1
|
Gotur D, Case A, Liu J, Sickmier EA, Holt N, Knockenhauer KE, Yao S, Lee YT, Copeland RA, Buker SM, Boriack-Sjodin PA. Development of assays to support identification and characterization of modulators of DExH-box helicase DHX9. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:376-384. [PMID: 37625785 DOI: 10.1016/j.slasd.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
DHX9 is a DExH-box RNA helicase that utilizes hydrolysis of all four nucleotide triphosphates (NTPs) to power cycles of 3' to 5' directional movement to resolve and/or unwind double stranded RNA, DNA, and RNA/DNA hybrids, R-loops, triplex-DNA and G-quadraplexes. DHX9 activity is important for both viral amplification and maintaining genomic stability in cancer cells; therefore, it is a therapeutic target of interest for drug discovery efforts. Biochemical assays measuring ATP hydrolysis and oligonucleotide unwinding for DHX9 have been developed and characterized, and these assays can support high-throughput compound screening efforts under balanced conditions. Assay development efforts revealed DHX9 can use double stranded RNA with 18-mer poly(U) 3' overhangs and as well as significantly shorter overhangs at the 5' or 3' end as substrates. The enzymatic assays are augmented by a robust SPR assay for compound validation. A mechanism-derived inhibitor, GTPγS, was characterized as part of the validation of these assays and a crystal structure of GDP bound to cat DHX9 has been solved. In addition to enabling drug discovery efforts for DHX9, these assays may be extrapolated to other RNA helicases providing a valuable toolkit for this important target class.
Collapse
Affiliation(s)
- Deepali Gotur
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - April Case
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Julie Liu
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - E Allen Sickmier
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Nicholas Holt
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | | - Shihua Yao
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Young-Tae Lee
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | | - Shane M Buker
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | |
Collapse
|
2
|
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, Kurolap A, Henig NZ, Fatih JM, Herman I, Du H, Mitani T, Becker L, Rathkolb B, Gerlini R, Seisenberger C, Marschall S, Hunter JV, Gerard A, Heidlebaugh A, Challman T, Spillmann RC, Jhangiani SN, Coban-Akdemir Z, Lalani S, Liu L, Revah-Politi A, Iglesias A, Guzman E, Baugh E, Boddaert N, Rondeau S, Ormieres C, Barcia G, Tan QKG, Thiffault I, Pastinen T, Sheikh K, Biliciler S, Mei D, Melani F, Shashi V, Yaron Y, Steele M, Wakeling E, Østergaard E, Nazaryan-Petersen L, Millan F, Santiago-Sim T, Thevenon J, Bruel AL, Thauvin-Robinet C, Popp D, Platzer K, Gawlinski P, Wiszniewski W, Marafi D, Pehlivan D, Posey JE, Gibbs RA, Gailus-Durner V, Guerrini R, Fuchs H, Hrabě de Angelis M, Hölter SM, Cheung HH, Gu S, Lupski JR. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet 2023; 110:1394-1413. [PMID: 37467750 PMCID: PMC10432148 DOI: 10.1016/j.ajhg.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tianyu Guo
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chen Wang
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lillian Garrett
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Alina Kurolap
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Zunz Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Boys Town National Research Hospital, Boys Town, NE, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lore Becker
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Amanda Gerard
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Thomas Challman
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Seema Lalani
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lingxiao Liu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin Guzman
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, 75015 Paris, France
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Clothide Ormieres
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Queenie K G Tan
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA; University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Kazim Sheikh
- Department of Neurology, UT Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Suur Biliciler
- Department of Neurology, UT Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Federico Melani
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Vandana Shashi
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Yuval Yaron
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Steele
- Lifetime Neurodevelopmental Care, San Francisco, CA, USA
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, Dijon Bourgogne University Hospital, Dijon, France
| | - Denny Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pawel Gawlinski
- Institute of Mother and Child, Kasprzaka 17a, 02-211 Warsaw, Poland
| | - Wojciech Wiszniewski
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road L103, Portland, OR, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Technische Universität München, Freising-Weihenstephan, Germany
| | - Hoi-Hung Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China; Kunming Institute of Zoology Chinese Academy of Sciences, the Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China.
| | - James R Lupski
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Rahman MM, van Oosterom F, Enow JA, Hossain M, Gutierrez-Jensen AD, Cashen M, Everts A, Lowe K, Kilbourne J, Daggett-Vondras J, Karr TL, McFadden G. Nuclear Export Inhibitor Selinexor Enhances Oncolytic Myxoma Virus Therapy against Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:952-968. [PMID: 37377603 PMCID: PMC10234290 DOI: 10.1158/2767-9764.crc-22-0483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Oncolytic viruses exploited for cancer therapy have been developed to selectively infect, replicate, and kill cancer cells to inhibit tumor growth. However, in some cancer cells, oncolytic viruses are often limited in completing their full replication cycle, forming progeny virions, and/or spreading in the tumor bed because of the heterogeneous cell types within the tumor bed. Here, we report that the nuclear export pathway regulates oncolytic myxoma virus (MYXV) infection and cytoplasmic viral replication in a subclass of human cancer cell types where viral replication is restricted. Inhibition of the XPO-1 (exportin 1) nuclear export pathway with nuclear export inhibitors can overcome this restriction by trapping restriction factors in the nucleus and allow significantly enhanced viral replication and killing of cancer cells. Furthermore, knockdown of XPO-1 significantly enhanced MYXV replication in restrictive human cancer cells and reduced the formation of antiviral granules associated with RNA helicase DHX9. Both in vitro and in vivo, we demonstrated that the approved XPO1 inhibitor drug selinexor enhances the replication of MYXV and kills diverse human cancer cells. In a xenograft tumor model in NSG mice, combination therapy with selinexor plus MYXV significantly reduced the tumor burden and enhanced the survival of animals. In addition, we performed global-scale proteomic analysis of nuclear and cytosolic proteins in human cancer cells to identify the host and viral proteins that were upregulated or downregulated by different treatments. These results indicate, for the first time, that selinexor in combination with oncolytic MYXV can be used as a potential new therapy. Significance We demonstrated that a combination of nuclear export inhibitor selinexor and oncolytic MYXV significantly enhanced viral replication, reduced cancer cell proliferation, reduced tumor burden, and enhanced the overall survival of animals. Thus, selinexor and oncolytic MYXV can be used as potential new anticancer therapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Fleur van Oosterom
