1
|
Ye Y, Tang L, Wang JS, Tang L, Ning X, Sun J, Sheng L, Sun X. Unexpected antagonism of deoxynivalenol and enniatins in intestinal toxicity through the Ras/PI3K/AKT signaling pathway. Toxicology 2024; 508:153928. [PMID: 39153657 DOI: 10.1016/j.tox.2024.153928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Luyao Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xiao Ning
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Zhong Q, Nie Q, Wu R, Huang Y. Exosomal miR-18a-5p promotes EMT and metastasis of NPC cells via targeting BTG3 and activating the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:1544-1562. [PMID: 37287276 PMCID: PMC10361138 DOI: 10.1080/15384101.2023.2216508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
This study investigated the underlying mechanism of miR-18a-5p regulating the proliferation, invasion, and metastasis of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo to indicate the pathogenesis of NPC. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was utilized to determine miR-18a-5p expression level in NPC tissues and cell lines. Besides, 2,5-diphenyl-2 H-tetrazolium bromide (MTT) and colony formation assays were employed to detect the effect of miR-18a-5p expression level on NPC cell proliferation. Wound healing and Transwell assays were utilized to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin, and E-cadherin) were identified by Western blot assay. After collecting exosomes from CNE-2 cells, it was found that exosomal miR-18a-5p secreted from NPC cells promoted NPC cell proliferation, migration, invasion, and EMT, whereas inhibition of miR-18a-5p expression level led to the opposite results. The dual-luciferase reporter assay showed that BTG anti-proliferation factor 3 (BTG3) was the target gene of miR-18a-5p, and BTG3 could overturn the effect of miR-18a-5p on NPC cells. Xenograft mouse model of NPC nude mice showed that miR-18a-5p promoted NPC growth and metastasis in vivo. This study revealed that exosomal miR-18a-5p derived from NPC cells promoted angiogenesis via targeting BTG3 and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Qihong Nie
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Renrui Wu
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Yun Huang
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
3
|
Müller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188722. [PMID: 35307512 DOI: 10.1016/j.bbcan.2022.188722] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer. First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression. Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously. A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.
Collapse
Affiliation(s)
- Dalma Müller
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary.
| |
Collapse
|
4
|
Ye L, Yin G, Jiang M, Tu B, Li Z, Wang Y. Dihydromyricetin Exhibits Antitumor Activity in Nasopharyngeal Cancer Cell Through Antagonizing Wnt/β-catenin Signaling. Integr Cancer Ther 2021; 20:1534735421991217. [PMID: 33724059 PMCID: PMC7975991 DOI: 10.1177/1534735421991217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been demonstrated to play a vital role in a diversity of biological processes in cancers. With the emergence of new evidence, the important function of CSCs in the formation of multidrug resistance of nasopharyngeal cancer has been demonstrated. Dysregulated Wnt/β-catenin signaling pathway is an important contributor to chemoresistance and maintenance of CSCs-like characteristics. This research aims to investigate comprehensively the function of dihydromyricetin (DMY), a natural flavonoid drug, on the cisplatin (cis) resistance and stem cell properties of nasopharyngeal cancer. METHODS In this study, the functional role of DMY in nasopharyngeal cancer progression was comprehensively investigated in vitro and in vivo, and then its relationship with CSCs-like phenotypes and multiple oncogenes was analyzed. RESULTS In parallel assays, the growth inhibitory action of cis was enhanced by the addition of DMY in cis-resistant nasopharyngeal cancer cell lines (Hone1/cis and CNE1/cis). Functional assays showed that DMY markedly diminished the stem cell properties of nasopharyngeal cells, such as colony and tumor-sphere formation. In vivo data showed that the growth of Hone1 CSCs formed tumor xenograft was inhibited significantly by the administration of DMY. Additionally, DMY could impair the Wnt/β-catenin signaling pathway and regulate the expression of downstream proteins in nasopharyngeal cancer cells. CONCLUSIONS Our study clarified the anti-tumor activity of DMY through blocking the Wnt/β-catenin signaling pathway in nasopharyngeal cancer. Therefore, DMY could be a novel therapeutic agent for nasopharyngeal cancer treatment.
Collapse
Affiliation(s)
- Ling Ye
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Gendi Yin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaohua Jiang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bo Tu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhicheng Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|
6
|
Sadykova LR, Ntekim AI, Muyangwa-Semenova M, Rutland CS, Jeyapalan JN, Blatt N, Rizvanov AA. Epidemiology and Risk Factors of Osteosarcoma. Cancer Invest 2020; 38:259-269. [PMID: 32400205 DOI: 10.1080/07357907.2020.1768401] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteosarcoma is a rare tumor diagnosed at any age; however younger age is a common risk factor. In addition, multiple factors are believed to contribute to higher rates of osteosarcoma, particularly race and gender. Although diagnosed worldwide, osteosarcoma is found to be more prevalent in Africa with high numbers of cases reported in Nigeria, Uganda, and Sudan. Additionally, higher rates are detected in African Americans, suggesting a genetic predisposition linked to race. This review focuses on identifying high risk factors of osteosarcoma with an emphasis on sarcoma epidemiology and risk factors in African countries.
Collapse
Affiliation(s)
| | - Atara I Ntekim
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Catrin S Rutland
- SVMS, Faculty of Medicine and Health Science, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Jennie N Jeyapalan
- SVMS, Faculty of Medicine and Health Science, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Nataliya Blatt
- SVMS, Faculty of Medicine and Health Science, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
7
|
Zhang H, Li SJ, Zhang H, Yang ZY, Ren YQ, Xia LY, Liang Y. Meta-Analysis Based on Nonconvex Regularization. Sci Rep 2020; 10:5755. [PMID: 32238826 PMCID: PMC7113298 DOI: 10.1038/s41598-020-62473-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/06/2020] [Indexed: 01/10/2023] Open
Abstract
The widespread applications of high-throughput sequencing technology have produced a large number of publicly available gene expression datasets. However, due to the gene expression datasets have the characteristics of small sample size, high dimensionality and high noise, the application of biostatistics and machine learning methods to analyze gene expression data is a challenging task, such as the low reproducibility of important biomarkers in different studies. Meta-analysis is an effective approach to deal with these problems, but the current methods have some limitations. In this paper, we propose the meta-analysis based on three nonconvex regularization methods, which are L1/2 regularization (meta-Half), Minimax Concave Penalty regularization (meta-MCP) and Smoothly Clipped Absolute Deviation regularization (meta-SCAD). The three nonconvex regularization methods are effective approaches for variable selection developed in recent years. Through the hierarchical decomposition of coefficients, our methods not only maintain the flexibility of variable selection and improve the efficiency of selecting important biomarkers, but also summarize and synthesize scientific evidence from multiple studies to consider the relationship between different datasets. We give the efficient algorithms and the theoretical property for our methods. Furthermore, we apply our methods to the simulation data and three publicly available lung cancer gene expression datasets, and compare the performance with state-of-the-art methods. Our methods have good performance in simulation studies, and the analysis results on the three publicly available lung cancer gene expression datasets are clinically meaningful. Our methods can also be extended to other areas where datasets are heterogeneous.
