1
|
Xiao D, Ran H, Chen L, Li Y, Cai Y, Zhang S, Qi Q, Wu H, Zhang C, Cao S, Mi L, Huang H, Qi J, Han Q, Tu H, Li H, Zhou T, Li F, Li A, Man J. FSD1 inhibits glioblastoma diffuse infiltration through restriction of HDAC6-mediated microtubule deacetylation. SCIENCE CHINA. LIFE SCIENCES 2025; 68:673-688. [PMID: 39808222 DOI: 10.1007/s11427-024-2616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization. This inhibitory interaction is disrupted upon phosphorylation of FSD1 at its Ser317 and Ser324 residues by activated CDK5, leading to FSD1 dissociation from microtubules and facilitating HDAC6-mediated α-tubulin deacetylation. Furthermore, increased expression of FSD1 or interference with FSD1 phosphorylation reduces microtubule deacetylation, suppresses invasion of GBM stem cells, and ultimately mitigates tumor infiltration in orthotopic GBM xenografts. Importantly, GBM tissues exhibit diminished levels of FSD1 expression, correlating with microtubule deacetylation and unfavorable clinical outcomes in GBM patients. These findings elucidate the mechanistic involvement of microtubule deacetylation in driving GBM cell invasion and offer potential avenues for managing GBM infiltration.
Collapse
Affiliation(s)
- Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
2
|
Zheng H, Yang X, Zhong H, Song C, Wu Z, Yang H. HDAC6 Facilitates PRV and VSV Infection by Inhibiting Type I Interferon Production. Viruses 2025; 17:90. [PMID: 39861880 PMCID: PMC11768819 DOI: 10.3390/v17010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells. Mechanistic studies identified HDAC6 as a DNA damage inhibitor in PK15 cells. HDAC6 overexpression attenuated DNA damage levels, which can further reduce type I IFN production to promote viral infection. Conversely, HDAC6 deficiency can limit viral infection by increasing DNA damage-mediated type I IFN production. This work demonstrates that HDAC6 affects the infection process of multiple viruses by modulating type I IFN production, highlighting a regulatory role of HDAC6 linking host immune response and viral infection levels in pig cells.
Collapse
Affiliation(s)
- Hu Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (X.Y.); (H.Z.); (C.S.)
| | - Xiaohui Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (X.Y.); (H.Z.); (C.S.)
| | - Haiwen Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (X.Y.); (H.Z.); (C.S.)
| | - Changxu Song
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (X.Y.); (H.Z.); (C.S.)
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (X.Y.); (H.Z.); (C.S.)
- Yunfu Branch Center of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Yunfu 527400, China
| | - Huaqiang Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (X.Y.); (H.Z.); (C.S.)
- Yunfu Branch Center of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Yunfu 527400, China
| |
Collapse
|
3
|
Guadagni A, Barone S, Alfano AI, Pelliccia S, Bello I, Panza E, Summa V, Brindisi M. Tackling triple negative breast cancer with HDAC inhibitors: 6 is the isoform! Eur J Med Chem 2024; 279:116884. [PMID: 39321690 DOI: 10.1016/j.ejmech.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterized by the lack in the expression of estrogen and progesterone receptors, and human epidermal growth factor receptors 2. TNBC stands out among other breast cancers subtypes for its high aggressiveness and invasiveness, and for the limited therapeutic options available, which justify the poor survival rates registered for this breast cancer subtype. Compelling new evidence pointed out the role of epigenetic modifications in cancer, prompting tumor cell uncontrolled proliferation, epithelial-to-mesenchymal transition, and metastatic events. In this review we showcase the latest evidence supporting the involvement of histone deacetylase 6 (HDAC6) in cancer pathways strictly related to TNBC subtype, also tracking the latest advancements in the identification of novel HDAC6 inhibitors which showed efficacy in TNBC models, offering insights into the potential of targeting this key epigenetic player as an innovative therapeutic option for the treatment of TNBC.
Collapse
Affiliation(s)
- Anna Guadagni
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Ivana Bello
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
4
|
Peng J, Liu H, Liu Y, Liu J, Zhao Q, Liu W, Niu H, Xue H, Sun J, Wu J. HDAC6 mediates tumorigenesis during mitosis and the development of targeted deactivating agents. Bioorg Chem 2024; 153:107818. [PMID: 39288633 DOI: 10.1016/j.bioorg.2024.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, Shandong Province, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
5
|
Huang Z, Li L, Cheng B, Li D. Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother 2024; 178:117218. [PMID: 39084081 DOI: 10.1016/j.biopha.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the initiation and progression of various cancers, as its overexpression is linked to tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Therefore, HDAC6 has emerged as an attractive target for anticancer drug discovery in the past decade. However, the development of conventional HDAC6 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit non-enzymatic functions of HDAC6. To overcome these challenges, new strategies, such as dual-acting inhibitors, targeted protein degradation (TPD) technologies (including PROTACs, HyT), are essential to enhance the anticancer activity of HDAC6 inhibitors. In this review, we focus on the recent advances in the design and development of HDAC6 modulators, including isoform-selective HDAC6 inhibitors, HDAC6-based dual-target inhibitors, and targeted protein degraders (PROTACs, HyT), from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for HDAC6-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
6
|
Jha S, Kim JH, Kim M, Nguyen AH, Ali KH, Gupta SK, Park SY, Ha E, Seo YH. Design, synthesis, and biological evaluation of HDAC6 inhibitors targeting L1 loop and serine 531 residue. Eur J Med Chem 2024; 265:116057. [PMID: 38142511 DOI: 10.1016/j.ejmech.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.
Collapse
Affiliation(s)
- Sonam Jha
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Ji Hyun Kim
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea
| | - Ai-Han Nguyen
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sun You Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea.
| |
Collapse
|
7
|
Uba AI, Hryb M, Singh M, Bui-Linh C, Tran A, Atienza J, Misbah S, Mou X, Wu C. Discovery of novel inhibitors of histone deacetylase 6: Structure-based virtual screening, molecular dynamics simulation, enzyme inhibition and cell viability assays. Life Sci 2024; 338:122395. [PMID: 38181853 DOI: 10.1016/j.lfs.2023.122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Histone deacetylase 6 (HDAC6) contributes to cancer metastasis in several cancers, including triple-negative breast cancer (TNBC)-the most lethal form that lacks effective therapy. Although several efforts have been invested to develop selective HDAC6 inhibitors, none have been approved by the FDA. Toward this goal, existing computational studies used smaller compound libraries and shorter MD simulations. Here, we conducted a structure-based virtual screening of ZINC "Druglike" library containing 17,900,742 compounds using a Glide virtual screening protocol comprising various filters with increasing accuracy. The top 20 hits were subjected to molecular dynamics simulation, MM-GBSA binding energy calculations, and further ADMET prediction. Furthermore, enzyme inhibition assay and cell viability assay were performed on six available compounds from the identified hits. C4 (ZINC000077541942) with a good profile of predicted drug properties was found to inhibit HDAC6 (IC50: 4.7 ± 11.6 μM) with comparative affinity to that of the known HDAC6 selective inhibitor Tubacin (TA) in our experiments. C4 also demonstrated cytotoxic effects against triple-negative breast cancer (TNBC) cell line MDA-MB-231 with EC50 of 40.6 ± 12.7 μM comparable to that of TA (2-20 μM). Therefore, this compound, with pharmacophore features comprising a non-hydroxamic acid zinc-binding group, heteroaromatic linker, and cap group, is proposed as a novel HDAC6 inhibitor.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Mariya Hryb
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Mursalin Singh
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Candice Bui-Linh
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Annie Tran
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Jiancarlo Atienza
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Sarah Misbah
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Xiaoyang Mou
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
8
|
Duda J, Thomas SN. Interactions of Histone Deacetylase 6 with DNA Damage Repair Factors Strengthen its Utility as a Combination Drug Target in High-Grade Serous Ovarian Cancer. ACS Pharmacol Transl Sci 2023; 6:1924-1933. [PMID: 38107255 PMCID: PMC10723650 DOI: 10.1021/acsptsci.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant. The lack of effective second-line therapeutics remains a substantial challenge for BRCA-1/2 wild-type HGSOC patients. Histone Deacetylases (HDACs) are promising targets in HGSOC treatment; however, the mechanism and efficacy of HDAC inhibitors are understudied in HGSOC. In order to consider HDACs as a treatment target, an improved understanding of their function within HGSOC is required. This includes elucidating HDAC6-specific protein-protein interactions. In this study, we carried out substrate trapping followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate HDAC6 catalytic domain (CD)-specific interactors in the context of BRCA-1/2 wild-type HGSOC. Overall, this study identified new HDAC6 substrates that may be unique to HGSOC. The HDAC6-CD1 mutant condition contained the largest number of significant proteins compared to the CD2 mutant and the CD1/2 mutant conditions, suggesting the HDAC6-CD1 domain has catalytic activity that is independent of CD2. Among the identified substrates were proteins involved in DNA damage repair including PARP proteins. These findings further justify the use of HDAC inhibitors as a combination treatment with platinum chemotherapy agents and PARP inhibitors in HGSOC.