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Junior A. Enow
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Maksuda Hossain
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ami D. Gutierrez-Jensen
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Mackenzie Cashen
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Anne Everts
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Kenneth Lowe
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jacquelyn Kilbourne
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Juliane Daggett-Vondras
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Timothy L. Karr
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
4
|
Structural and calorimetric studies reveal specific determinants for the binding of a high-affinity NLS to mammalian importin-alpha. Biochem J 2021; 478:2715-2732. [PMID: 34195786 DOI: 10.1042/bcj20210401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
The classical nuclear import pathway is mediated by importin (Impα and Impβ), which recognizes the cargo protein by its nuclear localization sequence (NLS). NLSs have been extensively studied resulting in different proposed consensus; however, recent studies showed that exceptions may occur. This mechanism may be also dependent on specific characteristics of different Impα. Aiming to better understand the importance of specific residues from consensus and adjacent regions of NLSs, we studied different mutations of a high-affinity NLS complexed to Impα by crystallography and calorimetry. We showed that although the consensus sequence allows Lys or Arg residues at the second residue of a monopartite sequence, the presence of Arg is very important to its binding in major and minor sites of Impα. Mutations in the N or C-terminus (position P1 or P6) of the NLS drastically reduces their affinity to the receptor, which is corroborated by the loss of hydrogen bonds and hydrophobic interactions. Surprisingly, a mutation in the far N-terminus of the NLS led to an increase in the affinity for both binding sites, corroborated by the structure with an additional hydrogen bond. The binding of NLSs to the human variant Impα1 revealed that these are similar to those found in structures presented here. For human variant Impα3, the bindings are only relevant for the major site. This study increases understanding of specific issues sparsely addressed in previous studies that are important to the task of predicting NLSs, which will be relevant in the eventual design of synthetic NLSs.
Collapse
|
5
|
Rahman MM, Gutierrez-Jensen AD, Glenn HL, Abrantes M, Moussatche N, McFadden G. RNA Helicase A/DHX9 Forms Unique Cytoplasmic Antiviral Granules That Restrict Oncolytic Myxoma Virus Replication in Human Cancer Cells. J Virol 2021; 95:e0015121. [PMID: 33952639 PMCID: PMC8223942 DOI: 10.1128/jvi.00151-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
RNA helicase A/DHX9 is required for diverse RNA-related essential cellular functions and antiviral responses and is hijacked by RNA viruses to support their replication. Here, we show that during the late replication stage in human cancer cells of myxoma virus (MYXV), a member of the double-stranded DNA (dsDNA) poxvirus family that is being developed as an oncolytic virus, DHX9, forms unique granular cytoplasmic structures, which we named "DHX9 antiviral granules." These DHX9 antiviral granules are not formed if MYXV DNA replication and/or late protein synthesis is blocked. When formed, DHX9 antiviral granules significantly reduced nascent protein synthesis in the MYXV-infected cancer cells. MYXV late gene transcription and translation were also significantly compromised, particularly in nonpermissive or semipermissive human cancer cells where MYXV replication is partly or completely restricted. Directed knockdown of DHX9 significantly enhanced viral late protein synthesis and progeny virus formation in normally restrictive cancer cells. We further demonstrate that DHX9 is not a component of the canonical cellular stress granules. DHX9 antiviral granules are induced by MYXV, and other poxviruses, in human cells and are associated with other known cellular components of stress granules, dsRNA and virus encoded dsRNA-binding protein M029, a known interactor with DHX9. Thus, DHX9 antiviral granules function by hijacking poxviral elements needed for the cytoplasmic viral replication factories. These results demonstrate a novel antiviral function for DHX9 that is recruited from the nucleus into the cytoplasm, and this step can be exploited to enhance oncolytic virotherapy against the subset of human cancer cells that normally restrict MYXV. IMPORTANCE The cellular DHX9 has both proviral and antiviral roles against diverse RNA and DNA viruses. In this article, we demonstrate that DHX9 can form unique antiviral granules in the cytoplasm during myxoma virus (MYXV) replication in human cancer cells. These antiviral granules sequester viral proteins and reduce viral late protein synthesis and thus regulate MYXV, and other poxviruses, that replicate in the cytoplasm. In addition, we show that in the absence of DHX9, the formation of DHX9 antiviral granules can be inhibited, which significantly enhanced oncolytic MYXV replication in human cancer cell lines where the virus is normally restricted. Our results also show that DHX9 antiviral granules are formed after viral infection but not by common nonviral cellular stress inducers. Thus, our study suggests that DHX9 has antiviral activity in human cancer cells, and this pathway can be targeted for enhanced activity of oncolytic poxviruses against even restrictive cancer cells.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ami D. Gutierrez-Jensen
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Honor L. Glenn
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Mario Abrantes
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Wu C, Shan Y, Wang S, Liu F. Dynamically probing ATP-dependent RNA helicase A-assisted RNA structure conversion using single molecule fluorescence resonance energy transfer. Protein Sci 2021; 30:1157-1168. [PMID: 33837988 DOI: 10.1002/pro.4081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
RNA helicase A (RHA) as a member of DExH-box subgroup of helicase superfamily II, participates in diverse biological processes involved in RNA metabolism in organisms, and these RNA-mediated biological processes rely on RNA structure conversion. However, how RHA regulate the RNA structure conversion was still unknown. In order to unveil the mechanism of RNA structure conversion mediated by RHA, single molecule fluorescence resonance energy transfer was adopted to in our assay, and substrates RNA were from internal ribosome entry site of foot-and-mouth disease virus genome. We first found that the RNA structure conversion by RHA against thermodynamic equilibrium in vitro, and the process of dsRNA YZ converted to dsRNA XY through a tripartite intermediate state. In addition, the rate of the RNA structure conversion and the distribution of dsRNA YZ and XY were affected by ATP concentrations. Our study provides real-time insight into ATP-dependent RHA-assisted RNA structure conversion at the single molecule level, the mechanism displayed by RHA may help in understand how RHA contributes to many biological functions, and the basic mechanistic features illustrated in our work also underlay more complex protein-assisted RNA structure conversions.