Collapse
Affiliation(s)
- Hui Zhang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Shou-Jiang Li
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Hai Zhang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau
- School of Mathematics, Northwest University, 710127, Xi'an, China
| | - Zi-Yi Yang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Yan-Qiong Ren
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Liang-Yong Xia
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Yong Liang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, 999078, Macau.
| |
Collapse
|
8
|
Wu L, Wang J, Zhu D, Zhang S, Zhou X, Zhu W, Zhu J, He X. Circulating Epstein-Barr virus microRNA profile reveals novel biomarker for nasopharyngeal carcinoma diagnosis. Cancer Biomark 2020; 27:365-375. [PMID: 31958073 DOI: 10.3233/cbm-190160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nasopharyngeal carcinoma (NPC), a tumor quite prevalent in Asia, is closely associated with Epstein-Barr virus (EBV) infection status. Many NPC patients are not able to be treated in time when being diagnosed at an advanced stage. EBV-encoded microRNAs are reliable sources of biomarkers for NPC diagnosis. In this study, we conducted circulating EBV microRNAs profiling by quantitative reverse transcription polymerase chain reaction (qRT-PCR) among plasma samples of 159 NPC patients versus 145 normal controls (NCs) and serum samples of 60 NPC patients versus 60 NCs. Among the 44 mature EBV-encoded miRNAs, only miR-BART19-3p in plasma was proved to be significantly up-regulated in NPC patients (P< 0.05; fold change (FC) > 2.0). The area under the receiver operating characteristic curve (AUC) for the signature to discriminate NPC patients from NCs was 0.848 with the sensitivity and specificity being 71.7% and 72.3%, respectively. The identified biomarker was analyzed in tissue specimens (44 NPC VS. 32 NCs) and proved to be consistently up-regulated in NPC tumor tissues. Bioinformatics analysis was further conducted to predict the potential targets of miR-BART-19-3p, which provided some hints to its close relationship with NPC development. In conclusion, we identified a novel biomarker - plasma miR-BART19-3p for the detection of NPC.
Collapse
Affiliation(s)
- Lirong Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jingyi Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Chen L, Chan LS, Lung HL, Yip TTC, Ngan RKC, Wong JWC, Lo KW, Ng WT, Lee AWM, Tsao GSW, Lung ML, Mak NK. Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153058. [PMID: 31394414 DOI: 10.1016/j.phymed.2019.153058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sulforaphane (SFN), a natural compound present in cruciferous vegetable, has been shown to possess anti-cancer activities. Cancer stem cell (CSC) in bulk tumor is generally considered as treatment resistant cell and involved in cancer recurrence. The effects of SFN on nasopharyngeal carcinoma (NPC) CSCs have not yet been explored. PURPOSE The present study aims to examine the anti-tumor activities of SFN on NPC cells with CSC-like properties and the underlying mechanisms. METHODS NPC cells growing in monolayer culture, CSCs-enriched NPC tumor spheres, and also the NPC nude mice xenograft were used to study the anti-tumor activities of SFN on NPC. The population of cells expressing CSC-associated markers was evaluated using flow cytometry and aldehyde dehydrogenase (ALDH) activity assay. The effect of DNA methyltransferase 1 (DNMT1) on the growth of NPC cells was analyzed by using small interfering RNA (siRNA)-mediated silencing method. RESULTS SFN was found to inhibit the formation of CSC-enriched NPC tumor spheres and reduce the population of cells with CSC-associated properties (SRY (Sex determining Region Y)-box 2 (SOX2) and ALDH). In the functional study, SFN was found to restore the expression of Wnt inhibitory factor 1 (WIF1) and the effect was accompanied with the downregulation of DNMT1. The functional activities of WIF1 and DNMT1 were confirmed using exogenously added recombinant WIF1 and siRNA knockdown of DNMT1. Moreover, SFN was found to inhibit the in vivo growth of C666-1 cells and enhance the anti-tumor effects of cisplatin. CONCLUSION Taken together, we demonstrated that SFN could suppress the growth of NPC cells via the DNMT1/WIF1 axis.
Collapse
Affiliation(s)
- Luo Chen
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Lai Sheung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Timothy Tak Chun Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, Kowloon, Hong Kong, China; Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roger Kai Cheong Ngan
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, Kowloon, Hong Kong, China; Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wai Tong Ng
- Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - George Sai Wah Tsao
- Department of Anatomy, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Rahmani B, Hamedi Asl D, Naserpour Farivar T, Azad M, Sahmani M, Gheibi N. Omega-3 PUFA Alters the Expression Level but Not the Methylation Pattern of the WIF1 Gene Promoter in a Pancreatic Cancer Cell Line (MIA PaCa-2). Biochem Genet 2019; 57:477-486. [PMID: 30649640 DOI: 10.1007/s10528-018-9895-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is the fourth leading cause of death in both males and females, with a 5-year relative survival rate of 8%. The Wnt signaling pathway has a significant role in the pathogenesis of many tumors, including those of pancreatic cancer. Hypermethylation of the Wnt inhibitory Factor-1 (WIF1) gene promoter have been detected in different types of cancer. In contrast, the anticancer effects of long-chain omega-3 PUFA (ALA) have been reported. Regarding its anticancer effects, in this study, we investigated the effects of various concentrations of omega-3 PUFA on expression level and promoter methylation of the WIF1 gene in MIA PaCa-2 cells in 24, 48, and 72 h after treatment. MIA PaCa-2 cells were treated with different concentrations of omega-3 PUFA (25, 50, 100, 250, 500, and 1000 μM). Cell viability assay was carried out followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and methylation-specific PCR (MSP). This investigation suggested that dietary consumption of omega-3 PUFAs (250-1000 μM) has a significant effect on the proliferation and WIF1 gene expression of the MIA PaCa-2 cancer cell line but no effect on the promoter methylation of this gene. Changes in promoter methylation were not observed in any of the treatments.
Collapse
Affiliation(s)
- Babak Rahmani
- Department of Molecular Medicine, Faculty of Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Dariush Hamedi Asl
- Department of Molecular Medicine, Faculty of Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Sahmani
- Department of Clinical Biochemistry and Genetic, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nematollah Gheibi
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
11
|
Peng L, Huang YT, Zhang F, Chen JY, Huo X. Chronic cadmium exposure aggravates malignant phenotypes of nasopharyngeal carcinoma by activating the Wnt/β-catenin signaling pathway via hypermethylation of the casein kinase 1α promoter. Cancer Manag Res 2018; 11:81-93. [PMID: 30588112 PMCID: PMC6304082 DOI: 10.2147/cmar.s171200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Our previous study has shown that cadmium (Cd) exposure is not only a risk factor for nasopharyngeal carcinoma (NPC), but also correlated with the clinical stage and lymph node metastasis. However, the underlying molecular events of Cd involved in NPC progression remain to be elucidated. PURPOSE The objective of this study was to decipher how Cd impacts the malignant phenotypes of NPC cells. METHODS NPC cell lines CNE-1 and CNE-2 were continuously exposed with 1 μM Cd chloride for 10 weeks, designating as chronic Cd treated NPC cells (CCT-NPC). MTT assay, colony formation assay and xenograft tumor growth were used to assess cell viability in vitro and in vivo. Transwell assays were performed to detect cell invasion and migration. The protein levels of E-cadherin, N-cadherin, Vimentin as well as β-catenin and casein kinase 1α(CK1α) were measured by Western blot. Immunofluorescence staining was used to observe the distribution of filament actin (F-actin), β-catenin and CK1α. The mRNA levels of downstream target genes of β-catenin were detected by RT-PCR. Wnt/β-catenin signaling activity was assessed by TOPFlash/FOPFlash dual luciferase report system. MS-PCR was used to detect the methylation status of CK1α. Finally, the activation of Wnt/β-catenin pathway and cell biological properties were examined following treatment of CCT-NPC cells with 5-aza-2-deoxy-cytidine(5-aza-CdR). RESULTS CCT-NPC cells showed an increase in cell proliferation, colony formation, invasion and migration compared to the parental cells. Cd also induced cytoskeleton reorganization and epithelial-to-mesenchymal transition. Upregulation and nuclear translocation of β-catenin and increased luciferase activity accompanied with transcription of downstream target genes were found in CCT-NPC cells. Treatment of CCT-CNE1 cells with 5-aza-CdR could reverse the hypermethylation of CK1α and attenuate the cell malignancy. CONCLUSION These results support a role for chronic Cd exposure as a driving force for the malignant progression of NPC via epigenetic activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Yi-Teng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Fan Zhang
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China,