Collapse
Affiliation(s)
- Jolene
M. Duda
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stefani N. Thomas
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|
10
|
Toro TB, Skripnikova EV, Bornes KE, Zhang K, Watt TJ. Endogenous expression of inactive lysine deacetylases reveals deacetylation-dependent cellular mechanisms. PLoS One 2023; 18:e0291779. [PMID: 37721967 PMCID: PMC10506724 DOI: 10.1371/journal.pone.0291779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Acetylation of lysine residues is an important and common post-translational regulatory mechanism occurring on thousands of non-histone proteins. Lysine deacetylases (KDACs or HDACs) are a family of enzymes responsible for removing acetylation. To identify the biological mechanisms regulated by individual KDACs, we created HT1080 cell lines containing chromosomal point mutations, which endogenously express either KDAC6 or KDAC8 having single inactivated catalytic domain. Engineered HT1080 cells expressing inactive KDA6 or KDAC8 domains remained viable and exhibited enhanced acetylation on known substrate proteins. RNA-seq analysis revealed that many changes in gene expression were observed when KDACs were inactivated, and that these gene sets differed significantly from knockdown and knockout cell lines. Using GO ontology, we identified several critical biological processes associated specifically with catalytic activity and others attributable to non-catalytic interactions. Treatment of wild-type cells with KDAC-specific inhibitors Tubastatin A and PCI-34051 resulted in gene expression changes distinct from those of the engineered cell lines, validating this approach as a tool for evaluating in-cell inhibitor specificity and identifying off-target effects of KDAC inhibitors. Probing the functions of specific KDAC domains using these cell lines is not equivalent to doing so using previously existing methods and provides novel insight into the catalytic functions of individual KDACs by investigating the molecular and cellular changes upon genetic inactivation.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Elena V. Skripnikova
- Division of Basic and Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kiara E. Bornes
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States of America
- Bioinformatics Core, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| |
Collapse
|
11
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
12
|
Qu M, Zhang H, Cheng P, Wubshet AK, Yin X, Wang X, Sun Y. Histone deacetylase 6's function in viral infection, innate immunity, and disease: latest advances. Front Immunol 2023; 14:1216548. [PMID: 37638049 PMCID: PMC10450946 DOI: 10.3389/fimmu.2023.1216548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out. The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many cellular functions. It plays a crucial and debatable regulatory role in innate antiviral immunity. This review summarises the current state of our understanding of HDAC6's structure and function in light of the three mechanisms by which it controls DNA and RNA virus infection: cytoskeleton regulation, host innate immune response, and autophagy degradation of host or viral proteins. In addition, we summed up how HDAC6 inhibitors are used to treat a wide range of diseases, and how its upstream signaling plays a role in the antiviral mechanism. Together, the findings of this review highlight HDAC6's importance as a new therapeutic target in antiviral immunity, innate immune response, and some diseases, all of which offer promising new avenues for the development of drugs targeting the immune response.
Collapse
Affiliation(s)
- Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
13
|
Cellupica E, Caprini G, Fossati G, Mirdita D, Cordella P, Marchini M, Rocchio I, Sandrone G, Stevenazzi A, Vergani B, Steinkühler C, Vanoni MA. The Importance of the "Time Factor" for the Evaluation of Inhibition Mechanisms: The Case of Selected HDAC6 Inhibitors. BIOLOGY 2023; 12:1049. [PMID: 37626935 PMCID: PMC10452033 DOI: 10.3390/biology12081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Histone deacetylases (HDACs) participate with histone acetyltransferases in the modulation of the biological activity of a broad array of proteins, besides histones. Histone deacetylase 6 is unique among HDAC as it contains two catalytic domains, an N-terminal microtubule binding region and a C-terminal ubiquitin binding domain. Most of its known biological roles are related to its protein lysine deacetylase activity in the cytoplasm. The design of specific inhibitors is the focus of a large number of medicinal chemistry programs in the academy and industry because lowering HDAC6 activity has been demonstrated to be beneficial for the treatment of several diseases, including cancer, and neurological and immunological disorders. Here, we show how re-evaluation of the mechanism of action of selected HDAC6 inhibitors, by monitoring the time-dependence of the onset and relief of the inhibition, revealed instances of slow-binding/slow-release inhibition. The same approach, in conjunction with X-ray crystallography, in silico modeling and mass spectrometry, helped to propose a model of inhibition of HDAC6 by a novel difluoromethyloxadiazole-based compound that was found to be a slow-binding substrate analog of HDAC6, giving rise to a tightly bound, long-lived inhibitory derivative.
Collapse
Affiliation(s)
- Edoardo Cellupica
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Gianluca Caprini
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Gianluca Fossati
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Doris Mirdita
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy;
| | - Paola Cordella
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Mattia Marchini
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Ilaria Rocchio
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Giovanni Sandrone
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Andrea Stevenazzi
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Barbara Vergani
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092 Cinisello Balsamo, Italy; (E.C.); (G.C.); (G.F.); (P.C.); (M.M.); (I.R.); (G.S.); (A.S.); (B.V.)