Collapse
Affiliation(s)
- Chengcheng Wu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China.,Computational Optics Laboratory, Jiangnan University, Wuxi, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
8
|
Pan YQ, Xing L. The Current View on the Helicase Activity of RNA Helicase A and Its Role in Gene Expression. Curr Protein Pept Sci 2020; 22:29-40. [PMID: 33143622 DOI: 10.2174/1389203721666201103084122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes, including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into the molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to the genesis of circular RNA.
Collapse
Affiliation(s)
- Yuan-Qing Pan
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
9
|
Histone lysine demethylase KDM5B maintains chronic myeloid leukemia via multiple epigenetic actions. Exp Hematol 2020; 82:53-65. [PMID: 32007477 DOI: 10.1016/j.exphem.2020.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/23/2022]
Abstract
The histone lysine demethylase KDM5 family is implicated in normal development and stem cell maintenance by epigenetic modulation of histone methylation status. Deregulation of the KDM5 family has been reported in various types of cancers, including hematological malignancies. However, their transcriptional regulatory roles in the context of leukemia remain unclear. Here, we find that KDM5B is strongly expressed in normal CD34+ hematopoietic stem/progenitor cells and chronic myeloid leukemia (CML) cells. Knockdown of KDM5B in K562 CML cells reduced leukemia colony-forming potential. Transcriptome profiling of KDM5B knockdown K562 cells revealed the deregulation of genes involved in myeloid differentiation and Toll-like receptor signaling. Through the integration of transcriptome and ChIP-seq profiling data, we show that KDM5B is enriched at the binding sites of the GATA and AP-1 transcription factor families, suggesting their collaborations in the regulation of transcription. Even though the binding of KDM5B substantially overlapped with H3K4me1 or H3K4me3 mark at gene promoters, only a small subset of the KDM5B targets showed differential expression in association with the histone demethylation activity. By characterizing the interacting proteins in K562 cells, we discovered that KDM5B recruits protein complexes involved in the mRNA processing machinery, implying an alternative epigenetic action mediated by KDM5B in gene regulation. Our study highlights the oncogenic functions of KDM5B in CML cells and suggests that KDM5B is vital to the transcriptional regulation via multiple epigenetic mechanisms.
Collapse
|
10
|
Shen B, Chen Y, Hu J, Qiao M, Ren J, Hu J, Chen J, Tang N, Huang A, Hu Y. Hepatitis B virus X protein modulates upregulation of DHX9 to promote viral DNA replication. Cell Microbiol 2019; 22:e13148. [PMID: 31829498 DOI: 10.1111/cmi.13148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus (HBV) infection is a major cause of acute and chronic liver diseases. During the HBV life cycle, HBV hijacks various host factors to assist viral replication. In this research, we find that the HBV regulatory protein X (HBx) can induce the upregulation of DExH-box RNA helicase 9 (DHX9) expression by repressing proteasome-dependent degradation mediated by MDM2. Furthermore, we demonstrate that DHX9 contributes to viral DNA replication in dependence on its helicase activity and nuclear localization. In addition, the promotion of viral DNA replication by DHX9 is dependent on its interaction with Nup98. Our findings reveal that HBx-mediated DHX9 upregulation is essential for HBV DNA replication.
Collapse
Affiliation(s)
- Bocun Shen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Miao Qiao
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jihua Ren
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jieli Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Juan Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, 109#, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Hartel NG, Chew B, Qin J, Xu J, Graham NA. Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Novel PRMT1 Targets. Mol Cell Proteomics 2019; 18:2149-2164. [PMID: 31451547 PMCID: PMC6823857 DOI: 10.1074/mcp.ra119.001625] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Protein methylation has been implicated in many important biological contexts including signaling, metabolism, and transcriptional control. Despite the importance of this post-translational modification, the global analysis of protein methylation by mass spectrometry-based proteomics has not been extensively studied because of the lack of robust, well-characterized techniques for methyl peptide enrichment. Here, to better investigate protein methylation, we compared two methods for methyl peptide enrichment: immunoaffinity purification (IAP) and high pH strong cation exchange (SCX). Using both methods, we identified 1720 methylation sites on 778 proteins. Comparison of these methods revealed that they are largely orthogonal, suggesting that the usage of both techniques is required to provide a global view of protein methylation. Using both IAP and SCX, we then investigated changes in protein methylation downstream of protein arginine methyltransferase 1 (PRMT1). PRMT1 knockdown resulted in significant changes to 127 arginine methylation sites on 78 proteins. In contrast, only a single lysine methylation site was significantly changed upon PRMT1 knockdown. In PRMT1 knockdown cells, we found 114 MMA sites that were either significantly downregulated or upregulated on proteins enriched for mRNA metabolic processes. PRMT1 knockdown also induced significant changes in both asymmetric dimethyl arginine (ADMA) and symmetric dimethyl arginine (SDMA). Using characteristic neutral loss fragmentation ions, we annotated dimethylarginines as either ADMA or SDMA. Through integrative analysis of methyl forms, we identified 18 high confidence PRMT1 substrates and 12 methylation sites that are scavenged by other non-PRMT1 arginine methyltransferases in the absence of PRMT1 activity. We also identified one methylation site, HNRNPA1 R206, which switched from ADMA to SDMA upon PRMT1 knockdown. Taken together, our results suggest that deep protein methylation profiling by mass spectrometry requires orthogonal enrichment techniques to identify novel PRMT1 methylation targets and highlight the dynamic interplay between methyltransferases in mammalian cells.