| | - Jiong-Yu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China,
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China,
| |
Collapse
|
12
|
Zhao Z, Liu W, Liu J, Wang J, Luo B. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. J Med Virol 2017; 89:1844-1851. [PMID: 28543390 DOI: 10.1002/jmv.24863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/07/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Wen Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Jiayi Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
13
|
Xue YL, Meng XQ, Ma LJ, Yuan Z. Plumbagin exhibits an anti-proliferative effect in human osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling. Oncol Lett 2016; 12:1095-1100. [PMID: 27446400 DOI: 10.3892/ol.2016.4725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/10/2016] [Indexed: 11/05/2022] Open
Abstract
Plumbagin, a naphthoquinone constituent of Plumbago zeylanica L. (Plumbaginaceae) is widely used in traditional Chinese medicine as an antifungal, antibacterial and anti-inflammatory agent. Plumbagin is known to exhibit proapoptotic, antiangiogenic and antimetastatic effects in cancer cells. The transcriptional co-factor four and a half LIM domains 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of gene expression, signal transduction and cell proliferation and differentiation, and also acts as a tumor suppressor or oncoprotein depending on the tissue microenvironment. The present study investigated the effect of plumbagin on FHL2 expression, Wnt/β-catenin signalling and its anti-proliferative activity in various human osteosarcoma cell lines, including SaOS2, MG63, HOS and U2OS. The cells were exposed to plumbagin and the expression of FHL2 was evaluated using western blot analysis. Furthermore, the anti-proliferative effect of plumbagin was evaluated using a 3-(4,5 dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, since FHL2 is involved in Wnt/β-catenin signaling, the effect of plumbagin on β-catenin and its primary target genes, including v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) and WNT1 inducible signaling pathway protein-1 (WISP-1), was evaluated using western blot analysis. It was observed that plumbagin suppressed the expression of FHL2 and exhibited significant anti-proliferative activity in osteosarcoma cells. It also attenuated Wnt/β-catenin signalling by downregulating β-catenin and its target genes, including c-Myc and WISP-1. In conclusion, plumbagin demonstrated anti-proliferative activity in osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Yuan-Liang Xue
- Department of Orthopedics of Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Xiang-Qi Meng
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Long-Jun Ma
- Department of Orthopedics, People's Hospital of Yangxin, Binzhou, Shandong 251800, P.R. China
| | - Zhen Yuan
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
14
|
Jiang W, Cai R, Chen QQ. DNA Methylation Biomarkers for Nasopharyngeal Carcinoma: Diagnostic and Prognostic Tools. Asian Pac J Cancer Prev 2016; 16:8059-65. [DOI: 10.7314/apjcp.2015.16.18.8059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Zhou S, Chen L, Mashrah M, Zhu Y, He Z, Hu Y, Xiang T, Yao Z, Guo F, Zhang C. Expression and promoter methylation of Wnt inhibitory factor-1 in the development of oral submucous fibrosis. Oncol Rep 2015; 34:2636-42. [PMID: 26352791 DOI: 10.3892/or.2015.4264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a type of head and neck malignancy with a high mortality rate. Oral submucous fibrosis (OSF) is the pre-cancerous lesion of OSCC, whose molecular mechanisms in OSCC tumorigenesis remain largely unclear. Activation of the Wnt/β-catenin signaling pathway plays an important role in oral mucous carcinogenesis, although rare mutations of Wnt signaling molecules are found in OSCC, suggesting an epigenetic mechanism mediating aberrant Wnt/β‑catenin signaling in OSCC. Wnt inhibitory factor-1 (WIF1) is an Wnt antagonist, and its downregulation and methylation have been reported in a number of malignancies. However, the expression and methylation of WIF1 in the development of OSF have yet to be reported. In the present study, we investigated the WIF1 expression level by immuno-histochemical staining and semi‑quantitative RT-PCR in normal oral, OSF and OSCC tissues, as well as the methylation status by methylation-specific PCR and bisulfite genomic sequencing. The results showed that WIF1 was readily expressed in normal oral mucous tissues, but decreased gradually in OSF early, moderately advanced and advanced tissues, and was less expressed in OSCC tissues. Moreover, WIF1 was able to translocate from the nuclear to cytoplasm in OSF and OSCC tissues. Furthermore, WIF1 was frequently methylated in OSCC cases with betel quid chewing habit, but not in normal oral mucous and different stages of OSF tissues, suggesting WIF1 methylation is tumor-specific in the development of OSF. Thus, the results demonstrated that WIF1 is frequently downregulated or silenced by promoter methylation in the carcinogenesis of OSF, which serves as a potential epigenetic biomarker for the early detection of OSCC.
Collapse
Affiliation(s)
- Shanghui Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Ling Chen
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mubarak Mashrah
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
16
|
安 宁, 罗 心, 叶 苏, 王 宇, 杨 蔚, 蒋 倩, 朱 文. [Construction of pVAX-WIF-1 Eukaryotic Expression Vector and Its Anti-tumor Effect on Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:409-15. [PMID: 26182865 PMCID: PMC6000242 DOI: 10.3779/j.issn.1009-3419.2015.07.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/29/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE WIF-1 is an important tumor-suppressing gene in lung cancer, and its encoding protein WIF-1 can reduce proliferation and promote apoptosis by inhibiting Wnt/β-catenin signaling in lung cancer. This study constructs a eukaryotic expression plasmid carrying WIF-1 using FDA-approved clinical plasmid pVAX and explores the anti-tumor effect of pVAX-WIF-1 on A549 lung cancer cells in vitro and vivo. METHODS The DNA fragment of human WIF-1 coding sequence was amplified by PCR and was cloned into the multiple cloning sites of eukaryotic expression vector pVAX to construct pVAX-WIF-1. A recombinant plasmid was transfected into lung cancer A549 cells, and the expression of WIF-1 genes was verified by Western blot after transfection. Subsequently, the effect of pVAX-WIF-1 on cell apoptosis and proliferation was identified by MTT assay, staining A549 cells with Hoechst 3235, and flow cytometry. Finally, the A549 subcutaneous xenograft was established to detect the effect of pVAX-WIF-1 on lung tumor growth in vivo. RESULTS The results of restriction enzyme digestion, PCR, and sequencing indicated that eukaryotic expression plasmid pVAX-WIF-1 was successfully constructed. The protein expression level of WIF-1 was increased in the transfected A549 cells. Further results showed that transfection with pVAX-WIF-1 significantly inhibited proliferation and promoted apoptosis in A549 cells. Moreover, pVAX-WIF-1 significantly inhibited the tumor growth of the A549 subcutaneous xenograft in vivo. CONCLUSIONS The recombinant eukaryotic expression vector pVAX-WIF-1 was successfully constructed. Transfection with pVAX-WIF-1 could significantly inhibit proliferation and promote apoptosis of lung cancer A549 cells and also effectively inhibit the tumor growth of the A549 subcutaneous xenograft in vivo. Our research can contribute to clinical applications of WIF-1 in lung cancer gene therapy.
Collapse
Affiliation(s)
- 宁 安
- 610072 成都,四川省医学科学院,四川省人民医院肿瘤科Department of Medical Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People′ Hospital, 610072 Chengdu, China
| | - 心梅 罗
- 610041 成都,四川大学华西医院/生物治疗国家重点实验室State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - 苏娟 叶
- 610041 成都,四川大学华西医院/生物治疗国家重点实验室State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - 宇 王
- 610041 成都,四川大学华西医院/生物治疗国家重点实验室State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - 蔚菡 杨
- 610041 成都,四川大学华西医院/生物治疗国家重点实验室State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - 倩倩 蒋
- 610041 成都,四川大学华西医院/生物治疗国家重点实验室State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - 文 朱
- 610041 成都,四川大学华西医院/生物治疗国家重点实验室State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| |
Collapse
|
17
|
Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB, Yang JR. The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther 2015; 8:539-548. [PMID: 25767398 PMCID: PMC4354468 DOI: 10.2147/ott.s75899] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs with the capacity to regulate gene expression post-transcriptionally. The miRNA-29 family consists of miR-29a, miR-29b, and miR-29c, among which miR-29b is the most highly expressed and is found at two genomic loci. Recently, numerous studies have demonstrated that aberrant expression of miR-29b is common in the majority of human cancers. miR-29b is known to critically affect cancer progression by functioning as a tumor suppressor. However, it may also act as an oncogene under certain conditions. In this review, we illustrate the role of miR-29b in cancer regulation, function, and signaling. This is the first review highlighting the role of miR-29b in cancer. Our review aims to summarize the effects of miR-29b on cancer activity and its interactions with target genes and signaling pathways, as well as to provide therapeutic implications for overcoming cancer chemoresistance.