| | | |
Collapse
|
14
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
15
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
16
|
Aleksandrova Y, Munkuev A, Mozhaitsev E, Suslov E, Tsypyshev D, Chaprov K, Begunov R, Volcho K, Salakhutdinov N, Neganova M. Elaboration of the Effective Multi-Target Therapeutic Platform for the Treatment of Alzheimer's Disease Based on Novel Monoterpene-Derived Hydroxamic Acids. Int J Mol Sci 2023; 24:ijms24119743. [PMID: 37298694 DOI: 10.3390/ijms24119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Novel monoterpene-based hydroxamic acids of two structural types were synthesized for the first time. The first type consisted of compounds with a hydroxamate group directly bound to acyclic, monocyclic and bicyclic monoterpene scaffolds. The second type included hydroxamic acids connected with the monoterpene moiety through aliphatic (hexa/heptamethylene) or aromatic linkers. An in vitro analysis of biological activity demonstrated that some of these molecules had powerful HDAC6 inhibitory activity, with the presence of a linker area in the structure of compounds playing a key role. In particular, it was found that hydroxamic acids containing a hexa- and heptamethylene linker and (-)-perill fragment in the Cap group exhibit excellent inhibitory activity against HDAC6 with IC50 in the submicromolar range from 0.56 ± 0.01 µM to 0.74 ± 0.02 µM. The results of the study of antiradical activity demonstrated the presence of moderate ability for some hydroxamic acids to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2ROO• radicals. The correlation coefficient between the DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC) value was R2 = 0.8400. In addition, compounds with an aromatic linker based on para-substituted cinnamic acids, having a monocyclic para-menthene skeleton as a Cap group, 35a, 38a, 35b and 38b, demonstrated a significant ability to suppress the aggregation of the pathological β-amyloid peptide 1-42. The 35a lead compound with a promising profile of biological activity, discovered in the in vitro experiments, demonstrated neuroprotective effects on in vivo models of Alzheimer's disease using 5xFAD transgenic mice. Together, the results obtained demonstrate a potential strategy for the use of monoterpene-derived hydroxamic acids for treatment of various aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Aldar Munkuev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Mozhaitsev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Suslov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Roman Begunov
- Biology and Ecology Faculty of P. G. Demidov Yaroslavl State University, Matrosova Ave., 9, Yaroslavl 150003, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| |
Collapse
|
17
|
Toro TB, Bornes KE, Watt TJ. Lysine Deacetylase Substrate Selectivity: Distinct Interaction Surfaces Drive Positive and Negative Selection for Residues Following Acetyllysine. Biochemistry 2023; 62:1464-1483. [PMID: 37043688 PMCID: PMC10157890 DOI: 10.1021/acs.biochem.3c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Lysine acetylation is a post-translational modification that is reversed by lysine deacetylases (KDACs). The goal of this work was to identify determinants of substrate specificity for KDACs, focusing on short-range interactions occurring with residues immediately following the acetyllysine. Using a fluorescence-based in vitro assay, we determined the activity for each enzyme with a limited panel of derivative substrate peptides, revealing a distinct reactivity profile for each enzyme. We mapped the interaction surface for KDAC6, KDAC8, and KDAC1 with the +1 and +2 substrate residues (with respect to acetyllysine) based on enzyme-substrate interaction pairs observed in molecular dynamics simulations. Characteristic residues in each KDAC interact preferentially with particular substrate residues and correlate with either enhanced or inhibited activity. Although nonpolar aromatic residues generally enhanced activity with all KDACs, the manner in which each enzyme interacted with these residues is distinct. Furthermore, each KDAC has distinctive interactions that correlate with lower activity, primarily ionic in nature. KDAC8 exhibited the most diverse and widest range of effects, while KDAC6 was sensitive only to the +1 position and KDAC1 selectivity was primarily driven by negative selection. The substrate preferences were validated for KDAC6 and KDAC8 using a set of peptides derived from known acetylated proteins. Overall, we determined how KDAC6, KDAC8, and KDAC1 achieve substrate specificity with residues following the acetyllysine. These new insights into KDAC specificity will be critical for identifying novel substrates of particular KDACs, designing KDAC-specific inhibitors, and demonstrate a general framework for understanding substrate specificity for other enzyme classes.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125-1098, United States
| | - Kiara E Bornes
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125-1098, United States
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125-1098, United States
| |
Collapse
|
18
|
Song Z, Zhao C, Yan J, Jiang D, Jia G. Carbenoxolone disodium suppresses the migration of gastric cancer by targeting HDAC6. Future Med Chem 2023; 15:333-344. [PMID: 36946221 DOI: 10.4155/fmc-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: Because of the severe morbidity and mortality of gastric cancer, discovering new candidate drugs has been an urgent issue. The close association between histone deacetylase 6 (HDAC6) and gastric cancer makes the development of HDAC6-targeted anti-gastric cancer drugs a viable idea. Methods & results: Carbenoxolone disodium was identified as a novel HDAC6 inhibitor. Cellular thermal shift assay, surface plasmon resonance assay and molecular docking confirmed its binding ability to HDAC6. Cell viability, wound healing and transwell assays as well as animal studies have demonstrated that carbenoxolone disodium could block the proliferation and migration of gastric cancer cells MGC-803 in vitro and in vivo. Conclusion: This is the first report to indicate that carbenoxolone disodium could be an HDAC6 inhibitor with potential for treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhiyu Song
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Chenglong Zhao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jingjing Yan
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Gang Jia
- Department of Oncology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
19
|
Zheng YC, Kang HQ, Wang B, Zhu YZ, Mamun MAA, Zhao LF, Nie HQ, Liu Y, Zhao LJ, Zhang XN, Gao MM, Jiang DD, Liu HM, Gao Y. Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol 2023; 230:123219. [PMID: 36642357 DOI: 10.1016/j.ijbiomac.2023.123219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Histone deacetylase 6 (HDAC6) is the only member of the HDAC family that resides primarily in the cytoplasm with two catalytic domains and a ubiquitin-binding domain. HDAC6 is highly expressed in various solid tumors and participates in a wide range of biological activities, including hormone receptors, the p53 signaling pathway, and the kinase cascade signaling pathway due to its unique structural foundation and abundant substrate types. Additionally, HDAC6 can function as an oncogenic factor in solid tumors, boosting tumor cell proliferation, invasion and metastasis, drug resistance, stemness, and lowering tumor cell immunogenicity, so assisting in carcinogenesis. Pan-HDAC inhibitors for cancer prevention are associated with potential cardiotoxicity in clinical investigations. It's interesting that HDAC6 silencing didn't cause any significant harm to normal cells. Currently, the use of HDAC6 specific inhibitors, individually or in combination, is among the most promising therapies in solid tumors. This review's objective is to give a general overview of the structure, biological functions, and mechanism of HDAC6 in solid tumor cells and in the immunological milieu and discuss the preclinical and clinical trials of selective HDAC6 inhibitors. These endeavors highlight that targeting HDAC6 could effectively kill tumor cells and enhance patients' immunity during solid tumor therapy.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Zai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Long-Fei Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mei-Mei Gao
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Dan-Dan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
20
|
Shukla S, Komarek J, Novakova Z, Nedvedova J, Ustinova K, Vankova P, Kadek A, Uetrecht C, Mertens H, Barinka C. In-solution structure and oligomerization of human histone deacetylase 6 - an integrative approach. FEBS J 2023; 290:821-836. [PMID: 36062318 DOI: 10.1111/febs.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/08/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Human histone deacetylase 6 (HDAC6) is a structurally unique, multidomain protein implicated in a variety of physiological processes including cytoskeletal remodelling and the maintenance of cellular homeostasis. Our current understanding of the HDAC6 structure is limited to isolated domains, and a holistic picture of the full-length protein structure, including possible domain interactions, is missing. Here, we used an integrative structural biology approach to build a solution model of HDAC6 by combining experimental data from several orthogonal biophysical techniques complemented by molecular modelling. We show that HDAC6 is best described as a mosaic of folded and intrinsically disordered domains that in-solution adopts an ensemble of conformations without any stable interactions between structured domains. Furthermore, HDAC6 forms dimers/higher oligomers in a concentration-dependent manner, and its oligomerization is mediated via the positively charged N-terminal microtubule-binding domain. Our findings provide the first insights into the structure of full-length human HDAC6 and can be used as a basis for further research into structure function and physiological studies of this unique deacetylase.
