Zhen Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Shuzhen Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Chousheng Liu
- National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| |
Collapse
|
6
|
Characteristic of PGDS potential regulation role on spermatogenesis in the Chinese mitten crab Eriocheir sinensis. Gene 2014; 543:244-52. [PMID: 24709109 DOI: 10.1016/j.gene.2014.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 02/08/2023]
Abstract
Prostaglandin D synthase (PGDS) catalyzes the isomerization of PGH2 to produce PGD2 in the presence of sulfhydryl compounds. In this study, a full length PGDS gene comprising 1250 nucleotides from the Chinese mitten crab Eriocheir sinensis (Es-PGDS) was characterized, with a 615 bp open reading frame encoding 204 amino acid residues. Its deduced peptide has high homology with other species' PGDS protein. The Es-PGDS mRNA expression was tissue-related, with the highest expression observed in the hepatopancreas, accessory sex gland, testis and ovaries. We also detected the different stages of tissue expression and the enzyme activity for Es-PGDS in the testis and male crab hepatopancreas. The different expression patterns and its corresponding enzyme activity level indicated that PGDS is involving in the regulation of reproductive action during the period of rapid development in E. sinensis. Furthermore our research could arouse a heat debate on the PGDS reproductive function in invertebrate and further study will be needed to determine the molecular mechanism(s) linking PGDS functions to spermatogenesis and ontogenesis if this gene is to be exploited as a molecular biomarker in further studies of development.
Collapse
|
7
|
Nicolaou A. Eicosanoids in skin inflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:131-8. [PMID: 22521864 DOI: 10.1016/j.plefa.2012.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/27/2022]
Abstract
Eicosanoids play an integral part in homeostatic mechanisms related to skin health and structural integrity. They also mediate inflammatory events developed in response to environmental factors, such as exposure to ultraviolet radiation, and inflammatory and allergic disorders, including psoriasis and atopic dermatitis. This review article discusses biochemical aspects related to cutaneous eicosanoid metabolism, the contribution of these potent autacoids to skin inflammation and related conditions, and considers the importance of nutritional supplementation with bioactives such as omega-3 and omega-6 polyunsaturated fatty acids and plant-derived antioxidants as means of addressing skin health issues.
Collapse
Affiliation(s)
- Anna Nicolaou
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK.
| |
Collapse
|
8
|
Nelson AM, Loy DE, Lawson JA, Katseff AS, Fitzgerald GA, Garza LA. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. J Invest Dermatol 2012. [PMID: 23190891 PMCID: PMC3593761 DOI: 10.1038/jid.2012.398] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late respectively during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds) and its product PGD2 each varied significantly among background strains of mice after wounding and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. Additionally, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild type mice and PGD2 receptor Gpr44 null mice showed increased WIHN compared to strain-matched control mice. Furthermore, Gpr44 null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration.
Collapse
Affiliation(s)
- Amanda M Nelson
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Melanoma is often considered one of the most aggressive and treatment-resistant human cancers. It is a disease that, due to the presence of melanin pigment, was accurately diagnosed earlier than most other malignancies and that has been subjected to countless therapeutic strategies. Aside from early surgical resection, no therapeutic modality has been found to afford a high likelihood of curative outcome. However, discoveries reported in recent years have revealed a near avalanche of breakthroughs in the melanoma field-breakthroughs that span fundamental understanding of the molecular basis of the disease all the way to new therapeutic strategies that produce unquestionable clinical benefit. These discoveries have been born from the successful fruits of numerous researchers working in many-sometimes-related, although also distinct-biomedical disciplines. Discoveries of frequent mutations involving BRAF(V600E), developmental and oncogenic roles for the microphthalmia-associated transcription factor (MITF) pathway, clinical efficacy of BRAF-targeted small molecules, and emerging mechanisms underlying resistance to targeted therapeutics represent just a sample of the findings that have created a striking inflection in the quest for clinically meaningful progress in the melanoma field.