Collapse
Affiliation(s)
- Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
| | - Brandon Chew
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
| | - Jian Qin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90089; Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90089; Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089.
| |
Collapse
|
12
|
The Host DHX9 DExH-Box Helicase Is Recruited to Chikungunya Virus Replication Complexes for Optimal Genomic RNA Translation. J Virol 2019; 93:JVI.01764-18. [PMID: 30463980 DOI: 10.1128/jvi.01764-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Beyond their role in cellular RNA metabolism, DExD/H-box RNA helicases are hijacked by various RNA viruses in order to assist replication of the viral genome. Here, we identify the DExH-box RNA helicase 9 (DHX9) as a binding partner of chikungunya virus (CHIKV) nsP3 mainly interacting with the C-terminal hypervariable domain. We show that during early CHIKV infection, DHX9 is recruited to the plasma membrane, where it associates with replication complexes. At a later stage of infection, DHX9 is, however, degraded through a proteasome-dependent mechanism. Using silencing experiments, we demonstrate that while DHX9 negatively controls viral RNA synthesis, it is also required for optimal mature nonstructural protein translation. Altogether, this study identifies DHX9 as a novel cofactor for CHIKV replication in human cells that differently regulates the various steps of CHIKV life cycle and may therefore mediate a switch in RNA usage from translation to replication during the earliest steps of CHIKV replication.IMPORTANCE The reemergence of chikungunya virus (CHIKV), an alphavirus that is transmitted to humans by Aedes mosquitoes, is a serious global health threat. In the absence of effective antiviral drugs, CHIKV infection has a significant impact on human health, with chronic arthritis being one of the most serious complications. The molecular understanding of host-virus interactions is a prerequisite to the development of targeted therapeutics capable to interrupt viral replication and transmission. Here, we identify the host cell DHX9 DExH-Box helicase as an essential cofactor for early CHIKV genome translation. We demonstrate that CHIKV nsP3 protein acts as a key factor for DHX9 recruitment to replication complexes. Finally, we establish that DHX9 behaves as a switch that regulates the progression of the viral cycle from translation to genome replication. This study might therefore have a significant impact on the development of antiviral strategies.
Collapse
|
13
|
Meng W, Wang XJ, Wang HCR. Targeting nuclear proteins for control of viral replication. Crit Rev Microbiol 2019; 45:495-513. [DOI: 10.1080/1040841x.2018.1553848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
| |
Collapse
|
14
|
Tanaka T, Kasai M, Kobayashi S. Mechanism responsible for inhibitory effect of indirubin 3′-oxime on anticancer agent-induced YB-1 nuclear translocation in HepG2 human hepatocellular carcinoma cells. Exp Cell Res 2018; 370:454-460. [DOI: 10.1016/j.yexcr.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
15
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget 2017; 7:28711-23. [PMID: 26885691 PMCID: PMC5053757 DOI: 10.18632/oncotarget.7377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
The RNA helicase A (RHA) is involved in several steps of RNA metabolism, such as RNA processing, cellular transit of viral molecules, ribosome assembly, regulation of transcription and translation of specific mRNAs. RHA is a multifunctional protein whose roles depend on the specific interaction with different molecular partners, which have been extensively characterized in physiological situations. More recently, the functional implication of RHA in human cancer has emerged. Interestingly, RHA was shown to cooperate with both tumor suppressors and oncoproteins in different tumours, indicating that its specific role in cancer is strongly influenced by the cellular context. For instance, silencing of RHA and/or disruption of its interaction with the oncoprotein EWS-FLI1 rendered Ewing sarcoma cells more sensitive to genotoxic stresses and affected tumor growth and maintenance, suggesting possible therapeutic implications. Herein, we review the recent advances in the cellular functions of RHA and discuss its implication in oncogenesis, providing a perspective for future studies and potential translational opportunities in human cancer.
Collapse
Affiliation(s)
- Marco Fidaleo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| | - Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
17
|
Tanaka T, Ohashi S, Kobayashi S. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1. Biochem Biophys Res Commun 2016; 478:1363-9. [DOI: 10.1016/j.bbrc.2016.08.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
|
18
|
Mahipal A, Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther 2016; 164:135-43. [PMID: 27113410 DOI: 10.1016/j.pharmthera.2016.03.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The nuclear transport proteins, importins and exportins (karyopherin-β proteins), may play an important role in cancer by transporting key mediators of oncogenesis across the nuclear membrane in cancer cells. During nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators during the processing of these proteins, aberrant cellular growth signaling and inactivation of apoptosis can occur, both critical to growth and development of tumors. Karyopherin-β proteins bind to these cargo proteins and RanGTP for active transport across the nuclear membrane through the nuclear pore complex. Importins and exportins are overexpressed in multiple tumors including melanoma, pancreatic, breast, colon, gastric, prostate, esophageal, lung cancer, and lymphomas. Furthermore, some of the karyopherin-β proteins such as exportin-1 have been implicated in drug resistance in cancer. Importin and exportin inhibitors are being considered as therapeutic targets against cancer and have shown preclinical anticancer activity. Moreover, synergistic activity has been observed with various chemotherapeutic and targeted agents. However, clinical development of the exportin-1 inhibitor leptomycin B was stopped due to adverse events, including vomiting, anorexia, and dehydration. Selinexor, a selective nuclear export inhibitor, is being tested in multiple clinical trials both as a single agent and in combination with chemotherapy. Selinexor has demonstrated clinical activity in multiple cancers, especially acute myelogenous leukemia and multiple myeloma. The roles of other importin and exportin inhibitors still need to be investigated clinically. Targeting the key mediators of nucleocytoplasmic transport in cancer cells represents a novel strategy in cancer intervention with the potential to significantly affect outcomes.
Collapse
Affiliation(s)
- Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
19
|
Zhu J, Cynader MS, Jia W. TDP-43 Inhibits NF-κB Activity by Blocking p65 Nuclear Translocation. PLoS One 2015; 10:e0142296. [PMID: 26571498 PMCID: PMC4646651 DOI: 10.1371/journal.pone.0142296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
TDP-43 (TAR DNA binding protein 43) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been found to play an important role in neurodegenerative diseases. TDP-43’s involvement in nuclear factor-kappaB pathways has been reported in both neurons and microglial cells. The NF-κB pathway targets hundreds of genes, many of which are involved in inflammation, immunity and cancer. p50/p65 (p50/RelA) heterodimers, as the major Rel complex in the NF-κB family, are induced by diverse external physiological stimuli and modulate transcriptional activity in almost all cell types. Both p65 and TDP-43 translocation occur through the classic nuclear transportation system. In this study, we report that TDP-43 overexpression prevents TNF-α induced p65 nuclear translocation in a dose dependent manner, and that this further inhibits p65 transactivation activity. The inhibition by TDP-43 does not occur through preventing IκB degradation but probably by competing for the nuclear transporter-importin α3 (KPNA4). This competition is dependent on the presence of the nuclear localization signal (NLS) in TDP-43. Silencing TDP-43 using a specific siRNA also increased p65 nuclear localization upon TNF-α stimulation, suggesting that endogenous TDP-43 may be a default suppressor of the NF-κB pathway. Our results indicate that TDP-43 may play an important role in regulating the levels of NF-κB activity by controlling the nuclear translocation of p65.