Collapse
Affiliation(s)
- Shivam Shukla
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Department of Physical Chemistry, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | - Jan Komarek
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zora Novakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Nedvedova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Kseniya Ustinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alan Kadek
- Leibniz Institute of Virology (LIV), Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany
| | - Charlotte Uetrecht
- Leibniz Institute of Virology (LIV), Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany.,Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Department of Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Germany
| | - Haydyn Mertens
- European Molecular Biology Laboratory (EMBL)-Hamburg Outstation, c/o DESY, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
21
|
Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. In silico design of HDAC6 inhibitors with neuroprotective effects. J Biomol Struct Dyn 2022; 40:14204-14222. [PMID: 34784487 DOI: 10.1080/07391102.2021.2001378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HDAC6 has emerged as a molecular target to treat neurodegenerative disorders, due to its participation in protein aggregate degradation, oxidative stress process, mitochondrial transport, and axonal transport. Thus, in this work we have designed a set of 485 compounds with hydroxamic and bulky-hydrophobic moieties that may function as HDAC6 inhibitors with a neuroprotective effect. These compounds were filtered by their predicted ADMET properties and their affinity to HDAC6 demonstrated by molecular docking and molecular dynamics simulations. The combination of in silico with in vitro neuroprotective results allowed the identification of a lead compound (FH-27) which shows neuroprotective effect that could be due to HDAC6 inhibition. Further, FH-27 chemical moiety was used to design a second series of compounds improving the neuroprotective effect from 2- to 10-fold higher (YSL-99, YSL-109, YSL-112, YSL-116 and YSL-121; 1.25 ± 0.67, 1.82 ± 1.06, 7.52 ± 1.78, 5.59 and 5.62 ± 0.31 µM, respectively). In addition, the R enantiomer of FH-27 (YSL-106) was synthesized, showing a better neuroprotective effect (1.27 ± 0.60 µM). In conclusion, we accomplish the in silico design, synthesis, and biological evaluation of hydroxamic acid derivatives with neuroprotective effect as suggested by an in vitro model. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico.,Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Antonio Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
22
|
Serra-Bardenys G, Peiró S. Enzymatic lysine oxidation as a posttranslational modification. FEBS J 2022; 289:8020-8031. [PMID: 34535954 PMCID: PMC10078733 DOI: 10.1111/febs.16205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Oxidoreductases catalyze oxidation-reduction reactions and comprise a very large and diverse group of enzymes, which can be subclassified depending on the catalytic mechanisms of the enzymes. One of the most prominent oxidative modifications in proteins is carbonylation, which involves the formation of aldehyde and keto groups in the side chain of lysines. This modification can alter the local macromolecular structure of proteins, thereby regulating their function, stability, and/or localization, as well as the nature of any protein-protein and/or protein-nucleic acid interactions. In this review, we focus on copper-dependent amine oxidases, which catalyze oxidative deamination of amines to aldehydes. In particular, we discuss oxidation reactions that involve lysine residues and that are regulated by members of the lysyl oxidase (LOX) family of proteins. We summarize what is known about the newly identified substrates and how this posttranslational modification regulates protein function in different contexts.
Collapse
Affiliation(s)
| | - Sandra Peiró
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
23
|
Reßing N, Schliehe-Diecks J, Watson PR, Sönnichsen M, Cragin AD, Schöler A, Yang J, Schäker-Hübner L, Borkhardt A, Christianson DW, Bhatia S, Hansen FK. Development of Fluorinated Peptoid-Based Histone Deacetylase (HDAC) Inhibitors for Therapy-Resistant Acute Leukemia. J Med Chem 2022; 65:15457-15472. [PMID: 36351184 PMCID: PMC9691607 DOI: 10.1021/acs.jmedchem.2c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using a microwave-assisted protocol, we synthesized 16 peptoid-capped HDAC inhibitors (HDACi) with fluorinated linkers and identified two hit compounds. In biochemical and cellular assays, 10h stood out as a potent unselective HDACi with remarkable cytotoxic potential against different therapy-resistant leukemia cell lines. 10h demonstrated prominent antileukemic activity with low cytotoxic activity toward healthy cells. Moreover, 10h exhibited synergistic interactions with the DNA methyltransferase inhibitor decitabine in AML cell lines. The comparison of crystal structures of HDAC6 complexes with 10h and its nonfluorinated counterpart revealed a similar occupation of the L1 loop pocket but slight differences in zinc coordination. The substitution pattern of the acyl residue turned out to be crucial in terms of isoform selectivity. The introduction of an isopropyl group onto the phenyl ring provided the highly HDAC6-selective inhibitor 10p, which demonstrated moderate synergy with decitabine and exceeded the HDAC6 selectivity of tubastatin A.
Collapse
Affiliation(s)
- Nina Reßing
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103Leipzig, Germany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
- Department of Medicine, Yangzhou Polytechnic College, West Wenchang Road 458, Yangzhou225009, P. R. China
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
| |
Collapse
|
24
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
25
|
Kaur S, Rajoria P, Chopra M. Ricolinostat suppresses proliferation, promotes apoptosis, and enhances the antiproliferative activity of topoisomerase inhibitors in cervical cancer cells. Drug Dev Res 2022; 83:1822-1830. [PMID: 36173896 DOI: 10.1002/ddr.21999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
Ricolinostat has been found to exhibit anticancer effects alone and in combination with various chemotherapeutic drugs in several cancer types. However, to the best of our knowledge, the efficacy of ricolinostat in cervical cancer is still not investigated. Therefore, in this study, we evaluated the effect of ricolinostat in cervical cancer alone and in combination with topoisomerase inhibitors. The effect of ricolinostat on cervical cancer cells was assessed using MTT, cell-cycle arrest, Annexin V/PI staining assay, reactive oxygen species (ROS) measurement, and western blot analysis. The antiproliferative effect of ricolinostat in combination with topoisomerase inhibitors was assessed using the MTT assay and synergism was computed using "CompuSyn" software. We found that ricolinostat inhibited proliferation, and induced G2/M phase arrest and apoptosis in cervical cancer cells. We further found that ricolinostat treatment resulted in increased ROS production, decreased Bcl-xL expression, and induced p21 expression. We also investigated the effect of ricolinostat in combination with topotecan and etoposide in cervical cancer cells. Ricolinostat was found to significantly enhance the antiproliferative activity of both, topotecan and etoposide, in cervical cancer cells in a concentration-dependent manner. In conclusion, our study showed that ricolinostat suppressed proliferation by inducing G2/M phase arrest and promoted apoptosis in cervical cancer cells, indicating that ricolinostat may be a promising antitumor agent in cervical cancer. Also, ricolinostat and topotecan/etoposide combination are synergistic in cervical cancer cells.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Prerna Rajoria
- Laboratory of Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
26
|
Hagiwara R, Kageyama K, Iwasaki Y, Niioka K, Daimon M. Effects of tubastatin A on adrenocorticotropic hormone synthesis and proliferation of AtT-20 corticotroph tumor cells. Endocr J 2022; 69:1053-1060. [PMID: 35296577 DOI: 10.1507/endocrj.ej21-0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease is an endocrine disorder characterized by hypercortisolism, mainly caused by autonomous production of ACTH from pituitary adenomas. Autonomous ACTH secretion results in excess cortisol production from the adrenal glands, and corticotroph adenoma cells disrupt the normal cortisol feedback mechanism. Pan-histone deacetylase (HDAC) inhibitors inhibit cell proliferation and ACTH production in AtT-20 corticotroph tumor cells. A selective HDAC6 inhibitor has been known to exert antitumor effects and reduce adverse effects related to the inhibition of other HDACs. The current study demonstrated that the potent and selective HDAC6 inhibitor tubastatin A has inhibitory effects on proopiomelanocortin (Pomc) and pituitary tumor-transforming gene 1 (Pttg1) mRNA expression, involved in cell proliferation. The phosphorylated Akt/Akt protein levels were increased after treatment with tubastatin A. Therefore, the proliferation of corticotroph cells may be regulated through the Akt-Pttg1 pathway. Dexamethasone treatment also decreased the Pomc mRNA level. Combined tubastatin A and dexamethasone treatment showed additive effects on the Pomc mRNA level. Thus, tubastatin A may have applications in the treatment of Cushing's disease.