Collapse
Affiliation(s)
- Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qiong Guo
- Department of Urology, The Central Hospital of Changsha, Changsha, People’s Republic of China
| | - Fa-jun Fu
- Department of Urology, The Central Hospital of Changsha, Changsha, People’s Republic of China
| | - Zhao Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zhuo Yin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yong-bao Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jin-rui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
18
|
Liu MT, Chen MK, Huang CC, Huang CY. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development. World J Oncol 2015; 6:243-261. [PMID: 29147412 PMCID: PMC5649942 DOI: 10.14740/wjon610w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2012] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.
Collapse
Affiliation(s)
- Mu-Tai Liu
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC.,Department of Oncology, National Taiwan University Hospital, 7 Chung San South Road, Taipei, Taiwan 100, ROC.,Department of Medicine, Chang Shan Medical University, 110 Section 1, Chien- Kuo N. Road, Taichung, Taiwan 402, ROC.,Department of Radiology, Yuanpei University of Science and Technology, 306 Yuanpei Street, Hsinchu, Taiwan 300, ROC
| | - Mu-Kuan Chen
- Department of Radiology, Yuanpei University of Science and Technology, 306 Yuanpei Street, Hsinchu, Taiwan 300, ROC.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC
| | - Chia-Chun Huang
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC
| | - Chao-Yuan Huang
- Department of Oncology, National Taiwan University Hospital, 7 Chung San South Road, Taipei, Taiwan 100, ROC
| |
Collapse
|
19
|
Liu Y, Liu YZ, Zhang RX, Wang X, Meng ZJ, Huang J, Wu K, Luo JY, Zuo GW, Chen L, Yin LJ, Deng ZL, He BC. Oridonin inhibits the proliferation of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Int J Oncol 2014; 45:795-803. [PMID: 24859848 DOI: 10.3892/ijo.2014.2456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
It has been reported that oridonin (ORI) can inhibit proliferation and induce apoptosis in various types of cancer cell lines. However, the exact mechanism for this function remains unclear. In this study, we investigated the proliferation inhibitory effect of ORI on human osteosarcoma (OS) 143B cells and dissected the possible molecular mechanism(s) underlying this effect. We demonstrated that ORI can inhibit proliferation, induce apoptosis and arrest the cell cycle in 143B cells. Using luciferase reporter assay, we found that the Wnt/β-catenin signaling was inhibited in 143B cells by ORI. Accordingly, the total protein levels and nuclear translocation of β-catenin were reduced by ORI treatment. ORI increased glycogen synthase kinase 3β (GSK3β) activity and upregulated Dickkopf-1 (Dkk-1) expression. We found that Dkk-1 overexpression or β-catenin knockdown can potentiate the proliferation inhibitory effect of ORI in 143B cells, while β-catenin overexpression attenuated this effect. Using the xenograft tumor model of human OS, we demonstrated that ORI effectively inhibited the growth of tumors. Histological examination showed that ORI inhibited cancer cell proliferation, decreased the expression of PNCA and β-catenin. Our findings suggest that ORI can inhibit 143B OS cell proliferation by downregulating Wnt/β-catenin signal transduction, which may be mediated by upregulating the Dkk-1 expression and/or enhancing the function of GSK3β. Therefore, ORI can be potentially used as an effective adjuvant agent for the clinical management of OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Ying-Zi Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Ran-Xi Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Xing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Zi-Jun Meng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Jun Huang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Ke Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Jin-Yong Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Guo-Wei Zuo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Liang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liang-Jun Yin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Zhong-Liang Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Bai-Cheng He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
20
|
Translational research in nasopharyngeal carcinoma. Oral Oncol 2014; 50:345-52. [DOI: 10.1016/j.oraloncology.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022]
|
21
|
Paluszczak J, Hemmerling D, Kostrzewska-Poczekaj M, Jarmuż-Szymczak M, Grenman R, Wierzbicka M, Baer-Dubowska W. Frequent hypermethylation of WNT pathway genes in laryngeal squamous cell carcinomas. J Oral Pathol Med 2014; 43:652-7. [PMID: 24762262 DOI: 10.1111/jop.12178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aberrations in the function of the WNT signaling pathway have been recently implicated in the pathogenesis of head and neck cancer, and the hypermethylation of several WNT cascade inhibitors were shown to be useful in disease prognosis. However, the extent of deregulation of WNT pathway by DNA hypermethylation has not been studied in detail in laryngeal cancer so far. The aim of this study was to establish the frequency of methylation of WNT pathway negative regulators in laryngeal squamous cell carcinomas and evaluate its prognostic significance. METHODS Twenty-six laryngeal squamous cell carcinoma cell lines and samples obtained from twenty-eight primary laryngeal carcinoma patients were analyzed. The methylation status of DKK1, LKB1, PPP2R2B, RUNX3, SFRP1, SFRP2, and WIF-1 was assessed using the methylation-specific polymerase chain reaction. RESULTS Frequent hypermethylation of DKK1, PPP2R2B, SFRP1, SFRP2, and WIF-1 was detected, and a high methylation index was usually observed. Half of the cell lines analyzed and seventy percent of primary laryngeal carcinoma cases were characterized by the methylation of at least four genes. The hypermethylation of PPP2R2B or WIF-1 was associated with longer survival in laryngeal carcinoma cell lines. Moreover, the concurrent methylation of PPP2R2B and SFRP1 differentiated primary from recurrent laryngeal carcinoma cell lines. CONCLUSIONS Frequent hypermethylation of WNT pathway negative regulators is observed in laryngeal squamous cell carcinomas. The possible prognostic significance of the methylation of DKK1, PPP2R2B, and SFRP1 needs to be evaluated in further prospective studies.
Collapse
Affiliation(s)
- Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | | | |
Collapse
|
22
|
Lin CH, Ji T, Chen CF, Hoang BH. Wnt signaling in osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:33-45. [PMID: 24924167 DOI: 10.1007/978-3-319-04843-7_2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies.
Collapse
Affiliation(s)
- Carol H Lin
- The Hyundai Cancer Institute, CHOC Children's Hospital, Orange, CA, USA
| | | | | | | |
Collapse
|
23
|
He JP, Hao Y, Wang XL, Yang XJ, Shao JF, Guo FJ, Feng JX. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev 2014; 15:5967-5976. [PMID: 25124559 DOI: 10.7314/apjcp.2014.15.15.5967] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Treating the osteosarcoma (OSA) remains a challenge. Current strategies focus on the primary tumor and have limited efficacy for metastatic OSA. A better understanding of the OSA pathogenesis may provide a rational basis for innovative treatment strategies especially for metastases. The aim of this review is to give an overview of the molecular mechanisms of OSA tumorigenesis, OSA cell proliferation, apoptosis, migration, and chemotherapy resistance, and how improved understanding might contribute to designing a better treatment target for OSA.
Collapse
Affiliation(s)
- Jin-Peng He
- Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
24
|
Wu D, Zhang Y, Huang J, Fan Z, Shi F, Wang S. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo. Biochem Biophys Res Commun 2013; 443:712-7. [PMID: 24333874 DOI: 10.1016/j.bbrc.2013.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.