Collapse
Affiliation(s)
- Jingyan Zhu
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T2B5, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Max S. Cynader
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T2B5, Canada
| | - William Jia
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T2B5, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
20
|
A fusogenic peptide from a sea urchin fertilization protein promotes intracellular delivery of biomacromolecules by facilitating endosomal escape. J Control Release 2015; 212:85-93. [DOI: 10.1016/j.jconrel.2015.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
|
21
|
Abstract
The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases.
Collapse
|
22
|
Jefferson M, Donaszi-Ivanov A, Pollen S, Dalmay T, Saalbach G, Powell PP. Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex. J Virol 2014; 88:10340-53. [PMID: 24965446 PMCID: PMC4178888 DOI: 10.1128/jvi.00984-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The viral N-terminal protease N(pro) of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for N(pro) through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to N(pro) did not inhibit these proteins from aggregating into stress granules. N(pro) interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with N(pro). To address a proviral role for N(pro) in RNP granules, we investigated whether N(pro) affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of N(pro) had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that N(pro) is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. IMPORTANCE Although the pestivirus N-terminal protease, N(pro), has been shown to have an important role in degrading IRF3 to prevent apoptosis and interferon production during infection, the function of this unique viral protease in the pestivirus life cycle remains to be elucidated. We used proteomic mass spectrometry to identify novel interacting proteins and have shown that N(pro) is present in ribosomal and ribonucleoprotein particles (RNPs), indicating a translational role in virus particle production. The virus itself can prevent stress granule assembly from these complexes, but this inhibition is not due to N(pro). A proviral role to subvert RNA silencing through binding of these host RNP proteins was not identified for this viral suppressor of interferon.
Collapse
Affiliation(s)
- Matthew Jefferson
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Andras Donaszi-Ivanov
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Sean Pollen
- Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tamas Dalmay
- Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Penny P Powell
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
23
|
Xing L, Niu M, Zhao X, Kleiman L. Different activities of the conserved lysine residues in the double-stranded RNA binding domains of RNA helicase A in vitro and in the cell. Biochim Biophys Acta Gen Subj 2014; 1840:2234-43. [PMID: 24726449 DOI: 10.1016/j.bbagen.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells. METHODS The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A-RNA interaction and RNA helicase A-stimulated viral RNA processes. RESULTS Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNA(Lys3) annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A-HIV-1 RNA interaction in the cells. CONCLUSIONS The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A. GENERAL SIGNIFICANCE The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xia Zhao
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Ye W, Lin W, Tartakoff AM, Ma Q, Tao T. Nuclear import of aristaless-related homeobox protein via its NLS1 regulates its transcriptional function. Mol Cell Biochem 2013; 381:221-31. [PMID: 23771350 DOI: 10.1007/s11010-013-1706-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Nucleocytoplasmic transport of transcription factors is essential in eukaryotes. We previously reported the presence of two functional NLSs in the homeodomain protein, aristaless-related homeobox (Arx) protein, which is a key transcriptional repressor of LMO1, SHOX2, and PAX4 during development. NLS2, that overlaps the homeodomain, is recognized directly by multiple importin βs, but not by importin αs. In this study, we found that the N-terminal NLS1 of Arx is targeted by multiple importin α proteins, including importin α3 and α5. Both in vivo and in vitro assays demonstrated that nuclear import of Arx via NLS1 is mediated by the importin α/β pathway. Mutagenesis analysis indicated that two basic amino acids, (84)K and (87)R, are essential to the function of NLS1, and that their mutation prevents interactions of Arx with importin αs. Interestingly, inhibition of nuclear import of Arx via NLS1 clearly attenuates its ability of transcriptional repression, suggesting that nuclear import of Arx via NLS1 contributes to its transcriptional function.
Collapse
Affiliation(s)
- Wenduo Ye
- Xiamen University School of Life Sciences, Xiamen, Fujian, China
| | | | | | | | | |
Collapse
|
25
|
Hall MN, Corbett AH, Pavlath GK. Regulation of nucleocytoplasmic transport in skeletal muscle. Curr Top Dev Biol 2011; 96:273-302. [PMID: 21621074 DOI: 10.1016/b978-0-12-385940-2.00010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proper skeletal muscle function is dependent on spatial and temporal control of gene expression in multinucleated myofibers. In addition, satellite cells, which are tissue-specific stem cells that contribute critically to repair and maintenance of skeletal muscle, are also required for normal muscle physiology. Gene expression in both myofibers and satellite cells is dependent upon nuclear proteins that require facilitated nuclear transport. A unique challenge for myofibers is controlling the transcriptional activity of hundreds of nuclei in a common cytoplasm yet achieving nuclear selectivity in transcription at specific locations such as neuromuscular synapses and myotendinous junctions. Nucleocytoplasmic transport of macromolecular cargoes is regulated by a complex interplay among various components of the nuclear transport machinery, namely nuclear pore complexes, nuclear envelope proteins, and various soluble transport receptors. The focus of this review is to highlight what is known about the nuclear transport machinery and its regulation in skeletal muscle and to consider the unique challenges that multinucleated muscle cells as well as satellite cells encounter in regulating nucleocytoplasmic transport during cell differentiation and tissue adaptation. Understanding how regulated nucleocytoplasmic transport controls gene expression in skeletal muscle may lead to further insights into the mechanisms contributing to muscle growth and maintenance throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Monica N Hall
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
26
|
Coordinate roles of Gag and RNA helicase A in promoting the annealing of formula to HIV-1 RNA. J Virol 2010; 85:1847-60. [PMID: 21106734 DOI: 10.1128/jvi.02010-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA helicase A (RHA) has been shown to promote HIV-1 replication at both the translation and reverse transcription stages. A prerequisite step for reverse transcription involves the annealing of tRNA(3)(Lys), the primer for reverse transcription, to HIV-1 RNA. tRNA(3)(Lys) annealing is a multistep process that is initially facilitated by Gag prior to viral protein processing. Herein, we report that RHA promotes this annealing through increasing both the quantity of tRNA(3)(Lys) annealed by Gag and the ability of tRNA(3)(Lys) to prime the initiation of reverse transcription. This improved annealing is the result of an altered viral RNA conformation produced by the coordinate action of Gag and RHA. Since RHA has been reported to promote the translation of unspliced viral RNA to Gag protein, our observations suggest that the conformational change in viral RNA induced by RHA and newly produced Gag may help facilitate the switch in viral RNA from a translational mode to one facilitating tRNA(3)(Lys) annealing.
