1
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
2
|
Rostami S, Arefhosseini S, Tutunchi H, Khoshbaten M, Ebrahimi‐Mameghani M. Does myo-inositol supplementation influence oxidative stress biomarkers in patients with non-alcoholic fatty liver disease? Food Sci Nutr 2024; 12:1279-1289. [PMID: 38370063 PMCID: PMC10867460 DOI: 10.1002/fsn3.3842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
Myo-inositol (MI) is a carbocyclic sugar polyalcohol. MI has known to exert anti-inflammatory, anti-oxidant, and anti-diabetic activities. This study aimed to investigate the effects of MI supplementation on oxidative stress biomarkers in obese patients with non-alcoholic fatty liver disease (NAFLD). In this double-blinded placebo-controlled randomized clinical trial, 51 newly diagnosed obese patients with NAFLD were randomly assigned to receive either MI (4 g/day) or placebo supplements accompanied by dietary recommendations for 8 weeks. Oxidative stress biomarkers, nutritional status, as well as liver enzymes and obesity indices were assessed pre- and post-intervention. A total of 48 patients completed the trial. Although anthropometric measures and obesity indices decreased significantly in both groups, the between-group differences adjusted for confounders were non-significant for these parameters, except for weight (p = .049); greater decrease was observed in the MI group. Iron and zinc intakes decreased significantly in both groups; however, between-group differences were non-significant at the end of the study. No significant between-group differences were revealed for other antioxidant micronutrients at the study endpoint. Sense of hunger, feeling to eat, desire to eat sweet and fatty foods reduced significantly in both groups (p < .05), while the feeling of satiety increased significantly in the placebo group (p = .002). No significant between-group differences were observed for these parameters, except for desire to eat fatty foods; a greater decrease was observed in the MI group (p = .034). Serum levels of glutathione peroxidase (GPx) and superoxide dismutase (SOD) significantly increased in both study groups (p < .05); however, the between-group differences were non-significant at the end of the study. Furthermore, the between-group differences were non-significant for other oxidative stress biomarkers, except for serum nitric oxide (NO) level; a greater decrease was observed in the MI group. MI supplementation could significantly improve weight, desire to eat fatty foods, serum levels of NO, as well as the aspartate aminotransferase (AST)/ALT ratio.
Collapse
Affiliation(s)
- Somayeh Rostami
- Student Research Committee, Faculty of Nutrition & Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Helda Tutunchi
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Manouchehr Khoshbaten
- Department of Internal Medicine, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mehrangiz Ebrahimi‐Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
4
|
Zhor C, Wafaa L, Ghzaiel I, Kessas K, Zarrouk A, Ksila M, Ghrairi T, Latruffe N, Masmoudi-Kouki O, El Midaoui A, Vervandier-Fasseur D, Hammami M, Lizard G, Vejux A, Kharoubi O. Effects of polyphenols and their metabolites on age-related diseases. Biochem Pharmacol 2023:115674. [PMID: 37414102 DOI: 10.1016/j.bcp.2023.115674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Aging contributes to the progressive loss of cellular biological functions and increases the risk of age-related diseases. Cardiovascular diseases, some neurological disorders and cancers are generally classified as age-related diseases that affect the lifespan of individuals. These diseases result from the accumulation of cellular damage and reduced activity of protective stress response pathways, which can lead to inflammation and oxidative stress, which play a key role in the aging process. There is now increasing interest in the therapeutic effects of edible plants for the prevention of various diseases, including those associated with aging. It has become clear that the beneficial effects of these foods are due, at least in part, to the high concentration of bioactive phenolic compounds with low side effects. Antioxidants are the most abundant, and their high consumption in the Mediterranean diet has been associated with slower ageing in humans. Extensive human dietary intervention studies strongly suggest that polyphenol supplementation protects against the development of degenerative diseases, especially in the elderly. In this review, we present data on the biological effects of plant polyphenols in the context of their relevance to human health, ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Chouari Zhor
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Lounis Wafaa
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khadidja Kessas
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Amira Zarrouk
- University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse: Faculty of Medicine, Sousse, Tunisia.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Norbert Latruffe
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Olfa Masmoudi-Kouki
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, University Bourgogne Franche-Comté, 9, avenue A. Savary, 21078 Dijon Cedex, France.
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Omar Kharoubi
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| |
Collapse
|
5
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
6
|
Peng F, Ren X, Du B, Yang Y. Pyrus ussuriensis Maxim 70% ethanol eluted fraction ameliorates inflammation and oxidative stress in LPS-induced inflammation in vitro and in vivo. Food Sci Nutr 2023; 11:458-469. [PMID: 36655082 PMCID: PMC9834841 DOI: 10.1002/fsn3.3077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 01/21/2023] Open
Abstract
Pyrus ussuriensis Maxim (PUM) is a popular fruit among consumers, and also used as medical diet for dissolving phlegm and arresting cough. The present study aims to investigate the potential protective effect of P. ussuriensis Maxim 70% ethanol eluted fraction (PUM70) on lipopolysaccharide (LPS)-induced alveolar macrophages and acute lung injury (ALI) in mice. A total of 18 polyphenol compounds were tentatively identified in PUM70 by mass spectrometry (MS) analysis. The results in vivo suggested that PUM70 treatment could effectively alleviate the histological changes, and significantly inhibit the activity of myeloperoxidase (MPO) and the expression of pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)). The cell test results show that PUM70 exerted its protective effect by suppressing the messenger RNA (mRNA) expression levels (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreasing nitric oxide (NO) and prostaglandin 2 (PGE2) contents. In addition, it also inhibited the overproduction of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Furthermore, PUM70 induced the production of heme oxygenase 1 (HO-1) protein and nuclear translocation of Nrf2 (nuclear factor erythroid 2-related factor 2), indicating that PUM70 could mitigate oxidative injury via the Nrf2/HO-1 pathway. Moreover, PUM70 inhibited LPS-induced inflammation by blocking the phosphorylation of mitogen-activated protein kinases (MAPKs). The above results indicate that PUM70 has protective effects on LPS-induced ALI, possibly be related to the inhibition of MAPK and Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural ProductsHebei Normal University of Science and TechnologyQinhuangdaoChina
- Collaborative Innovation Centre of Hebei Chestnut IndustryHebei Normal University of Science and TechnologyQinhuangdaoChina
| | - Xin Ren
- Hebei Key Laboratory of Active Components and Functions in Natural ProductsHebei Normal University of Science and TechnologyQinhuangdaoChina