Collapse
Affiliation(s)
- Danxin Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yu Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zirong Fan
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fengrong Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Senming Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
25
|
Promoter methylation of WNT inhibitory factor-1 and expression pattern of WNT/β-catenin pathway in human astrocytoma: pathologic and prognostic correlations. Mod Pathol 2013; 26:626-39. [PMID: 23328978 DOI: 10.1038/modpathol.2012.215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
WNT inhibitory factor-1 (WIF1) is an antagonist of the WNT signaling pathway. We investigated the relationship between WIF1 promoter methylation and regulation of the WNT/β-catenin signaling pathway, tumor grade, and survival in patients with astrocytoma. This study included 86 cases of astrocytoma, comprising 20 diffuse astrocytomas and 66 glioblastomas. In addition, 17 temporal lobectomy specimens from patients with epilepsy were included as controls. The ratio of methylated DNA to total methylated and unmethylated DNA (% methylation) was measured by methylation- and unmethylation-specific PCR. Representative tumor tissue was immunostained for WIF1, β-catenin, cyclin D1, c-myc, and isocitrate dehydrogenase 1. Levels of WIF1 promoter methylation, mRNA expression, and protein expression in a glioblastoma cell line were compared before and after demethylation treatment. The mean percent methylation of the WIF1 promoter in astrocytomas was higher than that in control brain tissue. WIF1 protein expression was lower in the tumor group with >5% methylation than in the group with <5% methylation. Cytoplasmic β-catenin staining was more frequently observed in tumors with a low WIF1 protein expression level. Demethylation treatment of a glioblastoma cell line increased WIF1 mRNA and protein expression. Increased WIF1 promoter methylation and decreased WIF1 protein expression were not related to patient survival. In conclusion, WIF1 expression is downregulated by promoter methylation and is an important mechanism of aberrant WNT/β-catenin pathway activation in astrocytoma pathogenesis.
Collapse
|
26
|
Mu Y, Li SY. Advances in research of signaling pathways associated with cancer stem cells in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:373-380. [DOI: 10.11569/wcjd.v21.i5.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The discovery of cancer stem cells has led to a better understanding of mechanisms underlying the occurrence, development and metastasis of cancer. Three signaling pathways, Wnt, PIP3, and Hedgehog, play an important role in self-renewal and differentiation of stem cells. Once abnormalities occur in these signaling pathways, cancer stem cells will present aberrant differentiation and unlimited proliferation and eventually develop into tumors. Although there is still controversy over the existence of stem cells in esophageal squamous cell carcinoma (ESCC), more and more evidence suggests that the above three signaling pathways are important in promoting the differentiation of esophageal epithelial cells, accelerating the progression of ESCC and causing radiotherapy and chemotherapy resistance.
Collapse
|
27
|
NOR1 Regulates Morphogenetic Cell Behavior in vitro Coincident With Inhibition of a Non-canonical Wnt-signaling Cascade*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Sánchez-Hernández D, Sierra J, Ortigão-Farias JR, Guerrero I. The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog. Development 2012; 139:3849-58. [PMID: 22951645 DOI: 10.1242/dev.080028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) and Wnt signaling pathways are crucial for development as well as for adult stem cell maintenance in all organisms from Drosophila to humans. Aberrant activation of these pathways has been implicated in many types of human cancer. During evolution, organisms have developed numerous ways to fine-tune Wnt and Hh signaling. One way is through extracellular modulators that directly interact with Wnt or Hh, such as the Wnt inhibitory factor (Wif-1) family of secreted factors. Interestingly, Wif-1 family members have divergent functions in the Wnt and Hh pathways in different organisms. Whereas vertebrate Wif-1 blocks Wnt signaling, Drosophila Wif-1 [Shifted (Shf)] regulates only Hh distribution and spreading through the extracellular matrix. Here, we investigate which parts of the Shf and human Wif-1 (WIF1) proteins are responsible for functional divergence. We analyze the behavior of domain-swap (the Drosophila and human WIF domain and EGF repeats) chimeric constructs during wing development. We demonstrate that the WIF domain confers the specificity for Hh or Wg morphogen. The EGF repeats are important for the interaction of Wif-1 proteins with the extracellular matrix; Drosophila EGF repeats preferentially interact with the glypican Dally-like (Dlp) when the WIF domain belongs to human WIF1 and with Dally when the WIF domain comes from Shf. These results are important both from the evolutionary perspective and for understanding the mechanisms of morphogen distribution in a morphogenetic field.
Collapse
Affiliation(s)
- David Sánchez-Hernández
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Nasopharyngeal carcinoma signaling pathway: an update on molecular biomarkers. Int J Cell Biol 2012; 2012:594681. [PMID: 22500174 PMCID: PMC3303613 DOI: 10.1155/2012/594681] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 01/03/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.
Collapse
|
30
|
Molecular alterations associated with osteosarcoma development. Sarcoma 2012; 2012:523432. [PMID: 22448123 PMCID: PMC3289857 DOI: 10.1155/2012/523432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/02/2011] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is the most frequent malignant primary bone tumor characterized by a high potency to form lung metastases which is the main cause of death. Unfortunately, the conventional chemotherapy is not fully effective on osteosarcoma metastases. The progression of a primary tumor to metastasis requires multiple processes, which are neovascularization, proliferation, invasion, survival in the bloodstream, apoptosis resistance, arrest at a distant organ, and outgrowth in secondary sites. Consequently, recent studies have revealed new insights into the molecular mechanisms of metastasis development. The understanding of the mechanism of molecular alterations can provide the identification of novel therapeutic targets and/or prognostic markers for osteosarcoma treatment to improve the clinical outcome.
Collapse
|
31
|
Supic G, Kozomara R, Jovic N, Zeljic K, Magic Z. Hypermethylation of RUNX3 but not WIF1 gene and its association with stage and nodal status of tongue cancers. Oral Dis 2011; 17:794-800. [DOI: 10.1111/j.1601-0825.2011.01838.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH. The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 2011; 11:1223-32. [PMID: 21916576 DOI: 10.1586/era.11.94] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is the most common primary bone malignancy, with a high propensity for local invasion, early metastasis and relapse. While the molecular mechanisms behind osteosarcoma development and metastasis have not yet been fully elucidated, research has highlighted an important role for Wnt signaling. Several Wnt ligands, receptors and coreceptors are highly expressed in osteosarcoma cell lines, while Wnt inhibitors are downregulated. As a result, research has begun to identify mechanisms with which to inhibit Wnt signaling. The use of Wnt pathway inhibitors and the targeting of c-Met, a Wnt regulated proto-oncogene, may be two possible mechanisms for treatment of osteosarcoma. In addition, as the Wnt signaling pathway is a regulator of stem cells, reagents that function as Wnt inhibitors are currently under investigation as inhibitors of cancer stem cell proliferation. Research involving the Wnt signaling pathway and cancer stem cells holds promise for novel treatment options in the future.
Collapse
Affiliation(s)
- Peter McQueen
- Department of Orthopaedic Surgery, University of California at Irvine, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wong AMG, Kong KL, Tsang JWH, Kwong DLW, Guan XY. Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer 2011; 118:698-710. [PMID: 21720996 DOI: 10.1002/cncr.26309] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) microRNAs are abundant in nasopharyngeal carcinoma (NPC) tumors. With recent advances in serum microRNA detection, the distinct presence of EBV microRNAs in serum could aid in screening endemic regions for NPC. A proposed network of genes targeted by these microRNAs could also shed light on EBV-associated tumorigenesis. METHODS MicroRNA microarray profiling of 5 paired NPC biopsies was followed by validation of 12 up-regulated EBV microRNAs (BART1-3p, 2-5p, 5, 6-5p, 6-3p, 7, 8, 9, 14, 17-5p, 18-5p, 19-3p) in 15 additional cases by real-time polymerase chain reaction. Tumor (cellular) and serum microRNA copy numbers from the same 15 patients were correlated. Expression of the same microRNAs were also examined in EBV-positive cell lines C666 and NP460hTERT+EBV. Bioinformatic tools helped predict cellular target genes, which were later confirmed by gene expression analysis. RESULTS The authors' high-throughput approach shows that EBV microRNAs are generally more up-regulated than microRNAs of human origin. Twenty-nine of 39 EBV microRNAs were significantly up-regulated in tumor versus their nontumor biopsies (P < .05). Upon successfully validating 12 selected EBV microRNAs in 15 additional paired NPC cases, the authors found that their distinct presence in the serum of NPC patients positively correlated with cellular copy numbers of EBV microRNAs. Further investigation of potential EBV microRNA target genes revealed inhibition of tumor suppressor genes (eg, PTEN) and extensive deregulation of several pathways frequently involved in NPC (eg, Wnt signaling). CONCLUSIONS Increasing knowledge of host-virus interaction via microRNAs may provide feasible explanations underlying NPC tumorigenesis along with the development of biomarkers for screening high-risk populations.