Collapse
|
27
|
Importin alpha3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication. J Virol 2010; 84:8650-63. [PMID: 20554775 DOI: 10.1128/jvi.00508-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV-1 employs the cellular nuclear import machinery to actively transport its preintegration complex (PIC) into the nucleus for integration of the viral DNA. Several viral karyophilic proteins and cellular import factors have been suggested to contribute to HIV-1 PIC nuclear import and replication. However, how HIV interacts with different cellular machineries to ensure efficient nuclear import of its preintegration complex in dividing and nondividing cells is still not fully understood. In this study, we have investigated different importin alpha (Impalpha) family members for their impacts on HIV-1 replication, and we demonstrate that short hairpin RNA (shRNA)-mediated Impalpha3 knockdown (KD) significantly impaired HIV infection in HeLa cells, CD4(+) C8166 T cells, and primary macrophages. Moreover, quantitative real-time PCR analysis revealed that Impalpha3-KD resulted in significantly reduced levels of viral 2-long-terminal repeat (2-LTR) circles but had no effect on HIV reverse transcription. All of these data indicate an important role for Impalpha3 in HIV nuclear import. In an attempt to understand how Impalpha3 participates in HIV nuclear import and replication, we first demonstrated that the HIV-1 karyophilic protein integrase (IN) was able to interact with Impalpha3 both in a 293T cell expression system and in HIV-infected CD4(+) C8166 T cells. Deletion analysis suggested that a region (amino acids [aa] 250 to 270) in the C-terminal domain of IN is involved in this viral-cellular protein interaction. Overall, this study demonstrates for the first time that Impalpha3 is an HIV integrase-interacting cofactor that is required for efficient HIV-1 nuclear import and replication in both dividing and nondividing cells.
Collapse
|
28
|
Kaposi's sarcoma-associated herpesvirus viral protein kinase interacts with RNA helicase a and regulates host gene expression. J Microbiol 2010; 48:206-12. [PMID: 20437153 DOI: 10.1007/s12275-010-0021-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
RNA helicase A (RHA) containing the DExH motif is a human homolog of maleless protein that regulates expression of genes located in the Drosophila X chromosome during dosage compensation. RHA exerts helicase activity that unwinds double-stranded RNA and DNA to a single-strand form. The protein acts as a bridging factor mediating interactions of CBP/p300 and RNA pol II, and consequently affects gene expression. Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gamma-herpesvirus subfamily that causes several disorders. The majority of herpesviruses commonly encode predicted viral protein kinases. KSHV open reading frame 36 (ORF36) codes for protein kinase domains, and functions as a serine/threonine protein kinase. KSHV ORF36 is classified as a late gene, as it is expressed during lytic replication and localized in the nuclei of KSHV-infected cells. Recent studies show that viral protein kinase (vPK) interacts with cellular proteins. In this study, we determined the cellular localization of vPK in KSHV-infected BCBL-1 cells using confocal microscopy. Proteomic analysis indicates that cellular proteins interacted with vPK, and co-immunoprecipitation reactions further reveal interactions between vPK and RHA. Moreover, KSHV vPK appeared to regulate the transcriptional activation of Cre promoter, and plays an important role in cellular transcription of RHA.
Collapse
|
29
|
Abstract
P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. In consistence with the function of the protein in transcriptional regulation and pre-mRNA splicing, p68 was found to predominately localize in the cell nucleus. However, recent experiments demonstrate a transient cytoplasmic localization of the protein. We report here that p68 shuttles between the nucleus and the cytoplasm. The nucleocytoplasmic shuttling of p68 is mediated by two nuclear localization signal (NLS) and two nuclear exporting signal (NES) sequence elements. Our experiments reveal that p68 shuttles via a classical RanGTPase dependent pathway.
Collapse
|
30
|
Identification of RNA helicase A as a new host factor in the replication cycle of foot-and-mouth disease virus. J Virol 2009; 83:11356-66. [PMID: 19710149 DOI: 10.1128/jvi.02677-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV), as with other RNA viruses, recruits various host cell factors to assist in the translation and replication of the virus genome. In this study, we investigated the role of RNA helicase A (RHA) in the life cycle of FMDV. Immunofluorescent microscopy (IFM) showed a change in the subcellular distribution of RHA from the nucleus to the cytoplasm in FMDV-infected cells as infection progressed. Unlike nuclear RHA, the RHA detected in the cytoplasm reacted with an antibody that recognizes only the nonmethylated form of RHA. In contrast to alterations in the subcellular distribution of nuclear factors observed during infection with the related cardioviruses, cytoplasmic accumulation of RHA did not require the activity of the FMDV leader protein. Using IFM, we have found cytoplasmic RHA in proximity to the viral 2C and 3A proteins, which promotes the assembly of the replication complexes, as well as cellular poly(A) binding protein (PABP). Coimmunoprecipitation assays confirmed that these proteins are complexed with RHA. We have also identified a novel interaction between RHA and the S fragment in the FMDV 5' nontranslated region. Moreover, a reduction in the expression of RHA, using RHA-specific small interfering RNA constructs, inhibited FMDV replication. These results indicate that RHA plays an essential role in the replication of FMDV and potentially other picornaviruses through ribonucleoprotein complex formation at the 5' end of the genome and by interactions with 2C, 3A, and PABP.