| | - Bin Du
- Hebei Key Laboratory of Active Components and Functions in Natural ProductsHebei Normal University of Science and TechnologyQinhuangdaoChina
- Collaborative Innovation Centre of Hebei Chestnut IndustryHebei Normal University of Science and TechnologyQinhuangdaoChina
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural ProductsHebei Normal University of Science and TechnologyQinhuangdaoChina
- Collaborative Innovation Centre of Hebei Chestnut IndustryHebei Normal University of Science and TechnologyQinhuangdaoChina
| |
Collapse
|
7
|
Mahmoudi A, Butler AE, Majeed M, Banach M, Sahebkar A. Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients 2022; 14:1331. [PMID: 35405942 PMCID: PMC9002953 DOI: 10.3390/nu14071331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder. Defects in function/expression of genes/proteins are critical in initiation/progression of NAFLD. Natural products may modulate these genes/proteins. Curcumin improves steatosis, inflammation, and fibrosis progression. Here, bioinformatic tools, gene−drug and gene-disease databases were utilized to explore targets, interactions, and pathways through which curcumin could impact NAFLD. METHODS: Significant curcumin−protein interaction was identified (high-confidence:0.7) in the STITCH database. Identified proteins were investigated to determine association with NAFLD. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for significantly involved targets (p < 0.01). Specificity of obtained targets with NAFLD was estimated and investigated in Tissue/Cells−gene associations (PanglaoDB Augmented 2021, Mouse Gene Atlas) and Disease−gene association-based EnrichR algorithms (Jensen DISEASES, DisGeNET). RESULTS: Two collections were constructed: 227 protein−curcumin interactions and 95 NAFLD-associated genes. By Venn diagram, 14 significant targets were identified, and their biological pathways evaluated. Based on gene ontology, most targets involved stress and lipid metabolism. KEGG revealed chemical carcinogenesis, the AGE-RAGE signaling pathway in diabetic complications and NAFLD as the most common significant pathways. Specificity to diseases database (EnrichR algorithm) revealed specificity for steatosis/steatohepatitis. CONCLUSION: Curcumin may improve, or inhibit, progression of NAFLD through activation/inhibition of NAFLD-related genes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran;
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | | | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| |
Collapse
|
8
|
Chun KS, Raut PK, Kim DH, Surh YJ. Role of chemopreventive phytochemicals in NRF2-mediated redox homeostasis in humans. Free Radic Biol Med 2021; 172:699-715. [PMID: 34214633 DOI: 10.1016/j.freeradbiomed.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
While functioning as a second messenger in the intracellular signaling, ROS can cause oxidative stress when produced in excess or not neutralized/eliminated properly. Excessive ROS production is implicated in multi-stage carcinogenesis. Our body is equipped with a defense system to cope with constant oxidative stress caused by the external insults, including redox-cycling chemicals, radiation, and microbial infection as well as endogenously generated ROS. The transcription factor, nuclear transcription factor erythroid 2-related factor 2 (NRF2) is a master switch in the cellular antioxidant signaling and plays a vital role in adaptive survival response to ROS-induced oxidative stress. Although NRF2 is transiently activated when cellular redox balance is challenged, this can be overwhelmed by massive oxidative stress. Therefore, it is necessary to maintain the NRF2-mediated antioxidant defense capacity at an optimal level. This review summarizes the natural NRF2 inducers/activators, especially those present in the plant-based diet, in relation to their cancer chemopreventive potential in humans. The molecular mechanisms underlying their stabilization or activation of NRF2 are also discussed.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, South Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42691, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
9
|
Park JY, Sohn HY, Koh YH, Jo C. Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351. Sci Rep 2021; 11:8430. [PMID: 33875681 PMCID: PMC8055680 DOI: 10.1038/s41598-021-87225-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Curcumin, a phytochemical extracted from Curcuma longa rhizomes, is known to be protective in neurons via activation of Nrf2, a master regulator of endogenous defense against oxidative stress in cells. However, the exact mechanism by which curcumin activates Nrf2 remains controversial. Here, we observed that curcumin induced the expression of genes downstream of Nrf2 such as HO-1, NQO1, and GST-mu1 in neuronal cells, and increased the level of Nrf2 protein. Notably, the level of p62 phosphorylation at S351 (S349 in human) was significantly increased in cells treated with curcumin. Additionally, curcumin-induced Nrf2 activation was abrogated in p62 knockout (−/−) MEFs, indicating that p62 phosphorylation at S351 played a crucial role in curcumin-induced Nrf2 activation. Among the kinases involved in p62 phosphorylation at S351, PKCδ was activated in curcumin-treated cells. The phosphorylation of p62 at S351 was enhanced by transfection of PKCδ expression plasmid; in contrast, it was inhibited in cells treated with PKCδ-specific siRNA. Together, these results suggest that PKCδ is mainly involved in curcumin-induced p62 phosphorylation and Nrf2 activation. Accordingly, we demonstrate for the first time that curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at S351.
Collapse
Affiliation(s)
- Jee-Yun Park
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea
| | - Hee-Young Sohn
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea
| | - Chulman Jo
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea.
| |
Collapse
|
10
|
Involvement of NRF2 in Breast Cancer and Possible Therapeutical Role of Polyphenols and Melatonin. Molecules 2021; 26:molecules26071853. [PMID: 33805996 PMCID: PMC8038098 DOI: 10.3390/molecules26071853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is defined as a disturbance in the prooxidant/antioxidant balance in favor of the former and a loss of control over redox signaling processes, leading to potential biomolecular damage. It is involved in the etiology of many diseases, varying from diabetes to neurodegenerative diseases and cancer. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor and reported as one of the most important oxidative stress regulators. Due to its regulatory role in the expression of numerous cytoprotective genes involved in the antioxidant and anti-inflammatory responses, the modulation of NRF2 seems to be a promising approach in the prevention and treatment of cancer. Breast cancer is the prevalent type of tumor in women and is the leading cause of death among female cancers. Oxidative stress-related mechanisms are known to be involved in breast cancer, and therefore, NRF2 is considered to be beneficial in its prevention. However, its overactivation may lead to a negative clinical impact on breast cancer therapy by causing chemoresistance. Some known “oxidative stress modulators”, such as melatonin and polyphenols, are suggested to play an important role in the prevention and treatment of cancer, where the activation of NRF2 is reported as a possible underlying mechanism. In the present review, the potential involvement of oxidative stress and NRF2 in breast cancer will be reviewed, and the role of the NRF2 modulators—namely, polyphenols and melatonin—in the treatment of breast cancer will be discussed.