Collapse
Affiliation(s)
- Rie Hagiwara
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | - Kanako Niioka
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
27
|
Sanbe A, Inomata Y, Matsushita N, Sawa Y, Hino C, Yamazaki H, Takanohashi K, Takahashi N, Higashio R, Tsumura H, Aoyagi T, Hirose M. Modification of cardiac disease by transgenically altered histone deacetylase 6. Biochem Biophys Res Commun 2022; 631:48-54. [PMID: 36166953 DOI: 10.1016/j.bbrc.2022.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Histone deacetylase 6 (HDAC6) is known to deacetylate amino acid lysine in alpha-tubulin. However, the functional role of HDAC6 in the progression of cardiac disease remains uncertain. The functional role of HDAC6 in the hearts was examined using transgenic (TG) mice expressing either human wild-type HDAC6, deacetylase inactive HDAC6 (HDAC6H216A, H611A), and human HDAC6 replaced all serine or threonine residues with aspartic acid at N-terminal 1- 43 amino acids (HDAC6NT-allD) specifically in the hearts. Overexpression of wild-type HDAC6 significantly reduced acetylated tubulin levels, and overexpression of HDAC6H216A, H611A significantly increased it in the mouse hearts. Detectable acetylated tubulin disappeared in HDAC6NT-allD TG mouse hearts. Neither histological alteration nor alteration of cardiac function was observed in the HDAC6 TG mouse hearts. To analyze the role of HDAC6 and acetylated tubulin in disease conditions, we examined HDAC6 in isoprenaline-induced hypertrophy or pressure-overload hypertrophy (TAC). No obvious alteration in the heart weight/body weight ratio or gene expressions of hypertrophic markers between NTG and HDAC6NT-allD mice was observed following treatment with isoprenaline. In contrast, a marked reduction in the shortening fraction and dilated chamber dilatation was detected in the HDAC6NT-allD TG mouse hearts 2 weeks after TAC. A sustained low level of acetylated tubulin and acetylated cortactin was observed in the TAC HDAC6NT-allD TG mouse hearts. Cardiac HDAC6 activity that can regulate acetylated levels of tubulin and cortactin may be critical factors involved in cardiac disease such as pressure-overload hypertrophy.
Collapse
Affiliation(s)
- Atsushi Sanbe
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan.
| | - Yui Inomata
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Naoko Matsushita
- Division of Molecular Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Yohei Sawa
- Division of Molecular Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Chizuru Hino
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Hinano Yamazaki
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Kei Takanohashi
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Natsuko Takahashi
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Rieko Higashio
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Hideki Tsumura
- Division of Laboratory Animal Resources, National Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Toshinori Aoyagi
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Masamichi Hirose
- Division of Molecular Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| |
Collapse
|
28
|
Dihydropyrazole-Carbohydrazide Derivatives with Dual Activity as Antioxidant and Anti-Proliferative Drugs on Breast Cancer Targeting the HDAC6. Pharmaceuticals (Basel) 2022; 15:ph15060690. [PMID: 35745608 PMCID: PMC9230091 DOI: 10.3390/ph15060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression. In the present work, the design and synthesis of a new family of dihydropyrazole-carbohydrazide derivatives (DPCH) derivatives focused on HDAC6 inhibitory activity is presented. Computational chemistry approaches were employed to rationalize the design and evaluate their physicochemical and toxic-biological properties. The new family of nine DPCH was synthesized and characterized. Compounds exhibited optimal physicochemical and toxicobiological properties for potential application as drugs to be used in humans. The in silico studies showed that compounds with –Br, –Cl, and –OH substituents had good affinity with the catalytic domain 2 of HDAC6 like the reference compounds. Nine DPCH derivatives were assayed on MCF-7 and MDA-MB-231 BC cell lines, showing antiproliferative activity with IC50 at μM range. Compound 2b showed, in vitro, an IC50 value of 12 ± 3 µM on human HDAC6. The antioxidant activity of DPCH derivatives showed that all the compounds exhibit antioxidant activity similar to that of ascorbic acid. In conclusion, the DPCH derivatives are promising drugs with therapeutic potential for the epigenetic treatment of BC, with low cytotoxicity towards healthy cells and important antioxidant activity.
Collapse
|
29
|
Lin YH, Major JL, Liebner T, Hourani Z, Travers JG, Wennersten SA, Haefner KR, Cavasin MA, Wilson CE, Jeong MY, Han Y, Gotthardt M, Ferguson SK, Ambardekar AV, Lam MP, Choudhary C, Granzier HL, Woulfe KC, McKinsey TA. HDAC6 modulates myofibril stiffness and diastolic function of the heart. J Clin Invest 2022; 132:e148333. [PMID: 35575093 PMCID: PMC9106344 DOI: 10.1172/jci148333] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2022] [Indexed: 01/26/2023] Open
Abstract
Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L. Major
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim Liebner
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | - Joshua G. Travers
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sara A. Wennersten
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey R. Haefner
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Yu Han
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amrut V. Ambardekar
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maggie P.Y. Lam
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chunaram Choudhary
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henk L. Granzier
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | | | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
30
|
Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y, Sun H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem 2021; 226:113874. [PMID: 34619465 DOI: 10.1016/j.ejmech.2021.113874] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is characterized by the primary risk factor, age. Several attempts have been made to treat AD, while most of them end in failure. However, with the deepening study of pathogenesis of AD, the expression of HDAC6 in the hippocampus, which plays a major role of the memory formation, is becoming worth of notice. Neurofibrillary tangles (NFTs), a remarkable lesion in AD, has been characterized in association with the abnormal accumulation of hyperphosphorylated Tau, which is mainly caused by the high expression of HDAC6. On the other hand, the hypoacetylated tubulin induced by HDAC6 is also fatal for the neuronal transport, which is the key impact of the formation of axons and dendrites. Overall, the significantly increased expression of HDAC6 in brain regions is deleterious to neuron survival in AD patients. Based on the above research, the inhibition of HDAC6 seems to be a potential therapeutic method for the treatment of AD. Up to now, various types of HDAC6 inhibitors have been discovered. This review mainly analyzes the HDAC6 inhibitors reported amid 2010-2020 in terms of their structure, selectivity and pharmacological impact towards AD. And we aim at facilitating the design and development of better HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Yunheng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
31
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Bonanni D, Citarella A, Moi D, Pinzi L, Bergamini E, Rastelli G. Dual Targeting Strategies On Histone Deacetylase 6 (HDAC6) And Heat Shock Protein 90 (Hsp90). Curr Med Chem 2021; 29:1474-1502. [PMID: 34477503 DOI: 10.2174/0929867328666210902145102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promote synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in the light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.
Collapse
Affiliation(s)
- Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Elisa Bergamini
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| |
Collapse
|
33
|
Gomes ID, Ariyaratne UV, Pflum MKH. HDAC6 Substrate Discovery Using Proteomics-Based Substrate Trapping: HDAC6 Deacetylates PRMT5 to Influence Methyltransferase Activity. ACS Chem Biol 2021; 16:1435-1444. [PMID: 34314149 DOI: 10.1021/acschembio.1c00303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase 6 (HDAC6) is upregulated in a variety of tumor cell lines and has been linked to many cellular processes, such as cell signaling, protein degradation, cell survival, and cell motility. HDAC6 is an enzyme that deacetylates the acetyllysine residues of protein substrates, and the discovery of HDAC6 substrates, including tubulin, has revealed many roles of HDAC6 in cell biology. Unfortunately, among the wide variety of acetylated proteins in the cell, only a few are verified as HDAC6 substrates, which limits the full characterization of HDAC6 cellular functions. Substrate trapping mutants were recently established as a tool to discover unanticipated substrates of histone deacetylase 1 (HDAC1). In this study, we applied the trapping approach to identify potential HDAC6 substrates. Among the high confidence protein hits after trapping, protein arginine methyl transferase 5 (PRMT5) was successfully validated as a novel HDAC6 substrate. PRMT5 acetylation enhanced its methyltransferase activity and symmetrical dimethylation of downstream substrates, revealing possible crosstalk between acetylation and methylation. Substrate trapping represents a powerful, systematic, and unbiased approach to discover substrates of HDAC6.