Collapse
Affiliation(s)
- Alissa Michelle Go Wong
- Department of Clinical Oncology and Center for Cancer Research, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
34
|
Huang L, Li MX, Wang L, Li BK, Chen GH, He LR, Xu L, Yuan YF. Prognostic value of Wnt inhibitory factor-1 expression in hepatocellular carcinoma that is independent of gene methylation. Tumour Biol 2010; 32:233-40. [PMID: 21052890 DOI: 10.1007/s13277-010-0117-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/22/2010] [Indexed: 12/11/2022] Open
Abstract
Recently, Wnt inhibitory factor-1 (WIF-1) was found to be epigenetically inactivated in several solid tumors, but the biological and clinical relevance of WIF-1 methylation and expression status in hepatocellular carcinoma (HCC) are still unclear. In the present study, reverse transcription polymerase chain reaction (PCR) and methylation-specific PCR were used to examine the WIF-1 expression and methylation in HCC cell lines. In addition, methylation and expression status of WIF-1 in 105 HCC cases were correlated with clinicopathological parameters and prognosis after tumor resection. WIF-1 was expressed in one HCC cell line and L02, both of which were not methylated in promoter region. DNA hypermethylation of WIF-1 promoter was identified in the other four HCC cell lines without WIF-1 expression. In neoplastic and non-neoplastic tissue samples, the rates of WIF-1 methylation were 61.9% and 37.1% (P = 0.001), respectively. WIF-1 was significantly downregulated in neoplastic tissues at messenger ribonucleic acid (mRNA) level, as compared to adjacent non-neoplastic tissues (P = 0.006). A significant inverse association was observed between WIF-1 methylation of and WIF-1 expression (P 0.017, R = -0.232). Methylation of WIF-1 was not associated with patient survival. In contrast, patients whose tumors exhibited negative WIF-1 mRNA expression had lower rates of overall survival. These findings suggested that aberrant methylation of WIF-1 is a common event in hepatocarcinogenesis. In addition, expression, but not methylation, of WIF-1 is a predictor of good outcome in patients undergoing resection of HCC.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim JJ, Lee JS, Moon BH, Lee MO, Song SH, Li H, Fornace AJ, Cha HJ. Wip1-expressing feeder cells retain pluripotency of co-cultured mouse embryonic stem cells under leukemia inhibitory factor-deprivated condition. Arch Pharm Res 2010; 33:1253-60. [PMID: 20803129 DOI: 10.1007/s12272-010-0816-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/07/2023]
Abstract
The optimization of in vitro culture conditions for embryonic stem cells (ESCs) is a matter of critical importance; a prompt supply of a sufficient population of cells that retain their pluripotency capabilities must be secured in order to make possible future cell therapies. Despite a number of reports asserting that a variety of cytokines, signaling ligands, and small molecules can help in maintaining the pluripotency of ESCs, mammalian feeder cells continue to be broadly accepted as the method of choice for ESC cultures. This appears to be because mammalian feeder cells seem to produce some as-yet-unidentified factor that makes them very effective as feeder cells. In this study, we investigated wild-type p53 inducible phosphatase (Wip1), the knockdown of which increases Wnt inhibitory factor-1 expression, in its feeder functions toward mouse embryonic stem cells, lowering the effect of Wnt, one of key signaling in maintaining stemness of ESCs. For this purpose, Wip1 was stably expressed in mouse embryonic fibroblast cell line (STO) using retro-viral gene delivery system and then the function as a feeder cell was monitored either with or without leukemia inhibitory factor (LIF) in culture medium. We demonstrated that mouse embryonic stem cells grown with Wip1 expressing STO showed higher alkaline phosphatase activity and sustained Oct-4 expression level even under LIF deprivation condition compared to both control and Wip1 phosphatase activity dead mutant expressing STO. These results imply that Wip1 phosphatase activity in feeder cells is important to retain pluripotency of mouse embryonic stem cells under LIF deprivation conditions. These results indicate that genetically engineered feeder cells such as Wip1 expressing cell lines, are alternative strategy for the optimization of maintenance and expansion of mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pochon, 487-010, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 2010. [PMID: 20573255 DOI: 10.1186/1476-4598-9-162.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3. RESULTS The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues. CONCLUSION These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.
Collapse
Affiliation(s)
- David S Yee
- Department of Urology and Chao Family Comprehensive Cancer Center, University of California at Irvine Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 2010; 9:162. [PMID: 20573255 PMCID: PMC2907330 DOI: 10.1186/1476-4598-9-162] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022] Open
Abstract
Background Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3. Results The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues. Conclusion These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.
Collapse
Affiliation(s)
- David S Yee
- Department of Urology and Chao Family Comprehensive Cancer Center, University of California at Irvine Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang Z, Wang Y, Fang J, Chen F, Liu J, Wu J, Wang Y. Expression and aberrant promoter methylation of Wnt inhibitory factor-1 in human astrocytomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:26. [PMID: 20334650 PMCID: PMC2851677 DOI: 10.1186/1756-9966-29-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/24/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND Wnt inhibitory factor-1(WIF-1) acts as a Wnt-antagonists and tumor suppressor, but hypermethylation of WIF-1 gene promoter and low expression activate Wnt signaling aberrantly and induce the development of various human tumors. With this work we intended to investigate the expression and promoter methylation status of WIF-1 gene in human astrocytomas. METHODS The tissue samples consisted of 53 astrocytomas and 6 normal brain tissues. The expression levels of WIF-1 were determined by immunohistochemistry and semiquantitative RT-PCR. The results were analyzed in correlation with clinicopathological data. Methylation status of WIF-1 gene promoter was investigated using methylation specific PCR. The relationship between methylation and expression of the genes was analyzed. RESULTS The average expression levels of WIF-1 protein and mRNA in astrocytomas were decreased significantly compared with normal control tissues. The protein and mRNA expression of WIF-1 gene in astrocytomas was decreased with the increase of pathological grade. Furthermore, WIF-1 promoter methylation was observed by MS-PCR in astrocytomas which showed significant reduction of WIF-1 expression. The WIF-1 promoter hypermethylation was associated with reduced expression of WIF-1 expression. CONCLUSION Our results demonstrate that the WIF-1 gene is frequently down-regulated or silenced in astrocytomas by aberrant promoter methylation. This may be an important mechanism in astrocytoma carcinogenesis.
Collapse
Affiliation(s)
- Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410078, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Rubin EM, Guo Y, Tu K, Xie J, Zi X, Hoang BH. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther 2010; 9:731-41. [PMID: 20197388 DOI: 10.1158/1535-7163.mct-09-0147] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been reported that the progression of osteosarcoma was closely associated with the aberrant activation of canonical Wnt signaling. Wnt inhibitory factor-1 (WIF-1) is a secreted Wnt inhibitor whose role in human osteosarcoma remains unknown. In this study, WIF-1 expression in NHOst and osteosarcoma cell lines was determined by real-time reverse transcription-PCR, methylation-specific PCR, and Western blotting analysis. In addition, tissue array from patient samples was examined for WIF-1 expression by immunohistochemistry. Compared with normal human osteoblasts, WIF-1 mRNA and protein levels were significantly downregulated in several osteosarcoma cell lines. The downregulation of WIF-1 mRNA expression is associated with its promoter hypermethylation in these tested cell lines. Importantly, WIF-1 expression was also downregulated in 76% of examined osteosarcoma cases. These results suggest that the downregulation of WIF-1 expression plays a role in osteosarcoma progression. To further study the potential tumor suppressor function of WIF-1 in osteosarcoma, we established stable 143B cell lines overexpressing WIF-1. WIF-1 overexpression significantly decreased tumor growth rate in nude mice as examined by the s.c. injection of 143B cells stably transfected with WIF-1 and vector control. WIF-1 overexpression also markedly reduced the number of lung metastasis in vivo in an orthotopic mouse model of osteosarcoma. Together, these data suggest that WIF-1 exerts potent antiosteosarcoma effect in vivo in mouse models. Therefore, the reexpression of WIF-1 in WIF-1-deficient osteosarcoma represents a potential novel treatment and preventive strategy.