Collapse
|
11
|
Lee DY, Chun YS, Kim JK, Lee JO, Lee YJ, Ku SK, Shim SM. Curcumin Ameliorated Oxidative Stress and Inflammation-Related Muscle Disorders in C2C12 Myoblast Cells. Antioxidants (Basel) 2021; 10:476. [PMID: 33802935 PMCID: PMC8002759 DOI: 10.3390/antiox10030476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of the current study was to investigate antioxidant and anti-inflammatory effects of spray dry powder containing 40% curcumin (CM-SD) in C2C12 myoblast cells. CM-SD increased DPPH radical scavenging activity in a dose-dependent manner, and up to 30 μg/mL of CM-SD did not express cytotoxicity in C2C12 cells. Exposure to hydrogen peroxide (H2O2) drastically decreased the viability of C2C12 cells, but pre-treatment of CM-SD significantly increased the cell viability (p < 0.01). CM-SD significantly transactivated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent luciferase activity in a dose-dependent manner and enhanced the levels of heme oxygenase (HO)-1, glutamate cysteine ligase catalytic subunit (GCLC), and NAD(P)H-dependent quinone oxidoreductase (NQO)-1. CM-SD also significantly reduced reactive oxygen species (ROS) production and lipid peroxidation and restored glutathione (GSH) depletion in H2O2-treated C2C12 cells. Moreover, CM-SD significantly reduced lipopolysaccharides (LPS)-mediated interleukin (IL)-6 production in the conditioned medium. Results from the current study suggest that CM-SD could be a useful candidate against oxidative stress and inflammation-related muscle disorders.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Yoon-Seok Chun
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Jong-Kyu Kim
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Jeong-Ok Lee
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Young-Joon Lee
- Department of Preventive Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| |
Collapse
|
12
|
Dietary Anti-Aging Polyphenols and Potential Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020283. [PMID: 33668479 PMCID: PMC7918214 DOI: 10.3390/antiox10020283] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
For years, the consumption of a diet rich in fruits and vegetables has been considered healthy, increasing longevity, and decreasing morbidities. With the assistance of basic research investigating the potential mechanisms, it has become clear that the beneficial effects of plant-based foods are mainly due to the large amount of bioactive phenolic compounds contained. Indeed, substantial dietary intervention studies in humans have supported that the supplementation of polyphenols have various health-promoting effects, especially in the elderly population. In vitro examinations on the anti-aging mechanisms of polyphenols have been widely performed, using different types of natural and synthetic phenolic compounds. The aim of this review is to critically evaluate the experimental evidence demonstrating the beneficial effects of polyphenols on aging-related diseases. We highlight the potential anti-aging mechanisms of polyphenols, including antioxidant signaling, preventing cellular senescence, targeting microRNA, influencing NO bioavailability, and promoting mitochondrial function. While the trends on utilizing polyphenols in preventing aging-related disorders are getting growing attention, we suggest the exploration of the beneficial effects of the combination of multiple polyphenols or polyphenol-rich foods, as this would be more physiologically relevant to daily life.
Collapse
|
13
|
Zeng H, Wang L, Zhang J, Pan T, Yu Y, Lu J, Zhou P, Yang H, Li P. Activated PKB/GSK-3 β synergizes with PKC- δ signaling in attenuating myocardial ischemia/reperfusion injury via potentiation of NRF2 activity: Therapeutic efficacy of dihydrotanshinone-I. Acta Pharm Sin B 2021; 11:71-88. [PMID: 33532181 PMCID: PMC7838031 DOI: 10.1016/j.apsb.2020.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Disrupted redox status primarily contributes to myocardial ischemia/reperfusion injury (MIRI). NRF2, the endogenous antioxidant regulator, might provide therapeutic benefits. Dihydrotanshinone-I (DT) is an active component in Salvia miltiorrhiza with NRF2 induction potency. This study seeks to validate functional links between NRF2 and cardioprotection of DT and to investigate the molecular mechanism particularly emphasizing on NRF2 cytoplasmic/nuclear translocation. DT potently induced NRF2 nuclear accumulation, ameliorating post-reperfusion injuries via redox alterations. Abrogated cardioprotection in NRF2-deficient mice and cardiomyocytes strongly supports NRF2-dependent cardioprotection of DT. Mechanistically, DT phosphorylated NRF2 at Ser40, rendering its nuclear-import by dissociating from KEAP1 and inhibiting degradation. Importantly, we identified PKC-δ-(Thr505) phosphorylation as primary upstream event triggering NRF2-(Ser40) phosphorylation. Knockdown of PKC-δ dramatically retained NRF2 in cytoplasm, convincing its pivotal role in mediating NRF2 nuclear-import. NRF2 activity was further enhanced by activated PKB/GSK-3β signaling via nuclear-export signal blockage independent of PKC-δ activation. By demonstrating independent modulation of PKC-δ and PKB/GSK-3β/Fyn signaling, we highlight the ability of DT to exploit both nuclear import and export regulation of NRF2 in treating reperfusion injury harboring redox homeostasis alterations. Coactivation of PKC and PKB phenocopied cardioprotection of DT in vitro and in vivo, further supporting the potential applicability of this rationale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Yang
- Corresponding authors. Tel./fax: +86 25 83271379.
| | - Ping Li
- Corresponding authors. Tel./fax: +86 25 83271379.