Collapse
|
31
|
Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 2009; 284:478-485. [PMID: 19001369 DOI: 10.1074/jbc.m807017200] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importin alpha/beta pathway mediates nuclear import of proteins containing the classical nuclear localization signals (NLSs). Although the consensus sequences of the classical NLSs have been defined, there are still many NLSs that do not match the consensus rule and many nonfunctional sequences that match the consensus. We report here six different NLS classes that specifically bind to distinct binding pockets of importin alpha. By screening of random peptide libraries using an mRNA display, we selected peptides bound by importin alpha and identified six classes of NLSs, including three novel classes. Two noncanonical classes (class 3 and class 4) specifically bound the minor binding pocket of importin alpha, whereas the classical monopartite NLSs (class 1 and class 2) bound to the major binding pocket. Using a newly developed universal green fluorescent protein expression system, we found that these NLS classes, including plant-specific class 5 NLSs and bipartite NLSs, fundamentally require the regions outside the core basic residues for their activity and have specific residues or patterns that confer the activities differently between yeast, plants, and mammals. Furthermore, amino acid replacement analyses revealed that the consensus basic patterns of the classical NLSs are not essential for activity, thereby generating more unconventional patterns, including redox-sensitive NLSs. These results explain the causes of the NLS diversity. The defined consensus patterns and properties of importin alpha-dependent NLSs provide useful information for identifying NLSs.
Collapse
Affiliation(s)
- Shunichi Kosugi
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Nobutaka Matsumura
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hideaki Takashima
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Etsuko Miyamoto-Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hiroshi Yanagawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
32
|
Huang M, Mitchell BS. Guanine nucleotide depletion mediates translocation of nucleolar proteins, including RNA helicase A (DHX-9). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:704-11. [PMID: 18600529 DOI: 10.1080/15257770802145132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DHX-9, a member of the DEXH family of RNA helicases, unwinds dsRNA/dsDNA by ATP or GTP-dependent hydrolysis. We asked whether DHX-9 played a role in the GTP depletion-induced inhibition of rRNA synthesis and/or nucleolar disruption. MPA, a specific inhibitor of inosine monophosphate dehydrogenase (IMPDH), induced a rapid translocation of DHX-9 from the nucleolus to the nucleus. EGFP-tagged DHX-9 mutated at the GTP binding site also localized to the nucleus. However, knockdown of DHX-9 by siRNA did not inhibit the rRNA synthesis or cause the nucleolar disruption. Thus, DHX-9 translocation found with IMPDH inhibition does not mediate the inhibition of rRNA synthesis.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Division of Oncology, Stanford Cancer Center, Stanford University, Stanford, California 94305-5796, USA
| | | |
Collapse
|
33
|
Novel expression of importin alpha homologue in marine teleost, Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:420-7. [PMID: 18789395 DOI: 10.1016/j.cbpb.2008.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 12/25/2022]
Abstract
Importin alpha proteins are critical modulators of the classical nuclear protein import pathway. Although the physiological roles of importin alpha have been extensively studied in invertebrates and mammals, very little is known about their counterparts in lower vertebrates. In this study, to elucidate the roles of importin alpha in a teleost species, we isolated and characterized red seabream (Pagrus major) importin alpha cDNA derived from ovary and found changes in the mRNA levels of importin alpha in male and female red seabream during sexual maturation. The 1846-bp cDNA encodes a 520 amino acid protein that includes the importin beta-binding domain, a short acidic domain, and an armadillo (arm) repeat domain. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) showed transcription of red seabream importin alpha in testis and ovary but not in the other tissues. The importin alpha mRNA levels in males increase in association with testicular development, whereas those in females remain high throughout sexual maturation. These findings suggest that red seabream ovary-derived importin alpha may be controlled in a tissue-specific manner and may perform unique functions in the gonad in addition to its involvement in nuclear transport.
Collapse
|
34
|
Okada N, Ishigami Y, Suzuki T, Kaneko A, Yasui K, Fukutomi R, Isemura M. Importins and exportins in cellular differentiation. J Cell Mol Med 2008; 12:1863-71. [PMID: 18657223 PMCID: PMC4506156 DOI: 10.1111/j.1582-4934.2008.00437.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The importin/exportin transport system provides the machinery involved in nucleocytoplasmic transport. Alterations of the levels of importins and exportins may play crucial roles in development, differentiation and transformation. Employing human leukaemia HL-60 cells, we and others have revealed the differentiation-associated changes in the protein and gene expression of these factors. The recent finding that a switch to the importin-α subtype triggers neural differentiation of embryonic stem cells underscores the importance of nucleocytoplasmic transport factors in cellular events. This review focuses on current research into the roles of importins and exportins in cell differentiation.
Collapse
Affiliation(s)
- Norihisa Okada
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Izzo A, Regnard C, Morales V, Kremmer E, Becker PB. Structure-function analysis of the RNA helicase maleless. Nucleic Acids Res 2007; 36:950-62. [PMID: 18086708 PMCID: PMC2241912 DOI: 10.1093/nar/gkm1108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of function of the RNA helicase maleless (MLE) in Drosophila melanogaster leads to male-specific lethality due to a failure of X chromosome dosage compensation. MLE is presumably involved in incorporating the non-coding roX RNA into the dosage compensation complex (DCC), which is an essential but poorly understood requirement for faithful targeting of the complex to the X chromosome. Sequence comparison predicts several RNA-binding domains in MLE but their properties have not been experimentally verified. We evaluated the RNA-binding characteristics of these conserved motifs and their contributions to RNA-stimulated ATPase activity, to helicase activity, as well as to the targeting of MLE to the nucleus and to the X chromosome territory. We find that RB2 is the dominant, conditional RNA-binding module, which is indispensable for ATPase and helicase activity whereas the N-terminal RB1 motif does not bind RNA, but is involved in targeting MLE to the X chromosome. The C-terminal domain containing a glycine-rich heptad repeat adds potential dimerization and RNA-binding surfaces which are not required for helicase activity.