Collapse
Affiliation(s)
- Inosha D. Gomes
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Udana V. Ariyaratne
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Breakers and amplifiers in chromatin circuitry: acetylation and ubiquitination control the heterochromatin machinery. Curr Opin Struct Biol 2021; 71:156-163. [PMID: 34303934 PMCID: PMC8667873 DOI: 10.1016/j.sbi.2021.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes are segregated into active euchromatic and repressed heterochromatic compartments. Gene regulatory networks, chromosomal structures, and genome integrity rely on the timely and locus-specific establishment of active and silent states to protect the genome and provide the basis for cell division and specification of cellular identity. Here, we focus on the mechanisms and molecular machinery that establish heterochromatin in Schizosaccharomyces pombe and compare it with Saccharomyces cerevisiae and the mammalian polycomb system. We present recent structural and mechanistic evidence, which suggests that histone acetylation protects active transcription by disrupting the positive feedback loops used by the heterochromatin machinery and that H2A and H3 monoubiquitination actively drives heterochromatin, whereas H2B monoubiquitination mobilizes the defenses to quench heterochromatin. Heterochromatin-associated complexes are attracted and repelled by histone marks. Acetylation of specific lysine residues protects euchromatin from silencing. Methylation of histone H3 lysine 9 and 27 amplifies heterochromatin. Nucleosome ubiquitination licences and enforces feedback loops.
Collapse
|
35
|
Li Y, Quan J, Song H, Li D, Ma E, Wang Y, Ma C. Novel pyrrolo[2,1-c][1,4]benzodiazepine-3,11-dione (PBD) derivatives as selective HDAC6 inhibitors to suppress tumor metastasis and invasion in vitro and in vivo. Bioorg Chem 2021; 114:105081. [PMID: 34153811 DOI: 10.1016/j.bioorg.2021.105081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Selective inhibition of histone deacetylase 6 (HDAC6) has been emerged as a promising approach to cancer treatment. As a pivotal strategy for drug discovery,molecular hybridization was introduced in this study and a series of pyrrolo[2,1-c][1,4] benzodiazepine-3,11-diones (PBDs) based hydroxamic acids was rationally designed and synthesizedas novel selective HDAC6 inhibitors. Preliminary in vitro enzyme inhibition assay and structure-activity relationship (SAR) discussion confirmed our design strategy and met the expectation. Several of the compounds showed high potent against HDAC6 enzyme in vitro, and compound A7 with a long aliphatic linker was revealed to have the similar activity as the positive control tubastatin A. Further in vitro characterization of A7 demonstrates the metastasis inhibitory potency in MDA-MB-231 cell line and western blotting showed that A7 could induce the upregulation of Ac-α-tubulin, but not induce the excessive acetylation of histone H3, which indicated that the compound had HDAC6 targeting effect in MDA-MB-231 cells. In vivo study revealed that compound A7 has satisfactory inhibitory effects onliver and lung metastasis of breast cancer in mice. Molecular docking released that A7 could fit well with the receptor and interact with some key residues, which lays a foundation for further structural modifications to elucidate the interaction mode between compounds and target protein. This pharmacological investigation workflow provided a reasonable and reference methodto examine the pharmacological effects of inhibiting HDAC6 with a single molecule, either in vitro or in vivo. All of these results suggested that A7 is a promising lead compound that could lead to the further development of novel selective HDAC6 inhibitors for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Yanchun Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jishun Quan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Haoxuan Song
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Dongzhu Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Enlong Ma
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yanjuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
36
|
Sawa Y, Matsushita N, Sato S, Ishida N, Saito M, Sanbe A, Morino Y, Taira E, Obara M, Hirose M. Chronic HDAC6 Activation Induces Atrial Fibrillation Through Atrial Electrical and Structural Remodeling in Transgenic Mice. Int Heart J 2021; 62:616-626. [PMID: 34054002 DOI: 10.1536/ihj.20-703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atrial fibrillation (AF) is a relatively common complication of hypertension. Chronic hypertension induces cardiac HDAC6 catalytic activity. However, whether HDAC6 activation contributes to hypertension-induced AF is still uncertain. We examined whether chronic cardiac HDAC6 activation-induced atrial remodeling, leading to AF induction.The HDAC6 constitutively active transgenic (TG) (HDAC6 active TG) mouse overexpressing the active HDAC6 protein, specifically in cardiomyocytes, was created to examine the effects of chronic HDAC6 activation on atrial electrical and structural remodeling and AF induction in HDAC6 active TG and non-transgenic (NTG) mice. Left atrial burst pacing (S1S1 = 30 msec) for 15-30 sec significantly increased the frequency of sustained AF in HDAC6 active-TG mice compared with NTG mice. Left steady-state atrial pacing (S1S1 = 80 msec) decreased the atrial conduction velocity in isolated HDAC6 active TG compared with NTG mouse atria. The atrial size was similar between HDAC6 active TG and NTG mice. In contrast, atrial interstitial fibrosis increased in HDAC6 active TG compared with that of NTG mouse atria. While protein expression levels of both CX40 and CX43 were similar between HDAC6 active TG and NTG mouse atria, a heterogeneous distribution of CX40 and CX43 occurred in HDAC6 active-TG mouse atria but not in NTG mouse atria. Gene expression of interleukin 6 increased in HDAC6 active TG compared with NTG mouse atria.Chronic cardiac HDAC6 activation induced atrial electrical and structural remodeling, and sustained AF. Hypertension-induced cardiac HDAC6 catalytic activity may play important roles in the development of AF.
Collapse
Affiliation(s)
- Yohei Sawa
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science.,Division of Cardiology, Department of Internal Medicine, Iwate Medical University, School of Medicine
| | - Naoko Matsushita
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, School of Medicine
| | - Sachiko Sato
- Department of Pharmacology, Iwate Medical University, School of Medicine
| | - Nanae Ishida
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science
| | - Maki Saito
- Department of Pharmacy, Iryo Sosei University, School of Pharmaceutical Science
| | - Atsushi Sanbe
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science
| | - Yoshihiro Morino
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, School of Medicine
| | - Eiichi Taira
- Department of Pharmacology, Iwate Medical University, School of Medicine
| | - Mami Obara
- Department of Pharmacology, Iwate Medical University, School of Medicine
| | - Masamichi Hirose
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science
| |
Collapse
|
37
|
Zhang Q, Wang Y, Qu D, Yu J, Yang J. Role of HDAC6 inhibition in sepsis-induced acute respiratory distress syndrome (Review). Exp Ther Med 2021; 21:422. [PMID: 33747162 DOI: 10.3892/etm.2021.9866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) induced by sepsis contributes remarkably to the high mortality rate observed in intensive care units, largely due to a lack of effective drug therapies. Histone deacetylase 6 (HDAC6) is a class-IIb deacetylase that modulates non-nuclear protein functions via deacetylation and ubiquitination. Importantly, HDAC6 has been shown to exert anti-cancer, anti-neurodegeneration, and immunological effects, and several HDAC6 inhibitors have now entered clinical trials. It has also been recently shown to modulate inflammation, and HDAC6 inhibition has been demonstrated to markedly suppress experimental sepsis. The present review summarizes the role of HDAC6 in sepsis-induced inflammation and endothelial barrier dysfunction in recent years. It is proposed that HDAC6 inhibition predominantly ameliorates sepsis-induced ARDS by directly attenuating inflammation, which modulates the innate and adaptive immunity, transcription of pro-inflammatory genes, and protects endothelial barrier function. HDAC6 inhibition protects against sepsis-induced ARDS, thereby making HDAC6 a promising therapeutic target. However, HDAC inhibition may be associated with adverse effects on the embryo sac and oocyte, necessitating further studies.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
38
|
He X, Li Z, Zhuo XT, Hui Z, Xie T, Ye XY. Novel Selective Histone Deacetylase 6 (HDAC6) Inhibitors: A Patent Review (2016-2019). Recent Pat Anticancer Drug Discov 2021; 15:32-48. [PMID: 32065106 DOI: 10.2174/1574892815666200217125419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many human diseases are associated with dysregulation of HDACs. HDAC6 exhibits deacetylase activity not only to histone protein but also to non-histone proteins such as α- tubulin, HSP90, cortactin, and peroxiredoxin. These unique functions of HDAC6 have gained significant attention in the medicinal chemistry community in recent years. Thus a great deal of effort has devoted to developing selective HDAC6 inhibitors for therapy with the hope to minimize the side effects caused by pan-HDAC inhibition. OBJECTIVE The review intends to analyze the structural feature of the scaffolds, to provide useful information for those who are interested in this field, as well as to spark the future design of the new inhibitors. METHODS The primary tool used for patent searching is SciFinder. All patents are retrieved from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. The years of patents covered in this review are between 2016 and 2019. RESULTS Thirty-six patents from seventeen companies/academic institutes were classified into three categories based on the structure of ZBG: hydroxamic acid, 1,3,4-oxadiazole, and 1,2,4-oxadiazole. ZBG connects to the cap group through a linker. The cap group can tolerate different functional groups, including amide, urea, sulfonamide, sulfamide, etc. The cap group appears to modulate the selectivity of HDAC6 over other HDAC subtypes. CONCLUSION Selectively targeting HDAC6 over other subtypes represents two fold advantages: it maximizes the pharmacological effects and minimizes the side effects seen in pan-HDAC inhibitors. Many small molecule selective HDAC6 inhibitors have advanced to clinical studies in recent years. We anticipate the approval of selective HDAC6 inhibitors as therapeutic agents in the near future.