| |
Collapse
|
14
|
Elkhateeb SA, Ibrahim TR, El-Shal AS, Abdel Hamid OI. Ameliorative role of curcumin on copper oxide nanoparticles-mediated renal toxicity in rats: An investigation of molecular mechanisms. J Biochem Mol Toxicol 2020; 34:e22593. [PMID: 32738191 DOI: 10.1002/jbt.22593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/25/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
The increasing role of copper oxide nanoparticles (CuO NPs) in many industries and their broad range of applications increase its potential toxic effects. Curcumin possesses a wide range of health benefits. This study aimed to evaluate the role of curcumin in attenuating CuO NPs toxicity in rat kidney. Thirty six animals were divided into five groups; control groups (I, II), curcumin group orally received curcumin 200 mg/kg bw, CuO NPs group orally gavaged 250 mg/kg bw CuO NPs and combined group orally gavaged curcumin and CuO NPs. Treatment was given for 3 months. Administration of CuO NPs revealed elevation in serum creatinine and blood urea nitrogen levels, elevated kidney and urine levels of kidney injury molecule-1, decreased catalase, superoxide dismutase activities, total sulfhydryl, reduced glutathione content, increased serum reactive oxygen species, tissue total oxidant status, lipid hydroperoxides, protein carbonyl, malondialdehyde, nitric oxide levels, increased interleukin-1β, tumor necrosis factor-α, nuclear factor (NF-κB), and decreased heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS) genes expression. Moreover, histopathological alteration in kidney structure was detected. Immunohistochemical-stained sections by caspase-3 reaction revealed apoptosis. Pretreatment with curcumin improved most of the adverse effects in rats treated with CuO NPs regarding oxidative stress and inflammatory indices in kidney, and kept histopathological- and immunohistochemical-stained sections near to normal. This study shows that curcumin administration attenuates the toxicity in the kidney of CuO NPs-treated rats through its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Shereen A Elkhateeb
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Taiseer R Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S El-Shal
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Anti-Inflammatory Effects of Ribes diacanthum Pall Mediated via Regulation of Nrf2/HO-1 and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Macrophages and a TPA-Induced Dermatitis Animal Model. Antioxidants (Basel) 2020; 9:antiox9070622. [PMID: 32679895 PMCID: PMC7402139 DOI: 10.3390/antiox9070622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Ribes diacanthum Pall (RDP) is a Mongolian traditional medicine used to treat renal inflammation. In the present study, we initially investigated the anti-inflammatory effects and mechanisms of action of ethylacetate extract of RDP (EARDP) in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced dermatitis in mice. We demonstrated that EARDP protected against LPS-induced cell death by inhibiting intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production, as well as the synthesis of pro-inflammatory mediators and cytokines, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. EARDP inhibited the phosphorylation and degradation of inhibitory κB-α (IκB-α) and the activation of nuclear factor (NF)-κB, indicating that the anti-inflammatory effect of EARDP was mediated via the suppression of NF-κB nuclear translocation. In addition, EARDP induced the heme oxygenase-1 (HO-1) expression and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2), indicating that EARDP induced HO-1 via the Nrf2 pathway in RAW 264.7 cells. Furthermore, EARDP significantly suppressed the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. However, ZnPP, a specific inhibitor of HO-1, reversed the EARDP-mediated inhibition of NO and TNF-α production in LPS-stimulated RAW 264.7 macrophages. EARDP blocked the phosphorylation of mitogen-activated protein kinase (MAPK) and Akt in LPS-stimulated RAW 264.7 cells. In the in vivo animal model, EARDP significantly and dose-dependently reduced TPA-induced secretion of TNF-α and IL-6 in mouse ear. Based on these results, EARDP represents a promising natural compound, protective against oxidative stress and inflammatory diseases.
Collapse
|
16
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
17
|
Shin JW, Chun KS, Kim DH, Kim SJ, Kim SH, Cho NC, Na HK, Surh YJ. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem Pharmacol 2020; 173:113820. [DOI: 10.1016/j.bcp.2020.113820] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
|
18
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
19
|
Umme Hani, Kandagalla S, Sharath BS, Jyothsna K, Manjunatha H. Network Pharmacology Approach Uncovering Pathways Involved in Targeting Hsp90 Through Curcumin and Epigallocatechin to Control Inflammation. Curr Drug Discov Technol 2019; 18:127-138. [PMID: 31820701 DOI: 10.2174/1570163816666191210145652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
AIMS To fetch pathways involved in targetting Hsp90 through Curcumin and Epigallocatechin through Network pharmacological approach. BACKGROUND Hsp90 is a molecular chaperone involved in stabilizing inflammatory protein which may lead to chronic diseases. The herbal compounds Curcumin and Epigallocatechin processing antiinflammatory properties are known to follow a common pathway and control the expression of Hsp90. OBJECTIVE To collect the gene targets of Hsp90, Curcumin and Epigallocatechin in order to understand protein-protein interactions of gene targets by constructing the interactome to identify the hub proteins. Hub proteins docking was performed with curcumin and epigallocatechin. Finally, hub proteins involvement with various human diseases were identified. METHODS The gene targets of Hsp90, Curcumin and Epigallocatechin were obtained from there respective databases. Protein-protein interactions of Pkcδ-Nrf2 and Tlr4 pathway gene targets were collected from String database. Protein interaction network was constructed and merged to get intercession network in cytoscape and Cluego was used to predict the disease related target genes. Docking of ligands to target proteins was carried out using Autodock vina tool. RESULT The main key regulators of Curcumin and Epigallocatechin were identified particularly from Pkcδ-Nrf2 and Tlr4 pathway. CONCLUSION The combined action of Curcumin and Epigallocatechin can reduce the expression of Hsp90 eventually controlling the inflammation.
Collapse
Affiliation(s)
- Umme Hani
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Shivananda Kandagalla
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - B S Sharath
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - K Jyothsna
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Hanumanthappa Manjunatha
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| |
Collapse
|
20
|
Lee H, Ko W, Chowdhury A, Li B, Kim SC, Oh H, Kim YC, Woo ER, Baek NI, Lee DS. Brassicaphenanthrene A from Brassica rapa protects HT22 neuronal cells through the regulation of Nrf2‑mediated heme oxygenase‑1 expression. Mol Med Rep 2019; 21:493-500. [PMID: 31746357 DOI: 10.3892/mmr.2019.10824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 11/05/2022] Open
Abstract
Brain cell damage that results from oxidative toxicity contributes to neuronal degeneration. The transcription factor nuclear factor‑E2‑related factor 2 (Nrf2) regulates the expression of heme oxygenase (HO)‑1 and glutathione (GSH), and serves a key role in the pathogenesis of neurological diseases. Brassica rapa is a turnip that is unique to Ganghwa County, and is used mainly for making kimchi, a traditional Korean food. In the current study, brassicaphenanthrene A (BrPA) from B. rapa was demonstrated to exhibit protective effects against neurotoxicity induced by glutamate via Nrf2‑mediated HO‑1 expression. Similarly, BrPA increased the expression of cellular glutathione and glutamine‑cysteine ligase genes. Furthermore, BrPA caused the nuclear translocation of Nrf2 and increased antioxidant response element (ARE) promoter activity. Nrf2 also mediated HO‑1 induction by BrPA through the PI3K/Akt and JNK regulatory pathways. The results of the present study indicated the neuroprotective effect of BrPA, a natural food component from B. rapa.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Dong‑gu, Gwangju 61452, Republic of Korea
| | - Wonmin Ko
- College of Pharmacy, Chosun University, Dong‑gu, Gwangju 61452, Republic of Korea
| | | | - Bin Li
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P.R. China
| | - Sam Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Dong‑gu, Gwangju 61452, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Dong‑gu, Gwangju 61452, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung‑Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong‑gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
21
|
Yang B, Yin C, Zhou Y, Wang Q, Jiang Y, Bai Y, Qian H, Xing G, Wang S, Li F, Feng Y, Zhang Y, Cai J, Aschner M, Lu R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425:152248. [PMID: 31330227 PMCID: PMC6710134 DOI: 10.1016/j.tox.2019.152248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. Curcumin, a polyphenol obtained from the rhizome of turmeric, has well-known antioxidant functions. Here, we evaluated curcumin's efficacy in mitigating MeHg-induced cytotoxicity and further investigated the underlying mechanism of this neuroprotection in primary rat astrocytes. Pretreatment with curcumin (2, 5, 10 and 20 μM for 3, 6, 12 or 24 h) protected against MeHg-induced (5 μM for 6 h) cell death in a time and dose-dependent manner. Curcumin (2, 5, 10 or 20 μM) pretreatment for 12 h significantly ameliorated the MeHg-induced astrocyte injury and oxidative stress, as evidenced by morphological alterations, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, and glutathione (GSH) and catalase (CAT) levels. Moreover, curcumin pretreatment increased Nrf2 nuclear translocation and downstream enzyme expression, heme oxygenase-1 (HO-1) and NADPH quinone reductase-1 (NQO1). Knockdown of Nrf2 with siRNA attenuated the protective effect of curcumin against MeHg-induced cell death. However, both the pan-protein kinase C (PKC) inhibitor, Ro 31-8220, and the selective PKCδ inhibitor, rottlerin, failed to suppress the curcumin-activated Nrf2/Antioxidant Response Element(ARE) pathway and attenuate the protection exerted by curcumin. Taken together, these findings confirm that curcumin protects against MeHg-induced neurotoxicity by activating the Nrf2/ARE pathway and this protection is independent of PKCδ activation. More studies are needed to understand the mechanisms of curcumin cytoprotection.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Zhou
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Feng
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215132, China.