Collapse
Affiliation(s)
- Annalisa Izzo
- Adolf-Butenandt-Institut and Center of integrated Protein Science, München, Germany
| | | | | | | | | |
Collapse
|
36
|
Hogarth CA, Jans DA, Loveland KL. Subcellular distribution of importins correlates with germ cell maturation. Dev Dyn 2007; 236:2311-20. [PMID: 17654710 DOI: 10.1002/dvdy.21238] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Importin proteins regulate access to the nucleus by recognizing and transporting distinct cargo proteins. Building on studies in Drosophila and Caenorhabditis elegans, we hypothesized that regulated expression and subcellular localization of specific importins may be linked to mammalian gonadal differentiation. We identified distinct developmental and cellular localization patterns for importins beta1, alpha3, alpha4 and RanBP5 (importin beta3) in fetal and postnatal murine testes using Western blotting and immunohistochemistry. Importin beta1 protein is detected in selected germ and somatic cells in fetal gonads, with a striking perinuclear staining evident from embryonic day (E) 14.5 within testicular gonocytes. RanBP5 exhibits age- and gender-specific subcellular localization within fetal gonads. At E12.5, RanBP5 protein is cytoplasmic in gonocytes but predominantly nuclear in oogonia, but by E14.5 RanBP5 appears nuclear in gonocytes and cytoplasmic in oogonia. In postnatal testes, importin alpha3 and alpha4 in spermatocytes, spermatids, and Sertoli cells display cytoplasmic and nuclear localization, respectively.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- The Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
37
|
Characterization of the human herpesvirus 6 U69 gene product and identification of its nuclear localization signal. J Virol 2007; 82:710-8. [PMID: 18003734 DOI: 10.1128/jvi.00736-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the function of the U69 protein kinase of human herpesvirus 6 (HHV-6) in vivo, we first analyzed its subcellular localization in HHV-6-infected Molt 3 cells by using polyclonal antibodies against the U69 protein. Immunofluorescence studies showed that the U69 signal localized to the nucleus in a mesh-like pattern in both HHV-6-infected and HHV6-transfected cells. A computer program predicted two overlapping classic nuclear localization signals (NLSs) in the N-terminal region of the protein; this NLS motif is highly conserved in the N-terminal region of most of the herpesvirus protein kinases examined to date. An N-terminal deletion mutant form of the protein failed to enter the nucleus, whereas a fusion protein of green fluorescent protein (GFP) and/or glutathione S-transferase (GST) and the U69 N-terminal region was transported into the nucleus, demonstrating that the predicted N-terminal NLSs of the protein actually function as NLSs. The nuclear transport of the GST-GFP fusion protein containing the N-terminal NLS of U69 was inhibited by wheat germ agglutinin and by the Q69L Ran-GTP mutant, indicating that the U69 protein is transported into the nucleus from the cytoplasm via classic nuclear transport machinery. A cell-free import assay showed that the nuclear transport of the U69 protein was mediated by importin alpha/beta in conjunction with the small GTPase Ran. When the import assay was performed with a low concentration of each importin-alpha subtype, NPI2/importin-alpha7 elicited more efficient transport activity than did Rch1/importin-alpha1 or Qip1/importin-alpha3. These results suggest a relationship between the localization of NPI2/importin-alpha7 and the cell tropism of HHV-6.
Collapse
|
38
|
Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:213-27. [PMID: 17933596 DOI: 10.1016/j.bbapap.2007.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/16/2007] [Accepted: 08/24/2007] [Indexed: 12/25/2022]
Abstract
The study of viral proteins and host cell factors that interact with them has represented an invaluable contribution to understanding of the physiology as well as associated pathology of key eukaryotic cell processes such as cell cycle regulation, signal transduction and transformation. Similarly, knowledge of nucleocytoplasmic transport is based largely on pioneering studies performed on viral proteins that enabled the first sequences responsible for the facilitated transport through the nuclear pore to be identified. The study of viral proteins has also enabled the discovery of several nucleocytoplasmic regulatory mechanisms, the best characterized being through phosphorylation. Recent delineation of the mechanisms whereby phosphorylation regulates nuclear import and export of key viral gene products encoded by important human pathogens such as human cytomegalovirus dengue virus and respiratory syncytial virus has implications for the development of antiviral therapeutics. In particular, the development of specific and effective kinase inhibitors makes the idea of blocking viral infection by inhibiting the phosphorylation-dependent regulation of viral gene product nuclear transport a real possibility. Additionally, examination of a chicken anemia virus (CAV) protein able to target selectively into the nucleus of tumor but not normal cells, as specifically regulated by phosphorylation, opens the exciting possibility of cancer cell-specific nuclear targeting. The study of nucleoplasmic transport may thus enable the development not only of new antiviral approaches, but also contribute to anti-cancer strategies.
Collapse
|
39
|
Liu Z, Kenworthy R, Green C, Tang H. Molecular determinants of nucleolar translocation of RNA helicase A. Exp Cell Res 2007; 313:3743-54. [PMID: 17822697 DOI: 10.1016/j.yexcr.2007.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/11/2007] [Accepted: 07/27/2007] [Indexed: 11/30/2022]
Abstract
RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | |
Collapse
|
40
|
Pradeepa MM, Manjunatha S, Sathish V, Agrawal S, Rao MRS. Involvement of importin-4 in the transport of transition protein 2 into the spermatid nucleus. Mol Cell Biol 2007; 28:4331-41. [PMID: 17682055 PMCID: PMC2447153 DOI: 10.1128/mcb.00519-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian spermiogenesis is characterized by a unique chromatin-remodeling process in which histones are replaced by transition protein 1 (TP1), TP2, and TP4, which are further replaced by protamines. We showed previously that the import of TP2 into the haploid spermatid nucleus requires the components of cytosol and ATP. We have now carried out a detailed analysis to characterize the molecular components underlying the nuclear translocation of TP2. Real-time PCR analysis of the expression of different importins in testicular germ cells revealed that importin-4 and importin-beta3 are significantly up-regulated in tetraploid and haploid germ cells. We carried out physical interaction studies as well as an in vitro nuclear transport assay using recombinant TP2 and the nuclear localization signal of TP2 (TP2(NLS)) fused to glutathione S-transferase in digitonin-permeabilized, haploid, round spermatids and identified importin-4 to be involved in the import of TP2. A three-dimensional model of the importin-4 protein was generated using the crystal structure of importin-beta1 as the template. Molecular docking simulations of TP2(NLS) with the importin-4 structure led to the identification of a TP2(NLS) binding pocket spanning the three helices (helices 21 to 23) of importin-4, which was experimentally confirmed by in vitro interaction and import studies with different deletion mutants of importin-4. In contrast to TP2, TP1 import was accomplished through a passive diffusion process.
Collapse
Affiliation(s)
- M M Pradeepa
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | | | |
Collapse
|