Collapse
Affiliation(s)
- Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- The Wellman Center for Photomedicine, Boston, Massachusetts 02114, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Levi A. Garraway
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David E. Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
10
|
Shimanuki M, Takeda K, Kawaguchi M, Suzuki T, Shibahara S. Lipocalin-type prostaglandin D synthase as a marker for the proliferative potential of melanocyte-lineage cells in the human skin. J Dermatol 2012; 39:699-704. [PMID: 22299829 DOI: 10.1111/j.1346-8138.2011.01485.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanocytes in the human epidermis actively produce and secrete various substances, thereby contributing to the maintenance of the skin homeostasis. Lipocalin-type prostaglandin D synthase (L-PGDS) that catalyzes the formation of prostaglandin D(2) (PGD(2) ) may be one of such secreted molecules. Once secreted, L-PGDS functions as a transporter for lipophilic ligands, including all-trans retinoic acid (RA). L-PGDS, therefore, may possess pleiotropic functions in the skin through PGD(2) and RA. We aimed to identify the cell types that express L-PGDS in human skin and to explore the role of L-PGDS in the growth potential of melanocyte-lineage cells. Immunohistochemical analysis for L-PGDS expression was performed with the tissue sections that were prepared from five malignant melanomas, six nevus cell nevi and one Spitz nevus. Normal skin tissues adjacent to the excised melanoma tissues were also analyzed. L-PGDS is expressed in epidermal melanocytes but its expression is undetectable in keratinocytes. Moreover, L-PGDS is undetectable in most benign nevus cells, which may reflect the marginally accelerated proliferation of nevus cells. In contrast, L-PGDS is overexpressed in malignant melanomas, although the frequency of L-PGDS-positive cells was variable (15-50%), depending on the specimens. Lastly, RNA interference analysis against human L-PGDS was performed with short interfering RNA. Knockdown of L-PGDS expression with short interfering RNA in cultured cells suggests that L-PGDS may restrict cell proliferation through RA. In conclusion, L-PGDS expression may contribute to the restricted proliferation of epidermal melanocytes, but conversely its overexpression may reflect the dysregulated proliferation of melanoma cells.
Collapse
Affiliation(s)
- Miwa Shimanuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | | | | | | | | |
Collapse
|
11
|
Nakahigashi K, Doi H, Otsuka A, Hirabayashi T, Murakami M, Urade Y, Tanizaki H, Egawa G, Miyachi Y, Kabashima K. PGD2 induces eotaxin-3 via PPARγ from sebocytes: A possible pathogenesis of eosinophilic pustular folliculitis. J Allergy Clin Immunol 2012; 129:536-43. [DOI: 10.1016/j.jaci.2011.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/21/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022]
|
12
|
Masoodi M, Nicolaou A, Gledhill K, Rhodes LE, Tobin DJ, Thody AJ. Prostaglandin D production in FM55 melanoma cells is regulated by alpha-melanocyte-stimulating hormone and is not related to melanin production. Exp Dermatol 2011; 19:751-3. [PMID: 20482620 PMCID: PMC3068286 DOI: 10.1111/j.1600-0625.2010.01098.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study shows that prostaglandins in human FM55 melanoma cells and epidermal melanocytes are produced by COX-1. Prostaglandin production in FM55 melanoma cells was unrelated to that of melanin suggesting that the two processes can occur independently. Alpha-melanocyte-stimulating hormone, which had no effect on melanin production in FM55 cells, stimulated PGD(2) production in these cells without affecting PGE(2). While cAMP pathways may be involved in regulating PGD(2) production, our results suggest that alpha-MSH acts independently of cAMP, possibly by regulating the activity of lipocalin-type PGD synthase. This alpha-MSH-mediated effect may be associated with its role as an immune modulator.