| |
Collapse
|
22
|
Mhillaj E, Tarozzi A, Pruccoli L, Cuomo V, Trabace L, Mancuso C. Curcumin and Heme Oxygenase: Neuroprotection and Beyond. Int J Mol Sci 2019; 20:E2419. [PMID: 31100781 PMCID: PMC6567096 DOI: 10.3390/ijms20102419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a natural polyphenol component of Curcuma longa Linn, which is currently considered one of the most effective nutritional antioxidants for counteracting free radical-related diseases. Several experimental data have highlighted the pleiotropic neuroprotective effects of curcumin, due to its activity in multiple antioxidant and anti-inflammatory pathways involved in neurodegeneration. Although its poor systemic bioavailability after oral administration and low plasma concentrations represent restrictive factors for curcumin therapeutic efficacy, innovative delivery formulations have been developed in order to overwhelm these limitations. This review provides a summary of the main findings involving the heme oxygenase/biliverdin reductase system as a valid target in mediating the potential neuroprotective properties of curcumin. Furthermore, pharmacokinetic properties and concerns about curcumin's safety profile have been addressed.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy.
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy.
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
23
|
Liu Y, Li W, Duan Y. Effect of H
2
O
2
induced oxidative stress (OS) on volatile organic compounds (VOCs) and intracellular metabolism in MCF-7 breast cancer cells. J Breath Res 2019; 13:036005. [DOI: 10.1088/1752-7163/ab14a5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2019; 66:1-16. [PMID: 30660832 DOI: 10.1016/j.jnutbio.2018.12.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Monocytes and macrophages are important cells of the innate immune system that have diverse functions, including defense against invading pathogens, removal of dead cells by phagocytosis, antigen presentation in the context of MHC class I and class II molecules, and production of various pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1. In addition, pro-inflammatory (M1) and anti-inflammatory (M2) macrophages clearly play important roles in the progression of several inflammatory diseases. Therefore, therapies that target macrophage polarization and function by either blocking their trafficking to sites of inflammation, or skewing M1 to M2 phenotype polarization may hold clinical promise in several inflammatory diseases. Dietary-derived polyphenols have potent natural anti-oxidative properties. Within this group of polyphenols, curcumin has been shown to suppress macrophage inflammatory responses. Curcumin significantly reduces co-stimulatory molecules and also inhibits MAPK activation and the translocation of NF-κB p65. Curcumin can also polarize/repolarize macrophages toward the M2 phenotype. Curcumin-treated macrophages have been shown to be highly efficient at antigen capture and endocytosis via the mannose receptor. These novel findings provide new perspectives for the understanding of the immunopharmacological role of curcumin, as well as its therapeutic potential for impacting macrophage polarization and function in the context of inflammation-related disease. However, the precise effects of curcumin on the migration, differentiation, polarization and immunostimulatory functions of macrophages remain unknown. Therefore, in this review, we summarized whether curcumin can influence macrophage polarization, surface molecule expression, cytokine and chemokine production and their underlying pathways in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
25
|
Paramasivan P, Kankia IH, Langdon SP, Deeni YY. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:490-515. [PMID: 35582567 PMCID: PMC8992506 DOI: 10.20517/cdr.2019.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 04/28/2023]
Abstract
Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer therapy.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
| | - Ibrahim H. Kankia
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Yusuf Y. Deeni
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Correspondence Address: Prof. Yusuf Y Deeni, Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom. E-mail:
| |
Collapse
|
26
|
Lee SH, Min KJ. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Lee YS, Cho IJ, Kim JW, Lee SK, Ku SK, Lee HJ. Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea. Nutr Res Pract 2018; 12:486-493. [PMID: 30515276 PMCID: PMC6277309 DOI: 10.4162/nrp.2018.12.6.486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES The honeysuckle berry (HB) contains ascorbic acid and phenolic components, especially anthocyanins, flavonoids, and low-molecular-weight phenolic acids. In order to examine the potential of HB as a hepatoprotective medicinal food, we evaluated the in vitro anti-oxidant and anti-inflammatory activities of Korean HB (HBK) and Chinese HB (HBC). MATERIALS/METHODS Antioxidant and anti-inflammatory effects of the extracts were examined in HepG2 and RAW 264.7 cells, respectively. The anti-oxidant capacity was determined by DPPH, SOD, CAT, and ARE luciferase activities. The production of nitric oxide (NO) as an inflammatory marker was also evaluated. The Nrf2-mediated mRNA levels of heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (Nqo1), and glutamate-cysteine ligase catalytic subunit (Gclc) were measured. The concentrations of HB extracts used were 3, 10, 30, 100, and 300 µg/mL. RESULTS The radical scavenging activity of all HB extracts increased in a concentration-dependent manner (P < 0.01 or P < 0.05). SOD (P < 0.05) and CAT (P < 0.01) activities were increased by treatment with 300 µg/mL of each HB extract, when compared to those in the control. NO production was observed in cells pretreated with 100 or 300 µg/mL of HBC and HBK (P < 0.01). Treatment with 300 µg/mL of HBC significantly increased Nqo1 (P < 0.01) and Gclc (P < 0.05) mRNA levels compared to those in the control. Treatment with 300 µg/mL of HBK (P < 0.05) and HBC (P < 0.01) also significantly increased the HO-1 mRNA level compared to that in the control. CONCLUSIONS Thus, the Korean and Chinese HBs were found to possess favorable in vitro anti-oxidant and anti-inflammatory activities. Nrf2 and its related anti-oxidant genes were associated with both anti-oxidant and anti-inflammatory activities in HB-treated cells. Further studies are needed to confirm these in vivo effects.