Collapse
Affiliation(s)
- Elyssa M Rubin
- Department of Oncology, Children's Hospital of Orange County, Orange, California, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ding Z, Qian YB, Zhu LX, Xiong QR. Promoter methylation and mRNA expression of DKK-3 and WIF-1 in hepatocellular carcinoma. World J Gastroenterol 2009; 15:2595-601. [PMID: 19496188 PMCID: PMC2691489 DOI: 10.3748/wjg.15.2595] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the promoter methylation status and mRNA expression of DKK-3 and WIF-1 gene in hepatocellular carcinoma (HCC).
METHODS: DKK-3 and WIF-1 acted as Wnt-antagonists and tumor suppressors, but hypermethylation of the gene promoter and low mRNA expression activated Wnt signaling aberrantly and induced the development of HCC. Methylation status of the DKK-3 and WIF-1 gene promoter was investigated using methylation specific polymerase chain reaction (PCR) in tumor and adjacent non-cancerous tissues from 33 HCC patients and 20 normal liver tissues served as control. The expression of DKK-3 and WIF-1 mRNA was also determined by real-time quantitative reverse transcriptase PCR. The relationship between methylation, mRNA expression, and clinical data, as well as methylation and mRNA expression of the two genes were analyzed.
RESULTS: The methylation of DKK-3 and WIF-1 genes in HCC increased significantly compared with adjacent non-cancerous tissues and normal control tissues (χ2 =7.79, P < 0.05; χ2 = 4.89, P < 0.05), and no significant difference in methylation between adjacent non-cancerous tissues and normal control tissues was observed. In HCC tissues, significant differences in the DKK-3 promoter methylation were observed in age and cirrhosis, and significant differences of the WIF-1 promoter methylation were observed in HBsAg and cirrhosis. The average expression of DKK-3 mRNA in HCC and adjacent non-cancerous tissues was increased significantly compared with normal control tissues. The average expression of WIF-1 mRNA showed no significant difference among the three tissues. The mRNA expression of DKK-3 gene in HCC was decreased as the pathological grade increased.
CONCLUSION: The aberrant promoter methylation and decreased expression of DKK-3 and WIF-1 may be an important mechanism in HCC, and may be a far-reaching significance in early diagnosis and therapy of HCC.
Collapse
|
41
|
Niller HH, Wolf H, Minarovits J. Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia. Semin Cancer Biol 2009; 19:158-64. [PMID: 19429479 DOI: 10.1016/j.semcancer.2009.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is associated with a wide variety of malignant tumors. The expression of the latent viral RNAs is under strict, host-cell dependent transcriptional control. This results in an almost complete transcriptional silencing of the EBV genome in memory B-cells. In tumor cells, germinal center B-cells and lymphoblastoid cells, distinct viral latency promoters are active. Epigenetic mechanisms contribute to this strict control. In EBV-infected cells, epigenetic mechanisms also alter the expression of cellular genes, including tumor suppressor genes. In Nasopharyngeal Carcinoma, the hypermethylation of certain cellular promoters is attributed to the upregulation of DNA methyltransferases by the viral oncoprotein LMP1 (latent membrane protein 1) via JNK/AP1-signaling. The role of other viral latency products in the epigenetic dysregulation of the cellular genome remains to be established. Analysis of epigenetic alterations in EBV-associated neoplasms may result in a better understanding of their pathogenesis and may facilitate the development of new therapies.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene at the University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
42
|
Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009; 129:1614-27. [PMID: 19177135 DOI: 10.1038/jid.2008.445] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It has been two decades since investigators discovered the link between the Drosophila wingless (Wg) gene and the vertebrate oncogene int-1, thus establishing the family of signaling proteins known as Wnts. Since the inception of the Wnt signaling field, there have been 19 Wnt isoforms identified in humans. These secreted glycoproteins can activate at least two distinct signaling pathways in vertebrate cells, leading to cellular changes that regulate a vast array of biological processes, including embryonic development, cell fate, cell proliferation, cell migration, stem cell maintenance, tumor suppression, and oncogenesis. In certain contexts, one subset of Wnt isoforms activates the canonical Wnt/beta-catenin pathway that is characterized by the activation of certain beta-catenin-responsive target genes in response to the binding of Wnt ligand to its cognate receptors. Similarly, a second subset of Wnt isoforms activates beta-catenin-independent pathways, including the Wnt/calcium (Wnt/Ca) pathway and the Wnt/planar cell polarity (Wnt/PCP) pathway, in certain cellular contexts. In addition, research has identified several secreted proteins known to regulate Wnt signaling, including the Dickkopf (DKK) family, secreted Frizzled-related proteins (sFRPs), and Wnt inhibitory factor-1 (WIF-1). The advent of technologies that can provide genome-wide expression data continues to implicate Wnts and proteins that regulate Wnt signaling pathways in a growing number of disease processes. The aim of this review is to provide a context on the Wnt field that will facilitate the interpretation and study of Wnt signaling in the context of human disease.
Collapse
Affiliation(s)
- Andy J Chien
- The University of Washington School of Medicine, Department of Medicine and the Institute for Stem Cell and Regenerative Medicine, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
43
|
Yang TM, Leu SW, Li JM, Hung MS, Lin CH, Lin YC, Huang TJ, Tsai YH, Yang CT. WIF-1 promoter region hypermethylation as an adjuvant diagnostic marker for non-small cell lung cancer-related malignant pleural effusions. J Cancer Res Clin Oncol 2008; 135:919-24. [DOI: 10.1007/s00432-008-0527-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 11/25/2008] [Indexed: 11/24/2022]
|
44
|
Identification of candidate cancer genes involved in human retinoblastoma by data mining. Childs Nerv Syst 2008; 24:893-900. [PMID: 18350306 DOI: 10.1007/s00381-008-0595-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The objective of this study was to discover potential cancer-related genes involved in retinoblastoma (RB) tumorigenesis. MATERIALS AND METHODS Using a data-mining tool called cDNA Digital Gene Expression Displayer (DGED) and serial analysis of gene expression DGED from the Cancer Genome Anatomy Project (CGAP) database, eight cDNA libraries and five serial analysis of gene expression libraries from retinoblastoma (RB) solid tumors and normal retina tissues were analyzed. The deregulated genes were classified into major families using information from Gene Ontology. Several candidate cancer-related genes were analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on tissue microarrays (TMA) of RB and human normal retina samples. RESULTS A total of 260 genes with deregulated expression emerged when examined by DGED from the CGAP database. Functional classification of these genes not only provided an interesting insight into RB tumorigenesis but also facilitated target identification for RB therapeutics. Several candidate genes were confirmed by real-time RT-PCR and IHC analysis on TMA and were found to be associated with RB genesis through text-mining in Information Hyperlinked over Proteins. The results also implicated MCM7 and WIF1 as promising therapeutic targets for RB, but further validation is needed.
Collapse
|
45
|
Chou J, Lin YC, Kim J, You L, Xu Z, He B, Jablons DM. Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck 2008; 30:946-63. [PMID: 18446839 PMCID: PMC3046044 DOI: 10.1002/hed.20833] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer rare throughout most of the world but common in certain geographic areas, such as southern Asia. While environmental factors and genetic susceptibility play important roles in NPC pathogenesis, the Epstein-Barr virus in particular has been implicated in the molecular abnormalities leading to NPC. There is upregulation of cellular proliferation pathways such as the Akt pathway, mitogen-activated protein kinases, and the Wnt pathway. Cell adhesion is compromised due to abnormal E-cadherin and beta-catenin function. Aberrations in cell cycle are due to dysregulation of factors such as p16, cyclin D1, and cyclin E. Anti-apoptotic mechanisms are also upregulated. There are multiple abnormalities unique to NPC that are potential targets for novel treatments.