Collapse
|
13
|
Diminished lipocalin-type prostaglandin D2 synthase expression in human lung tumors. Lung Cancer 2010; 70:103-9. [DOI: 10.1016/j.lungcan.2010.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/17/2010] [Indexed: 01/08/2023]
|
14
|
Takeda K, Takahashi NH, Yoshizawa M, Shibahara S. Lipocalin-type prostaglandin D synthase as a regulator of the retinoic acid signalling in melanocytes. J Biochem 2010; 148:139-48. [PMID: 20403807 DOI: 10.1093/jb/mvq040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) catalyses the formation of prostaglandin D(2) (PGD(2)) and also functions as a transporter for lipophilic ligands, including all-trans retinoic acid (RA). Here, we show that human epidermal melanocytes produce and secrete L-PGDS and PGD(2) in culture medium, whereas L-PGDS is not expressed in human melanoma cell lines, HMV-II, SK-MEL-28, 624 mel and G361. Treatment with RA (1 or 10 microM) for 4 days decreased the proliferation of melanocytes (30% decrease), but not melanoma cells. We therefore isolated L-PGDS-expressing cell lines from 624 mel cells. Treatment with RA decreased the proliferation of L-PGDS-expressing cells by 20%, but not mock-transfected cell lines lacking L-PGDS expression. RA induced expression of a cyclin-dependent kinase inhibitor p21(Cip1) in L-PGDS-expressing cells, but not mock-transfected cells. Moreover, RA increased the transient expression of a reporter gene carrying the RA-responsive elements in L-PGDS-expressing cell lines (at least 5-fold activation), compared to the 2-fold activation in mock-transfected cell lines, suggesting that L-PGDS may increase the sensitivity to RA. Lastly, the knockdown of L-PGDS expression by RNA interference was associated with the restoration of the RA-mediated decrease in proliferation of human and mouse melanocytes. In conclusion, L-PGDS may fine-tune the RA signalling in melanocytes.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | | | | | | |
Collapse
|
15
|
Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C, Sergeev Y, Chen W, Edwards AO, Stambolian D, Abecasis G, Swaroop A, Munson PJ, Miller SS. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet 2010; 19:2468-86. [PMID: 20360305 PMCID: PMC2876890 DOI: 10.1093/hmg/ddq129] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases.
Collapse
Affiliation(s)
- N V Strunnikova
- Ophthalmic Genetics & Visual Function Branch, NIH, Bethesda, MD 20892-2510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, Nordlund JJ, Abdel-Malek Z, Takeda K, Paus R, Ortonne JP, Hearing VJ, Schallreuter KU. What are melanocytes really doing all day long...? Exp Dermatol 2009; 18:799-819. [PMID: 19659579 PMCID: PMC2792575 DOI: 10.1111/j.1600-0625.2009.00912.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Everyone knows and seems to agree that melanocytes are there to generate melanin - an intriguing, but underestimated multipurpose molecule that is capable of doing far more than providing pigment and UV protection to skin (1). What about the cell that generates melanin, then? Is this dendritic, neural crest-derived cell still serving useful (or even important) functions when no-one looks at the pigmentation of our skin and its appendages and when there is essentially no UV exposure? In other words, what do epidermal and hair follicle melanocytes do in their spare time - at night, under your bedcover? How much of the full portfolio of physiological melanocyte functions in mammalian skin has really been elucidated already? Does the presence or absence of melanocytes matter for normal epidermal and/or hair follicle functions (beyond pigmentation and UV protection), and for skin immune responses? Do melanocytes even deserve as much credit for UV protection as conventional wisdom attributes to them? In which interactions do these promiscuous cells engage with their immediate epithelial environment and who is controlling whom? What lessons might be distilled from looking at lower vertebrate melanophores and at extracutaneous melanocytes in the endeavour to reveal the 'secret identity' of melanocytes? The current Controversies feature explores these far too infrequently posed, biologically and clinically important questions. Complementing a companion viewpoint essay on malignant melanocytes (2), this critical re-examination of melanocyte biology provides a cornucopia of old, but under-appreciated concepts and novel ideas on the slowly emerging complexity of physiological melanocyte functions, and delineates important, thought-provoking questions that remain to be definitively answered by future research.