Collapse
Affiliation(s)
- You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal Formulation and Department of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Gyeongbuk 38610, Korea
| | - Joo Wan Kim
- Department of Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sun-Kyoung Lee
- Department of Life Physical Education, Myongji University, Seoul 03674, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan, Gyeongbuk 38610, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| |
Collapse
|
28
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Curcumin Inhibits Acute Vascular Inflammation through the Activation of Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3295807. [PMID: 30327711 PMCID: PMC6171216 DOI: 10.1155/2018/3295807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 11/24/2022]
Abstract
Curcumin has several therapeutic properties such as anti-inflammatory effect. Heme oxygenase-1 (HO-1) has been showed to have cytoprotective effects in some pathological conditions. However, the role of HO-1 in anti-inflammatory effect of curcumin is unknown. In this study, we investigate whether the anti-inflammatory effect of curcumin in vascular may be involved in the activation of HO-1. New Zealand white rabbits were fed regular control diet or control diet added with 0.3% curcumin (wt/wt) for four weeks. Acute vascular inflammation of rabbits was induced by putting a collar on the left common carotid artery for 24 hours. HO-1 inhibitor and siRNA were used to investigate the role of HO-1 in the anti-inflammatory effect of curcumin in collared vascular. We also explored the mechanism of curcumin-induced activation of HO-1 in vitro. The serum bilirubin and vascular, liver, and spleen HO-1 mRNA levels were significantly increased in curcumin-treated rabbits. The vascular inflammation was significantly decreased in the curcumin-treated animals compared with the control. Treatment of the rabbits with an inhibitor of HO or HO-1 siRNA to knock down the carotid artery HO-1 abolished the ability of curcumin to inhibit vascular inflammation. Treatment of cultured human artery endothelial cells with curcumin induced the HO-1 expression through the activation of nuclear factor-E2-related factor 2 (Nrf2) and an antioxidant responsive element via the p38 MAPK signalling pathway. In conclusion, curcumin inhibits vascular inflammation in vivo and in vitro through the activation of HO-1.
Collapse
|
30
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
31
|
Teplova VV, Isakova EP, Klein OI, Dergachova DI, Gessler NN, Deryabina YI. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Cavaleri F. Presenting a New Standard Drug Model for Turmeric and Its Prized Extract, Curcumin. Int J Inflam 2018; 2018:5023429. [PMID: 29568482 PMCID: PMC5820622 DOI: 10.1155/2018/5023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, 688-2397 King George Blvd., White Rock, BC, Canada V4A7E9
| |
Collapse
|
33
|
Shah AJ, Prasanth Kumar S, Rao MV, Pandya HA. Ameliorative effects of curcumin towards cyclosporine-induced genotoxic potential: an in vitro and in silico study. Drug Chem Toxicol 2017; 41:259-269. [DOI: 10.1080/01480545.2017.1380660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ankita J. Shah
- Department of Zoology, Human Genetics and Biomedical Technology, Ahmedabad, India
| | - Sivakumar Prasanth Kumar
- Department of Bioinformatics, Applied Botany Centre, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Mandava V. Rao
- Department of Zoology, Human Genetics and Biomedical Technology, Ahmedabad, India
| | - Himanshu A. Pandya
- Department of Bioinformatics, Applied Botany Centre, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
34
|
Naturally Occurring Compounds: New Potential Weapons against Oxidative Stress in Chronic Kidney Disease. Int J Mol Sci 2017; 18:ijms18071481. [PMID: 28698529 PMCID: PMC5535971 DOI: 10.3390/ijms18071481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/22/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a well-described imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense system of cells and tissues. The overproduction of free radicals damages all components of the cell (proteins, lipids, nucleic acids) and modifies their physiological functions. As widely described, this condition is a biochemical hallmark of chronic kidney disease (CKD) and may dramatically influence the progression of renal impairment and the onset/development of major systemic comorbidities including cardiovascular diseases. This state is exacerbated by exposure of the body to uremic toxins and dialysis, a treatment that, although necessary to ensure patients' survival, exposes cells to non-physiological contact with extracorporeal circuits and membranes with consequent mitochondrial and anti-redox cellular system alterations. Therefore, it is undeniable that counteracting oxidative stress machinery is a major pharmacological target in medicine/nephrology. As a consequence, in recent years several new naturally occurring compounds, administered alone or integrated with classical therapies and an appropriate lifestyle, have been proposed as therapeutic tools for CKD patients. In this paper, we reviewed the recent literature regarding the "pioneering" in vivo testing of these agents and their inclusion in small clinical trials performed in patients affected by CKD.
Collapse
|
35
|
Feng L, Li J, Yang L, Zhu L, Huang X, Zhang S, Luo L, Jiang Z, Jiang T, Xu W, Wang X, Jin H. Tamoxifen activates Nrf2-dependent SQSTM1 transcription to promote endometrial hyperplasia. Am J Cancer Res 2017. [PMID: 28638475 PMCID: PMC5479276 DOI: 10.7150/thno.19135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term application of Tamoxifen (TAM) is usually recommended for hormone receptor positive breast cancer patients. Unfortunately, TAM will inevitably increase the incidence of endometrial hyperplasia even endometrial cancer. Despite of substantial investigations, no effective approaches to prevent TAM-induced endometrial carcinogenesis have been acknowledged. In this study, we found that inhibition of Nrf2 could be valuable to prevent TAM-induced endometrial hyperplasia. Upon TAM treatment, the mRNA and protein expression of autophagy adaptor SQSTM1 was specifically increased in endometrial cells but not breast cancer cells. Knocking-down of SQSTM1 expression retarded TAM-promoted growth of endometrial cancer cells. TAM stimulated SQSTM1 transcription specifically in endometrial cells by enhancing phosphorylation and nuclear translocation of Nrf2. Indeed, the expression of Nrf2 and SQSTM1 were positively correlated in primary endometrial tissues. In rats with TAM-induced endometrial hyperplasia, both Nrf2 and SQSTM1 expression were increased. Nrf2 inhibitor brusatol effectively attenuated TAM-induced SQSTM1 upregulation and endometrial hyperplasia. The kinase of Nrf2, PRKCD, was activated by TAM. Once PRKCD was depleted, TAM failed to promote Nrf2 phosphorylation and SQSTM1 expression. In summary, TAM stimulated Nrf2-dependent SQSTM1 transcription to promote endometrial hyperplasia by activating PRKCD. Therefore, blocking PRKCD-Nrf2-SQSTM1 signaling could be useful to prevent TAM-induced endometrial hyperplasia.