Collapse
Affiliation(s)
- Xingrui He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Tao Zhuo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zi Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiang-Yang Ye
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
39
|
Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol Res 2020; 163:105274. [PMID: 33171304 DOI: 10.1016/j.phrs.2020.105274] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions. HDAC6 is involved in different signaling pathways associated with several neurological disorders, various cancers at early and advanced stage, rare diseases and immunological conditions. Therefore, targeting HDAC6 has been found to be effective for various therapeutic purposes in recent years. Though several HDAC6 inhibitors (HDAC6is) have been developed till date, only two ACY-1215 (ricolinostat) and ACY-241 (citarinostat) are in the clinical trials. A lot of work is still needed to pinpoint strictly selective as well as potent HDAC6i. Considering the recent crystal structure of HDAC6, novel HDAC6is of significant therapeutic value can be designed. Notably, the canonical pharmacophore features of HDAC6is consist of a zinc binding group (ZBG), a linker function and a cap group. Significant modifications of cap function may lead to achieve better selectivity of the inhibitors. This review details the study about the structural biology of HDAC6, the physiological and pathological role of HDAC6 in several disease states and the detailed structure-activity relationships (SARs) of the known HDAC6is. This detailed review will provide key insights to design novel and highly effective HDAC6i in the future.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
40
|
Recent advances in small molecular modulators targeting histone deacetylase 6. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique isozyme in the HDAC family with various distinguished characters. HDAC6 is predominantly localized in the cytoplasm and has several specific nonhistone substrates, such as α-tubulin, cortactin, Hsp90, tau and peroxiredoxins. Accumulating evidence reveals that targeting HDAC6 may serve as a promising therapeutic strategy for the treatment of cancers, neurological disorders and immune diseases, making the development of HDAC6 inhibitors particularly attractive. Recently, multitarget drug design and proteolysis targeting chimera technology have also been applied in the discovery of novel small molecular modulators targeting HDAC6. In this review, we briefly describe the structural features and biological functions of HDAC6 and discuss the recent advances in HDAC6 modulators, including selective inhibitors, chimeric inhibitors and proteolysis targeting chimeras for multiple therapeutic purposes.
Collapse
|
41
|
Tavares MT, Kozikowski AP, Shen S. Mercaptoacetamide: A promising zinc-binding group for the discovery of selective histone deacetylase 6 inhibitors. Eur J Med Chem 2020; 209:112887. [PMID: 33035922 DOI: 10.1016/j.ejmech.2020.112887] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a zinc-dependent HDAC that mainly modulates the acetylation status of non-histone substrates, such as α-tubulin and heat shock protein 90 (HSP90). The activity of HDAC6 plays a critical role in cell proliferation, protein trafficking and degradation, cell shape, migration, as well as regulation of immunomodulatory factors. For this reason, HDAC6 influences the progress of cancers, neurodegenerative disorders, and autoimmune responses. In the last few years, the discovery of selective HDAC6 inhibitors (HDAC6is) has become an attractive research area as five HDAC6is are being investigated in phase I/II clinical trials. However, the hydroxamic acid functional group still represents the predominant zinc-binding group (ZBG), that often suffers from poor pharmacokinetics and mutagenic potential, thus impairing the application of hydroxamate-based HDAC6is for long-term therapies. On the other hand, mercaptoacetamide (MCA)-based HDAC6is comprise a class of compounds that, in some cases, display nanomolar HDAC6 potency and a thousand-fold selectivity over class I HDAC isozymes. Moreover, MCA-based HDAC6is lack the mutagenicity associated with the hydroxamate function and display pharmacological effects, demonstrating the potential of this particular ZBG to improve upon the drug-like properties of HDAC6is. Herein, we summarize for the first time the structure-activity relationships (SARs) of MCA-based HDAC6is, discuss their HDAC6 selectivity at the molecular level using inhibitor-HDAC co-crystal structures, and further provide our perspective regarding their drug metabolism, pharmacokinetics, and pharmacological properties.
Collapse
Affiliation(s)
- Maurício T Tavares
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, 33458, United States
| | | | - Sida Shen
- Departments of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, And Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
42
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
43
|
Hassanzadeh M, Mahernia S, Caprini G, Fossati G, Adib M, Moakedi F, Amanlou M. Epigenetic-based cancer therapeutics: new potential HDAC8 inhibitors. J Biomol Struct Dyn 2020; 40:297-311. [DOI: 10.1080/07391102.2020.1813203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Malihe Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Mahernia
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Gianluca Caprini
- Centre for Research, Italfarmaco, S.p.A., Cinisello Balsamo, Italy
| | - Gianluca Fossati
- Centre for Research, Italfarmaco, S.p.A., Cinisello Balsamo, Italy
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Faezeh Moakedi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Osko JD, Christianson DW. Binding of inhibitors to active-site mutants of CD1, the enigmatic catalytic domain of histone deacetylase 6. Acta Crystallogr F Struct Biol Commun 2020; 76:428-437. [PMID: 32880591 PMCID: PMC7470039 DOI: 10.1107/s2053230x20010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022] Open
Abstract
The zinc hydrolase histone deacetylase 6 (HDAC6) is unique among vertebrate deacetylases in that it contains two catalytic domains, designated CD1 and CD2. Both domains are fully functional as lysine deacetylases in vitro. However, the in vivo function of only the CD2 domain is well defined, whereas that of the CD1 domain is more enigmatic. Three X-ray crystal structures of HDAC6 CD1-inhibitor complexes are now reported to broaden the understanding of affinity determinants in the active site. Notably, cocrystallization with inhibitors was facilitated by using active-site mutants of zebrafish HDAC6 CD1. The first mutant studied, H82F/F202Y HDAC6 CD1, was designed to mimic the active site of human HDAC6 CD1. The structure of its complex with trichostatin A was generally identical to that with the wild-type zebrafish enzyme. The second mutant studied, K330L HDAC6 CD1, was prepared to mimic the active site of HDAC6 CD2. It has previously been demonstrated that this substitution does not perturb inhibitor binding conformations in HDAC6 CD1; here, this mutant facilitated cocrystallization with derivatives of the cancer chemotherapy drug suberoylanilide hydroxamic acid (SAHA). These crystal structures allow the mapping of inhibitor-binding regions in the outer active-site cleft, where one HDAC isozyme typically differs from another. It is expected that these structures will help to guide the structure-based design of inhibitors with selectivity against HDAC6 CD1, which in turn will enable new chemical biology approaches to probe its cellular function.