Collapse
Affiliation(s)
- P M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Induction of lipocalin-type prostaglandin D synthase in mouse heart under hypoxemia. Biochem Biophys Res Commun 2009; 385:449-53. [PMID: 19470375 DOI: 10.1016/j.bbrc.2009.05.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 11/23/2022]
Abstract
Hypoxemia is a common manifestation of various disorders and generates pressure overload to the heart. Here we analyzed the expression of lipocalin-type prostaglandin D synthase (L-PGDS) in the heart of C57BL/6 mice kept under normobaric hypoxia (10% O2) that generates hemodynamic stress. Northern and Western blot analyses revealed that the expression levels of L-PGDS mRNA and protein were significantly increased (> twofold) after 14 days of hypoxia, compared to the mice kept under normoxia. Immunohistochemical analysis indicated that L-PGDS was increased in the myocardium of auricles and ventricles and the pulmonary venous myocardium at 28 days of hypoxia. Moreover, using C57BL/6 mice lacking heme oxygenase-2 (HO-2(-/-)), a model of chronic hypoxemia, we showed that the expression level of L-PGDS protein was twofold higher in the heart than that of wild-type mouse. L-PGDS expression is induced in the myocardium under hypoxemia, which may reflect the adaptation to the hemodynamic stress.
Collapse
|
18
|
Satarug S, Wisedpanichkij R, Takeda K, Li B, Na-Bangchang K, Moore MR, Shibahara S. Prostaglandin D2 induces heme oxygenase-1 mRNA expression through the DP2 receptor. Biochem Biophys Res Commun 2008; 377:878-83. [DOI: 10.1016/j.bbrc.2008.10.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 11/15/2022]
|
19
|
Uehara S, Izumi Y, Kubo Y, Wang CC, Mineta K, Ikeo K, Gojobori T, Tachibana M, Kikuchi T, Kobayashi T, Shibahara S, Taya C, Yonekawa H, Shiroishi T, Yamamoto H. Specific expression of Gsta4 in mouse cochlear melanocytes: a novel role for hearing and melanocyte differentiation. Pigment Cell Melanoma Res 2008; 22:111-9. [PMID: 18983533 DOI: 10.1111/j.1755-148x.2008.00513.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian pigment cells produce melanin as the main pigment. Melanocytes, one of the two types of mammalian pigment cells, differentiate from the neural crest and migrate to a variety of organs during development. Melanocytes exist not only in the skin but also in other sites such as the cochlea where they are essential for hearing. Mitf(mi-bw) is one of the known recessive alleles of the mouse microphthalmia-associated transcription factor (Mitf) locus, which is essential for the development of pigment cells. Homozygous Mitf(mi-bw)/Mitf(mi-bw) mice have a completely white coat with black eyes and are deaf due to the lack of melanocytes. By comparing gene expression profiles in cochleae of wild-type and Mitf(mi-bw)/Mitf(mi-bw) mice, we now demonstrate the specific expression of glutathione S-transferase alpha 4 (Gsta4) in the stria vascularis. Gsta4 encodes one of the cytosolic glutathione S-transferases (GSTs) which participate in detoxification processes of many tissues. This gene is specifically expressed in intermediate cells of the stria vascularis, suggesting a novel function for cochlear melanocytes. Moreover, among mammalian pigment cells, expression of Gsta4 was restricted to cochlear melanocytes, suggesting that melanocytes in various tissues differentiate from one another depending on their location.