Collapse
|
36
|
Jeon W, Park SJ, Kim BC. n -Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages. Eur J Pharmacol 2017; 801:86-94. [DOI: 10.1016/j.ejphar.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
|
37
|
Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 2017; 117:218-227. [DOI: 10.1016/j.phrs.2016.12.037] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
|
38
|
Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin Cancer Biol 2016; 40-41:35-47. [DOI: 10.1016/j.semcancer.2016.03.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
|
39
|
Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol 2016; 32:543-561. [PMID: 27473378 DOI: 10.1007/s10565-016-9354-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Protection against ionizing radiation (IR) and sensitization of cancer cells to IR are apparently contrasting phenomena. However, curcumin takes on these contrasting roles leading to either protection or enhanced apoptosis in different irradiated cells. Here we studied whether pretreatment with free curcumin or a novel dendrosomal nanoformulation of curcumin (DNC) could exert protective/sensitizing effects on irradiated THP-1 leukemia cells. We employed assays including MTT viability, clonogenic survival, DNA fragmentation, PI/Annexin V flow cytometry, antioxidant system (ROS, TBARS for lipid peroxidation, 8-OHdG and γH2AX for DNA damage, glutathione, CAT and GPx activity, enzymes gene expression), ELISA (NF-κB and Nrf2 binding, TNF-α release), caspase assay, siRNA silencing of caspase-3, and western blotting to illustrate the observed protective role of curcumin in comparison with the opposite sensitizing role of its nanoformulation at a similar 10 μM concentration. The in vivo relevance of this concentration was determined via intraperitoneal administration in mice. Curcumin significantly enhanced the antioxidant defense, while DNC induced apoptosis and reduced viability as well as survival of irradiated THP-1 cells. Nrf2 binding showed an early rise and fall in DNC-treated cells, despite a gradual increase in curcumin-treated cells. We also demonstrated that DNC induced apoptosis in THP-1 cells via caspase-3 activation; whereas in combination with radiation, DNC alternatively employed a caspase-independent apoptosis pathway involving cytochrome c release from mitochondria.
Collapse
Affiliation(s)
- Behrooz Soltani
- Department of Biotechnology, College of Science, University of Tehran, Enghelab St., Tehran, 14155-6455, Iran
| | - Nasser Ghaemi
- Department of Biotechnology, College of Science, University of Tehran, Enghelab St., Tehran, 14155-6455, Iran. .,School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
40
|
Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2107-21. [PMID: 27369735 DOI: 10.1016/j.bbagen.2016.06.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Naturally occurring polyphenols found in food sources provide huge health benefits. Several polyphenolic compounds are implicated in the prevention of disease states, such as cancer. One of the mechanisms by which polyphenols exert their biological actions is by interfering in the protein kinase C (PKC) signaling pathways. PKC belongs to a superfamily of serine-threonine kinase and are primarily involved in phosphorylation of target proteins controlling activation and inhibition of many cellular processes directly or indirectly. SCOPE OF REVIEW Despite the availability of substantial literature data on polyphenols' regulation of PKC, no comprehensive review article is currently available on this subject. This article reviews PKC-polyphenol interactions and its relevance to various disease states. In particular, salient features of polyphenols, PKC, interactions of naturally occurring polyphenols with PKC, and future perspective of research on this subject are discussed. MAJOR CONCLUSIONS Some polyphenols exert their antioxidant properties by regulating the transcription of the antioxidant enzyme genes through PKC signaling. Regulation of PKC by polyphenols is isoform dependent. The activation or inhibition of PKC by polyphenols has been found to be dependent on the presence of membrane, Ca(2+) ion, cofactors, cell and tissue types etc. Two polyphenols, curcumin and resveratrol are in clinical trials for the treatment of colon cancer. GENERAL SIGNIFICANCE The fact that 74% of the cancer drugs are derived from natural sources, naturally occurring polyphenols or its simple analogs with improved bioavailability may have the potential to be cancer drugs in the future.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| | - Rashmi Ramani
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - M Olufemi Suraju
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
41
|
NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2746457. [PMID: 27340506 PMCID: PMC4909917 DOI: 10.1155/2016/2746457] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
Abstract
While reactive oxygen species (ROS) is generally considered harmful, a relevant amount of ROS is necessary for a number of cellular functions, including the intracellular signal transduction. In order to deal with an excessive amount of ROS, organisms are equipped with a sufficient amount of antioxidants together with NF-E2-related factor-2 (NRF2), a transcription factor that plays a key role in the protection of organisms against environmental or intracellular stresses. While the NRF2 activity has been generally viewed as beneficial to preserve the integrity of organisms, recent studies have demonstrated that cancer cells hijack the NRF2 activity to survive under the oxidative stress and, therefore, a close check must be kept on the NRF2 activity in cancer. In the present review, we briefly highlight important progresses in understanding the molecular mechanism, structure, and function of KEAP1 and NRF2 interaction. In addition, we provide general perspectives that justify conflicting views on the NRF2 activity in cancer.