Collapse
Affiliation(s)
- Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philaldelphia, PA 19104-6323, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philaldelphia, PA 19104-6323, USA
| |
Collapse
|
45
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
46
|
Osko JD, Christianson DW. Structural determinants of affinity and selectivity in the binding of inhibitors to histone deacetylase 6. Bioorg Med Chem Lett 2020; 30:127023. [PMID: 32067866 PMCID: PMC7067655 DOI: 10.1016/j.bmcl.2020.127023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
Histone deacetylase 6 (HDAC6) is associated with multiple neurological disorders as well as aggressive cancers, making its selective inhibition highly desirable for therapeutic purposes. The basic molecular design of an effective HDAC6 inhibitor consists of a zinc-binding group, a linker, and a capping group capable of making interactions at the mouth of the active site. To date, more than 50 high-resolution X-ray crystal structures of HDAC6-inhibitor complexes have been reported, many of which reveal intermolecular interactions that contribute to isozyme affinity and selectivity. Here, we review the key features of HDAC6 inhibitor design illuminated by these structural studies.
Collapse
Affiliation(s)
- Jeremy D Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States.
| |
Collapse
|
47
|
Rossaert E, Van Den Bosch L. HDAC6 inhibitors: Translating genetic and molecular insights into a therapy for axonal CMT. Brain Res 2020; 1733:146692. [PMID: 32006555 DOI: 10.1016/j.brainres.2020.146692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
Histone deacetylase 6 (HDAC6) plays a central role in various processes that are key for neuronal survival. In this review, we summarize the current evidence related to disease pathways in the axonal form of Charcot-Marie-Tooth disease (CMT) and highlight the role of HDAC6 in these pathways. We hypothesize that HDAC6 might in fact actively contribute to the pathogenesis of certain forms of axonal CMT. HDAC6 plays a deacetylase activity-dependent, negative role in axonal transport and axonal regeneration, which are both processes implicated in axonal CMT. On the other hand, HDAC6 coordinates a protective response during elimination of toxic misfolded proteins, but this is mostly mediated independent of its deacetylase activity. The current mechanistic insights on these functions of HDAC6 in axonal CMT, along with the selective druggability against its deacetylase activity, make the targeting of HDAC6 particularly attractive. We elaborate on the preclinical studies that demonstrated beneficial effects of HDAC6 inhibitors in axonal CMT models and outline possible modes of action. Overall, this overview ultimately provides a rationale for the use of small-molecule HDAC6 inhibitors as a therapeutic strategy for this devastating disease.
Collapse
Affiliation(s)
- Elisabeth Rossaert
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB - Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB - Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
48
|
Ustinova K, Novakova Z, Saito M, Meleshin M, Mikesova J, Kutil Z, Baranova P, Havlinova B, Schutkowski M, Matthias P, Barinka C. The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem 2020; 295:2614-2628. [PMID: 31953325 DOI: 10.1074/jbc.ra119.011243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a multidomain cytosolic enzyme having tubulin deacetylase activity that has been unequivocally assigned to the second of the tandem catalytic domains. However, virtually no information exists on the contribution of other HDAC6 domains on tubulin recognition. Here, using recombinant protein expression, site-directed mutagenesis, fluorimetric and biochemical assays, microscale thermophoresis, and total internal reflection fluorescence microscopy, we identified the N-terminal, disordered region of HDAC6 as a microtubule-binding domain and functionally characterized it to the single-molecule level. We show that the microtubule-binding motif spans two positively charged patches comprising residues Lys-32 to Lys-58. We found that HDAC6-microtubule interactions are entirely independent of the catalytic domains and are mediated by ionic interactions with the negatively charged microtubule surface. Importantly, a crosstalk between the microtubule-binding domain and the deacetylase domain was critical for recognition and efficient deacetylation of free tubulin dimers both in vitro and in vivo Overall, our results reveal that recognition of substrates by HDAC6 is more complex than previously appreciated and that domains outside the tandem catalytic core are essential for proficient substrate deacetylation.
Collapse
Affiliation(s)
- Kseniya Ustinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Zora Novakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Makoto Saito
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University, Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Jana Mikesova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University, Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
49
|
Osko JD, Porter NJ, Reddy PAN, Xiao YC, Rokka J, Jung M, Hooker JM, Salvino JM, Christianson DW. Exploring Structural Determinants of Inhibitor Affinity and Selectivity in Complexes with Histone Deacetylase 6. J Med Chem 2020; 63:295-308. [PMID: 31793776 PMCID: PMC6952581 DOI: 10.1021/acs.jmedchem.9b01540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic strategy for the treatment of cancer, chemotherapy-induced peripheral neuropathy, and neurodegenerative disease. The recent X-ray crystal structure determination of HDAC6 enables an understanding of structural features directing affinity and selectivity in the active site. Here, we present the X-ray crystal structures of five HDAC6-inhibitor complexes that illuminate key molecular features of the inhibitor linker and capping groups that facilitate and differentiate binding to HDAC6. In particular, aromatic and heteroaromatic linkers nestle within an aromatic cleft defined by F583 and F643, and different aromatic linkers direct the capping group toward shallow pockets defined by the L1 loop, the L2 loop, or somewhere in between these pockets. These results expand our understanding of factors contributing to the selective inhibition of HDAC6, particularly regarding interactions that can be targeted in the region of the L2 pocket.
Collapse
Affiliation(s)
- Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Nicholas J. Porter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | | | - You-Cai Xiao
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Johanna Rokka
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Joseph M. Salvino
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
50
|
Osko JD, Christianson DW. Structural Basis of Catalysis and Inhibition of HDAC6 CD1, the Enigmatic Catalytic Domain of Histone Deacetylase 6. Biochemistry 2019; 58:4912-4924. [PMID: 31755702 PMCID: PMC6904440 DOI: 10.1021/acs.biochem.9b00934] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone deacetylase 6 (HDAC6) is emerging as a target for inhibition in therapeutic strategies aimed at treating cancer, neurodegenerative disease, and other disorders. Among the metal-dependent HDAC isozymes, HDAC6 is unique in that it contains two catalytic domains, CD1 and CD2. CD2 is a tubulin deacetylase and a tau deacetylase, and the development of HDAC6-selective inhibitors has focused exclusively on this domain. In contrast, there is a dearth of structural and functional information regarding CD1, which exhibits much narrower substrate specificity in comparison with CD2. As the first step in addressing the CD1 information gap, we now present X-ray crystal structures of seven inhibitor complexes with wild-type, Y363F, and K330L HDAC6 CD1. These structures broaden our understanding of molecular features that are important for catalysis and inhibitor binding. The active site of HDAC6 CD1 is wider than that of CD2, which is unexpected in view of the narrow substrate specificity of CD1. Amino acid substitutions between HDAC6 CD1 and CD2, as well as conformational differences in conserved residues, define striking differences in active site contours. Catalytic activity measurements with HDAC6 CD1 confirm the preference for peptide substrates containing C-terminal acetyllysine residues. However, these measurements also show that CD1 exhibits weak activity for peptide substrates bearing certain small amino acids on the carboxyl side of the scissile acetyllysine residue. Taken together, these results establish a foundation for understanding the structural basis of HDAC6 CD1 catalysis and inhibition, pointing to possible avenues for the development of HDAC6 CD1-selective inhibitors.
Collapse
Affiliation(s)
- Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|