Collapse
Affiliation(s)
- Shigeyuki Uehara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuesap J, Li B, Satarug S, Takeda K, Numata I, Na-Bangchang K, Shibahara S. Prostaglandin D2 induces heme oxygenase-1 in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2008; 367:413-9. [PMID: 18174022 DOI: 10.1016/j.bbrc.2007.12.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
The retinal pigment epithelium (RPE) constitutes the blood-retinal barrier, whose function is impaired in various pathological conditions, including cerebral malaria, a lethal complication of Plasmodium falciparum infection. Prostaglandin (PG) D(2) is abundantly produced in the brain to regulate sleep responses. Moreover, PGD(2) is a potential factor derived from intra-erythrocyte falciparum parasites. Heme oxygenase-1 (HO-1) is important for iron homeostasis via catalysis of heme degradation to release iron, carbon monoxide and biliverdin/bilirubin, and may influence iron supply to the intra-erythrocyte falciparum parasites. Here, we showed that treatment of human RPE cell lines, ARPE-19 and D407, with PGD(2) significantly increased the expression levels of HO-1 mRNA, in a dose- and time-dependent manner. Transient expression assays showed that PGD(2) treatment increased the HO-1-gene promoter activity through the enhancer sequence, containing a Maf-recognition element. Thus, PGD(2) may contribute to the maintenance of heme homeostasis in the brain by inducing HO-1 expression.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Takeda K, Takahashi NH, Shibahara S. Neuroendocrine functions of melanocytes: beyond the skin-deep melanin maker. TOHOKU J EXP MED 2007; 211:201-21. [PMID: 17347546 DOI: 10.1620/tjem.211.201] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The skin is armored with "dead cells", the stratum corneum, and is continuously exposed to external stressful environments, such as atmospheric oxygen, solar radiations, and thermal and chemical insults. Melanocytes of neural crest origin are located in the skin, eye, inner ear, and leptomeninges. Melanin pigment in the skin is produced by melanocytes under the influence of various endogenous factors, derived from neighboring keratinocytes and underlying fibroblasts. The differentiation and functions of melanocytes are regulated at multiple processes, including transcription, RNA editing, melanin synthesis, and the transport of melanosomes to keratinocytes. Impairment at each step causes the pigmentary disorders in humans, with the historical example of oculocutaneous albinism. Moreover, heterozygous mutations in the gene coding for microphthalmia-associated transcription factor, a key regulator for melanocyte development, are associated with Waardenburg syndrome type 2, an auditory-pigmentary disorder. Sun tanning, melasma, aging spots (lentigo senilis), hair graying, and melanoma are well-known melanocyte-related pathologies. Melanocytes therefore have attracted much attention of many ladies, makeup artists and molecular biologists. More recently, we have shown that lipocalin-type prostaglandin D synthase (L-PGDS) is expressed in melanocytes but not in other skin cell types. L-PGDS generates prostaglandin D2 and also functions as an inter-cellular carrier protein for lipophilic ligands, such as bilirubin and thyroid hormones. Thus, melanocytes may exert hitherto unknown functions through L-PGDS and prostaglandin D2. Here we update the neuroendocrine functions of melanocytes and discuss the possible involvement of melanocytes in the control of the central chemosensor that generates respiratory rhythm.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
22
|
Fujimori K, Urade Y. Cooperative activation of lipocalin-type prostaglandin D synthase gene expression by activator protein-2beta in proximal promoter and upstream stimulatory factor 1 within intron 4 in human brain-derived TE671 cells. Gene 2007; 397:143-52. [PMID: 17574780 DOI: 10.1016/j.gene.2007.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/17/2007] [Accepted: 04/23/2007] [Indexed: 11/17/2022]
Abstract
We investigated the activation mechanism of gene expression of lipocalin-type prostaglandin D synthase (L-PGDS) in human brain-derived TE671 cells. Reporter analyses of constructs carrying various lengths of the promoter region and intron 1 to 6, or 3'-untranslated region of the human L-PGDS gene demonstrated that one atypical E-box (aE-box) at +2569 in intron 4 was critical for transactivation of the gene. The aE-box inside the intron 4 functioned as an enhancer element in both directions and in a cell-type specific manner in TE671 cells. Yeast one-hybrid screening revealed that upstream stimulatory factor (USF) 1 bound to the aE-box. Expression of exogenous USF1 induced the endogenous L-PGDS expression in TE671 cells, whereas administration of USF1 siRNA suppressed L-PGDS expression. Binding of USF1 to the aE-box was confirmed by performing electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Furthermore, USF1-mediated transcriptional activation was dependent upon activator protein (AP)-2beta binding to the AP-2 element at position -98 in the proximal promoter region of human L-PGDS gene. These results indicate that L-PGDS gene expression in TE671 cells was activated by USF1 through the aE-box within intron 4 and cooperatively by AP-2beta in the promoter in a cell-type-specific manner.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka, Japan