Collapse
|
42
|
Curcumin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:1-25. [DOI: 10.1007/978-3-319-41334-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 2015; 12:49. [PMID: 26612997 PMCID: PMC4660721 DOI: 10.1186/s12986-015-0044-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolic changes during chronic kidney disease (CKD) may induce higher production of oxygen radicals that play a significant role in the progression of renal damage and in the onset of important comorbidities. This condition seems to be in part related to dysfunctional mitochondria that cause an increased electron "leakage" from the respiratory chain during oxidative phosphorylation with a consequent generation of reactive oxygen species (ROS). ROS are highly active molecules that may oxidize proteins, lipids and nucleic acids with a consequent damage of cells and tissues. To mitigate this mitochondria-related functional impairment, a variety of agents (including endogenous and food derived antioxidants, natural plants extracts, mitochondria-targeted molecules) combined with conventional therapies could be employed. However, although the anti-oxidant properties of these substances are well known, their use in clinical practice has been only partially investigated. Additionally, for their correct utilization is extremely important to understand their effects, to identify the correct target of intervention and to minimize adverse effects. Therefore, in this manuscript, we reviewed the characteristics of the available mitochondria-targeted anti-oxidant compounds that could be employed routinely in our nephrology, internal medicine and renal transplant centers. Nevertheless, large clinical trials are needed to provide more definitive information about their use and to assess their overall efficacy or toxicity.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Alessandra Dalla Gassa
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Paola Tomei
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| |
Collapse
|
44
|
Chen HH, Wang TC, Lee YC, Shen PT, Chang JY, Yeh TK, Huang CH, Chang HH, Cheng SY, Lin CY, Shih C, Chen CT, Liu WM, Chen CH, Kuo CC. Novel Nrf2/ARE Activator, trans-Coniferylaldehyde, Induces a HO-1-Mediated Defense Mechanism through a Dual p38α/MAPKAPK-2 and PK-N3 Signaling Pathway. Chem Res Toxicol 2015; 28:1681-92. [DOI: 10.1021/acs.chemrestox.5b00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Huang-Hui Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tai-Chi Wang
- Department
of Pharmacy, Tajen University, Pingtung 90741, Taiwan
| | - Yen-Chen Lee
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Pei-Ting Shen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jang-Yang Chang
- National
Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Institute
of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chih-Hsiang Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsin-Huei Chang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Shu-Ying Cheng
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chin-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chuan Shih
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wei-Min Liu
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hui Chen
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Chuan Kuo
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Institute
of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Graduate
Program for Aging, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
45
|
Moon SY, Lee JH, Choi HY, Cho IJ, Kim SC, Kim YW. Tryptanthrin protects hepatocytes against oxidative stress via activation of the extracellular signal-regulated kinase/NF-E2-related factor 2 pathway. Biol Pharm Bull 2015; 37:1633-40. [PMID: 25273386 DOI: 10.1248/bpb.b14-00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tryptanthrin [6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline], originally isolated from Isatidis radix, has been characterized as having anti-microbial and anti-tumor activities. It is well-known that excess oxidative stress is one of the major factors causing cell damage in the liver. This study investigated the cytoprotective effects and molecular mechanism of tryptanthrin against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in human hepatocyte-derived HepG2 cells. Tryptanthrin pre-treatment blocked the reactive oxygen species production, mitochondrial dysfunction, and cell death induced by tBHP. Moreover, tryptanthrin reversed tBHP-induced GSH reduction. This study also confirmed the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by tryptanthrin as a plausible molecular mechanism for its cytoprotective effects. Specifically, tryptanthrin treatment induced nuclear translocation and transactivation of Nrf2 as well as phosphorylation of extracellular signal-regulated kinase (ERK), a potential upstream kinase of Nrf2. Tryptanthrin also up-regulated the expression of the heme oxygenase 1 and glutamate-cysteine ligase catalytic subunits, which are representative target genes of Nrf2. Moreover, inhibitor of ERK was used to verify the important role of the ERK-Nrf2 pathway in the hepatoprotective effects of tryptanthrin. In conclusion, this study demonstrated that tryptanthrin protects hepatocytes against oxidative stress through the activation of the ERK/Nrf2 pathway in HepG2 cells.
Collapse
Affiliation(s)
- Soo Young Moon
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University
| | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Cao X, Ping S, Wang K, Shi J, Zhang C, Zheng H, Hu F. Comparisons of ethanol extracts of chinese propolis (poplar type) and poplar gums based on the antioxidant activities and molecular mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:307594. [PMID: 25802536 PMCID: PMC4353659 DOI: 10.1155/2015/307594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023]
Abstract
The biological activities of propolis are varied from plant sources and the prominent antioxidant effects of Chinese propolis (poplar type) have been extensively reported. Oxidative stress is associated with inflammation and induces many diseases. In the study, to evaluate antioxidant capacities and clarify the underlying molecular mechanisms of ethanol extracts of Chinese propolis (EECP) and ethanol extracts of poplar gums (EEPG), we analyzed their compositions by HPLC, evaluating their free radical scavenging activities and reducing power by chemical analysis methods. Moreover, we studied the roles of EECP and EEPG on the elimination of ROS and expressions of antioxidant genes (HO-1, TrxR1, GCLM, and GCLC) in RAW264.7 cells. We further investigated the effects of MAPKs on the antioxidant genes expression by specific inhibitors. The nucleus translocation effects of Nrf2 were also measured by confocal microscopy analysis. The results indicated that EECP had higher TPC and FDC values but regarding TFC values were not significant. EECP also possessed more contents of 11 compounds than EEPG. Both phytochemical analysis and cell experiment reflected that EECP exerted stronger antioxidant activities than EEPG. EECP and EEPG enhanced endogenous antioxidant defenses by eliminating reactive oxygen species directly and activating Erk-Nrf2-HO1, GCLM, and TrxR1 signal pathways.
Collapse
Affiliation(s)
- Jianglin Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xueping Cao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shun Ping
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Shi
- Husbandry and Veterinary Technical Popularization Center of Zhejiang Province, Hangzhou 310020, China
| | - Cuiping Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
48
|
Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J. Mitochondria as a Target in the Therapeutic Properties of Curcumin. Arch Pharm (Weinheim) 2014; 347:873-84. [DOI: 10.1002/ardp.201400266] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/02/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Joyce Trujillo
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| | | | - Cecilia Zazueta
- Department of Cardiovascular Medicine; Instituto Nacional de Cardiología Ignacio Chávez; México D.F. Mexico
| | | | - Yolanda Irasema Chirino
- Unidad de Biomedicina; Facultad de Estudios Superiores Iztacala; UNAM; Estado de México Mexico
| | - José Pedraza-Chaverrí
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| |
Collapse
|
49
|
Ye M, Wang Q, Zhang W, Li Z, Wang Y, Hu R. Oroxylin A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via Nrf2/ARE activation. Biochem Cell Biol 2014; 92:337-48. [PMID: 25247252 DOI: 10.1139/bcb-2014-0030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regulating inflammation could be an important measure for the effective treatment of cancer. Here we examine the mechanisms by which oroxylin A inhibits inflammation in RAW264.7 cells. The results demonstrate that pretreatment with oroxylin A (50, 100, and 150 μmol/L) inhibited lipopolysaccharide (LPS)-induced mRNA and protein expression of COX-2 and iNOS. In addition, oroxylin A significantly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NADP(H):quinone oxidoreductase (NQO1), induced Nrf2 translocation to the nucleus and up-regulated antioxidant response element (ARE)-luciferase reporter activity. Moreover, oroxylin A inhibited Nrf2 ubiquitination and proteasome activity. Transfection with Nrf2 siRNA knocked down Nrf2 expression and partially reversed oroxylin A-mediated inhibition of LPS-induced COX-2 and iNOS expression. Importantly, we showed for the first time that Nrf2 plays an important role in oroxylin A-suppressed inflammation in RAW264.7 cells. Uncovering the effect of oroxylin A on the regulation of Nrf2 signaling may be beneficial for developing new therapeutic strategies against inflammatory diseases.
Collapse
Affiliation(s)
- Ming Ye
- a State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, 24 Tongjia Xiang, Jiangsu 210009, China
| | | | | | | | | | | |
Collapse
|
50
|
The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol Neurobiol 2014; 50:1059-84. [DOI: 10.1007/s12035-014-8705-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023]
|