Collapse
Affiliation(s)
- Josephine Chou
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, California 94115, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL. Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 2008; 149:1235-42. [PMID: 18079202 DOI: 10.1210/en.2007-0542] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The etiology of sporadic pituitary tumors is currently unknown. The Wnt pathways have been implicated in the pathogenesis of a variety of human tumors, but the role of these pathways in pituitary tumors is unclear. Microarray analysis using the Affymetrix HG U133 plus 2.0 GeneChips identified four secreted frizzled-related protein (sFRP) family members of Wnt pathway inhibitors that were differentially expressed in both nonfunctioning and clinically functioning pituitary tumors (n = 20) compared with normal pituitary controls (n = 3). Reduced tumor expression of Wnt inhibitory factor-1 (WIF1), sFRP2, and sFRP4 mRNA was confirmed by real-time quantitative RT-PCR (P <0.001 and P = 0.002 and 0.013, respectively) in all pituitary subtypes. Hypermethylation of the WIF1 promoter was present in 88% of the pituitary tumors (n = 41). Seventy-six percent of pituitary tumors demonstrated absent or weak cytoplasmic WIF1 staining by immunohistochemistry (n = 41), although preserved staining was seen in some functioning tumors, with strong staining in 92% of normal pituitary controls (n = 13). The Wnt pathway target gene cyclin D1 was found to be up-regulated specifically in the nonfunctioning pituitary tumors compared with controls at both mRNA and protein level, supportive of activation of the Wnt-beta-catenin pathway. Nuclear accumulation of beta-catenin, however, was not observed in any pituitary tumors (n = 70). By transfecting GH3 cells with WIF1, decreased cell proliferation and colony formation was observed compared with empty vector controls. In conclusion, our data suggest that WIF1 may be a tumor suppressor, specifically in nonfunctioning pituitary tumors, and that the Wnt pathways are important in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Marianne S Elston
- Cancer Genetics Unit, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clément G, Guilleret I, He B, Yagui-Beltrán A, Lin YC, You L, Xu Z, Shi Y, Okamoto J, Benhattar J, Jablons D. Epigenetic alteration of the Wnt inhibitory factor-1 promoter occurs early in the carcinogenesis of Barrett's esophagus. Cancer Sci 2008; 99:46-53. [PMID: 18005197 PMCID: PMC11158554 DOI: 10.1111/j.1349-7006.2007.00663.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 11/28/2022] Open
Abstract
The role of Wnt antagonists in the carcinogenesis of esophageal adenocarcinoma (EAC) remains unclear. We hypothesized that downregulation of the Wnt inhibitory factor-1 (WIF-1) might be involved in the neoplastic progression of Barrett's esophagus (BE). We analyzed the DNA methylation status of the WIF-1 promoter in normal, preneoplastic, and neoplastic samples from BE patients and in EAC cell lines. We investigated the role of WIF-1 on EAC cell growth and the chemosensitization of the cells to cisplatin. We found that silencing of WIF-1 correlated with promoter hypermethylation. EAC tissue samples showed higher levels of WIF-1 methylation compared to the matched normal epithelium. In addition, we found that WIF-1 hypermethylation was more frequent in BE samples from patients with EAC than in BE samples from patients who had not progressed to EAC. Restoration of WIF-1 in cell lines where WIF-1 was methylation-silenced resulted in growth suppression. Restoration of WIF-1 could sensitize the EAC cells to the chemotherapy drug cisplatin. Our results suggest that silencing of WIF-1 through promoter hypermethylation is an early and common event in the carcinogenesis of BE. Restoring functional WIF-1 might be used as a new targeted therapy for the treatment of this malignancy.
Collapse
Affiliation(s)
- Geneviève Clément
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, 2340 Sutter St, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin YC, You L, Xu Z, He B, Yang CT, Chen JK, Mikami I, Clément G, Shi Y, Kuchenbecker K, Okamoto J, Kashani-Sabet M, Jablons DM. Wnt Inhibitory Factor-1 Gene Transfer Inhibits Melanoma Cell Growth. Hum Gene Ther 2007; 18:379-86. [PMID: 17472570 DOI: 10.1089/hum.2006.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silencing of Wnt antagonists with aberrant activation of Wnt signaling is a common phenomenon in various human cancers. Wnt inhibitory factor-1 (WIF-1) is a secreted antagonist of Wnt signaling and acts through direct binding to Wnt in the extracellular space. In this study, we tried to illuminate the impact of WIF-1 gene expression in melanoma with WIF-1 silencing by in vitro and in vivo studies. We restored the expression of WIF-1 by nonviral gene transfer with a pcDNA3.1 vector. We demonstrated inhibition of melanoma cell growth after WIF-1 restoration in colony formation and proliferation assays in vitro. In addition, the inhibitory effect was related to downregulation of Wnt signaling, which was demonstrated at both the transcriptional and translational levels. Furthermore, by using a xenograft mouse model, we confirmed the effect of WIF-1 expression in suppressing tumor growth by inhibition of Wnt signaling in vivo. Our results suggest the potential for further application of WIF-1 gene therapy in melanoma with WIF-1 silencing.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Thoracic Oncology Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim J, You L, Xu Z, Kuchenbecker K, Raz D, He B, Jablons D. Wnt inhibitory factor inhibits lung cancer cell growth. J Thorac Cardiovasc Surg 2007; 133:733-7. [PMID: 17320573 DOI: 10.1016/j.jtcvs.2006.09.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/15/2006] [Accepted: 09/29/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Aberrant activation of the Wnt signaling pathway is associated with the pathogenesis of multiple cancers, including non-small cell lung cancer. Wnt inhibitory factor, a secreted Wnt antagonist, is downregulated in non-small cell lung cancer. We hypothesized that restoration of Wnt inhibitory factor function would inhibit lung cancer cell growth. METHODS The lung cancer cell lines A549 and H460 were transfected with an expression vector containing the Wnt inhibitory factor gene. Apoptosis rates and colony formation were measured after transfection. Recombinant Wnt inhibitory factor protein was used to treat H460 cells, and proliferation rates were measured with an MTS assay. Finally, Wnt inhibitory factor plasmid was peritumorally injected near H460 tumor xenografts in nude mice. RESULTS Wnt inhibitory factor-transfected cells had increased apoptosis and decreased colony formation than control cells. Recombinant human Wnt inhibitory factor protein was also able to inhibit H460 cell proliferation measured by using the MTS assay. Wnt inhibitory factor plasmid significantly inhibited the growth in vivo of H460 tumor xenografts in nude mice. CONCLUSION These data suggest that Wnt inhibitory factor is able to inhibit lung cancer cell growth both in vitro and in vivo and provides additional evidence that Wnt inhibitory factor plays an important role in Wnt pathway regulation in lung cancer.
Collapse
Affiliation(s)
- Jae Kim
- Thoracic Oncology Laboratory, UCSF Comprehensive Cancer Center, San Francisco, Calif 94143, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Clément G, Jablons DM, Benhattar J. Targeting the Wnt signaling pathway to treat Barrett’s esophagus. Expert Opin Ther Targets 2007; 11:375-89. [PMID: 17298295 DOI: 10.1517/14728222.11.3.375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Barrett's esophagus (BE) is an acquired condition in which the normal squamous epithelium in the distal esophagus is replaced by a metaplastic columnar epithelium, as a complication of chronic gastroesophageal reflux. The clinical significance of this disease is its associated predisposition to esophageal adenocarcinoma (EAC). Recently, and similarly to other human malignancies, the Wnt signaling pathway and its key component beta-catenin have been implicated in the carcinogenesis of BE. Although mutations in adenomatous polyposis coli (APC) or beta-catenin are rare in EAC, alterations of upstream components, such as overexpression of Wnt2 ligand or downregulation of Wnt antagonists may play dominant roles in the activation of the Wnt pathway. Increasing evidence suggests that inhibiting the Wnt pathway may be a new targeted therapy for the treatment of cancers and could, therefore, be promising for the cure of EAC, which remains a highly lethal disease.
Collapse
Affiliation(s)
- Geneviève Clément
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA
| | | | | |
Collapse
|