| | | |
Collapse
|
23
|
Gonzalez SF, Chatziandreou N, Nielsen ME, Li W, Rogers J, Taylor R, Santos Y, Cossins A. Cutaneous immune responses in the common carp detected using transcript analysis. Mol Immunol 2007; 44:1664-79. [PMID: 17049603 DOI: 10.1016/j.molimm.2006.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/17/2022]
Abstract
In order to detect new immune-related genes in common carp (Cyprinus carpio L.) challenged by an ectoparasitic infection, two cDNA libraries were constructed from carp skin sampled at 3 and 72h after infection with Ichthyophthirius multifiliis. In a total of 3500 expressed sequence tags (ESTs) we identified 82 orthologues of genes of immune relevance previously described in other organisms. Of these, 61 have never been described before in C. carpio, thus shedding light on some key components of the defence mechanisms of this species. Among the newly described genes, full-length molecules of prostaglandin D2 synthase (PGDS), the CC chemokine molecule SCYA103, and a second gene for the carp beta(2)-microglobulin (beta(2)m), beta(2)m-2, were described. Transcript amounts of the genes PGDS, interferon (IFN), SCYA103, complement factor 7 (C7), complement factor P (FP), complement factor D (FD) and beta(2)m-2 were evaluated by real-time quantitative PCR (RQ-PCR). Samples from skin, blood and liver from fish challenged with I. multifiliis were taken at 3, 12, 24, 36 and 48h post infection. Higher expression levels of most of these transcripts were observed in skin from uninfected fish, compared to the transcript levels detected in blood and liver from the same animals. Also, there was significant down-regulation of the genes PGDS and beta(2)m-2 in skin, whilst significant up-regulation was observed for the C7 and SCYA103 genes in liver of fish infected with the parasite. These results confirm the active role of fish skin in the immune response against infections, acting as an important site of expression of immune-related molecules.
Collapse
Affiliation(s)
- Santiago Fernandez Gonzalez
- Department of Veterinary Pathobiology, Laboratory for Fish Diseases, The Royal Veterinary and Agricultural University, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
April CS, Barsh GS. Distinct pigmentary and melanocortin 1 receptor-dependent components of cutaneous defense against ultraviolet radiation. PLoS Genet 2006; 3:e9. [PMID: 17222061 PMCID: PMC1774588 DOI: 10.1371/journal.pgen.0030009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/30/2006] [Indexed: 01/03/2023] Open
Abstract
Genetic variation at the melanocortin 1 receptor (MC1R) is an important risk factor for developing ultraviolet (UV) radiation–induced skin cancer, the most common form of cancer in humans. The underlying mechanisms by which the MC1R defends against UV-induced skin cancer are not known. We used neonatal mouse skin (which, like human skin, contains a mixture of melanocytes and keratinocytes) to study how pigment cells and Mc1r genotype affect the genome-level response to UV radiation. Animals without viable melanocytes (KitW-v/KitW-v) or animals lacking a functional Mc1r (Mc1re/Mc1re) were exposed to sunburn-level doses of UVB radiation, and the patterns of large-scale gene expression in the basal epidermis were compared to each other and to nonmutant animals. Our analysis revealed discrete Kit- and Mc1r-dependent UVB transcriptional responses in the basal epidermis. The Kit-dependent UVB response was characterized largely by an enrichment of oxidative and endoplasmic reticulum stress genes, highlighting a distinctive role for pigmented melanocytes in mediating antioxidant defenses against genotoxic stresses within the basal epidermal environment. By contrast, the Mc1r-dependent UVB response contained an abundance of genes associated with regulating the cell cycle and oncogenesis. To test the clinical relevance of these observations, we analyzed publicly available data sets for primary melanoma and melanoma metastases and found that the set of genes specific for the Mc1r-dependent UVB response was able to differentiate between different clinical subtypes. Our analysis also revealed that the classes of genes induced by UVB differ from those repressed by UVB with regard to their biological functions, their overall number, and their size. The findings described here offer new insights into the transcriptional nature of the UV response in the skin and provide a molecular framework for the underlying mechanisms by which melanocytes and the Mc1r independently mediate and afford protection against UV radiation. Skin cancer is the most common type of cancer in humans and annually accounts for approximately 60,000 deaths worldwide. The most important factors causally linked to skin cancer susceptibility are inadequate protection against ultraviolet (UV) B radiation, fair skin color, and variation of the melanocortin 1 receptor (MC1R) gene. We used cDNA microarrays to measure the genome-wide transcriptional responses to UVB irradiation in the epidermis of neonatal mice (which approximates the human basal epidermis in its cellular composition and general physiology). To investigate how pigment cells (melanocytes) and MC1R afford protection against UVB radiation, we compared results from normal mice to those from mutant mice that lacked either melanocytes (KitW-v/KitW-v) or a functional Mc1r (Mc1re/Mc1re). We identified melanocyte- and Mc1r-dependent UVB gene expression profiles in the basal epidermis. Surprisingly, the melanocyte- and Mc1r-dependent UVB responses highlighted distinct functions, with the former largely mediating antioxidant defenses and the latter regulating the cell cycle and susceptibility to oncogenesis. We also demonstrated that a subset of Mc1r-dependent UVB-responsive genes could discriminate among human melanoma subtypes, thereby suggesting a mechanism by which MC1R gene variants may predispose toward skin cancer.
Collapse
Affiliation(s)
- Craig S April
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gregory S Barsh
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Schlatterer JC, Baeker R, Schlatterer B, Klose J, Kehler W, Schlatterer K. Purification of prostaglandin D synthase by ceramic- and size exclusion chromatography. Prostaglandins Other Lipid Mediat 2006; 81:80-9. [PMID: 16997134 DOI: 10.1016/j.prostaglandins.2006.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/13/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Prostaglandin D synthase (L-PGDS) is a major glycosylated polypeptide in cerebrospinal fluid (CSF). The overexpression of L-PGDS in inflamed bovine mammary glands indicates its role as biomarker. No diagnostic tool for the quantitative detection of L-PGDS in cows has been reported. Immunometric ELISA tests might help to identify inflamed bovine tissue. The isolation of pure bovine L-PGDS, which is required for the generation of monoclonal antibodies, is an important prerequisite for a diagnostic ELISA test. Our goal was to identify a suitable technique to generate pure L-PGDS from bovine substrates. In the present study a two-step method for the purification of bovine CSF using ceramic hydroxyapatite chromatography followed by size exclusion chromatography is described. Subsequently, the identification of bovine L-PGDS was demonstrated by Western blot analysis and the high grade of the pure product was shown by 2-D PAGE. The yield of purified L-PGDS was 6.8 mg/l bovine CSF. L-PGDS from bovine CSF is shown to consist of multiple isoforms identical in molecular mass and pI values to those in previously described secretions of inflamed bovine mammary glands. In addition, the method was successfully applied to the purification of L-PGDS from human CSF.
Collapse
Affiliation(s)
- J C Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cell for cell, probably no human cancer is as aggressive as melanoma. It is among a handful of cancers whose dimensions are reported in millimeters. Tumor thickness approaching 4 mm presents a high risk of metastasis, and a diagnosis of metastatic melanoma carries with it an abysmal median survival of 6-9 mo. What features of this malignancy account for such aggressive behavior? Is it the migratory history of its cell of origin or the programmed adaptation of its differentiated progeny to environmental stress, particularly ultraviolet radiation? While the answers to these questions are far from complete, major strides have been made in our understanding of the cellular, molecular, and genetic underpinnings of melanoma. More importantly, these discoveries carry profound implications for the development of therapies focused directly at the molecular engines driving melanoma, suggesting that we may have reached the brink of an unprecedented opportunity to translate basic science into clinical advances. In this review, we attempt to summarize our current understanding of the genetics and biology of this disease, drawing from expanding genomic information and lessons from development and genetically engineered mouse models. In addition, we look forward toward how these new insights will impact on therapeutic options for metastatic melanoma in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Melanoma Program, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|